Systems, devices, and methods are provided for sensing the flow of liquid within a device in which liquid flows, and particularly in connection with a pump for active transport of the liquid. Parameters such as current drawn, pressure, and temperature can be used to accurately and precisely measure fluid flow in a contactless manner. A model can be used to determine the fluid flow using the measured current drawn by the pump, inlet pressure, outlet pressure, pump rotational speed, and fluid density as independent variables.
Conventional devices transporting fluid regulate an amount of liquid that is held and moved for proper functioning of the device. Conventional approaches require calculating flow rates using volumetric or sensor control. In medical applications, the conventional devices administer fluids to patients and regulate how much and how quickly the fluids are delivered using contact measurements such as balance chambers or non-contact measurements such as ultrasonic time-in-transient measurements. Devices that involve admixture of different components to generate a desired result also regulate an amount of each liquid component. Conventional fluid transport mechanisms often use volumetric control as part of the pump mechanism to monitor the flow rate across the pump. Usually, volumetric control uses two identical chambers that are each divided in half by a flexible membrane wherein the system has an inlet and outlet. However, each chamber is a source of error in volumetric control and increases the potential for fluid contamination. Another approach uses load cells to measure weight changes of a fluid container. However, this method is limited to net flow. Another conventional method for fluid regulation relies on counting the rotations of a rotary pump to determine an amount of fluid being pumped. However, the conventional systems and methods using rotary pumps are often inaccurate or imprecise. The problem is exacerbated in medical devices that mix fluid components requiring a high degree of accuracy and precision. Moreover, certain applications require contactless measurement of fluid rates to avoid contamination of medical fluid or to support measurement of hazardous or chemical fluids that might be used to clean or disinfect a medical device. Some of the known devices use non-intrusive sensors such as ultrasonic or optical sensors. However, the known non-intrusive sensors are specific to, and dependent on the specific properties of the fluid being transported, and often cannot reliably sense the movement of fluid in all cases. This can be problematic where admixtures of different fluid components are pumped and mixed in a medical fluid.
As such, there is a need for systems, methods, and components that can reliably measure flow rates with appropriate accuracy and precision. The need also includes obtaining measurement using contactless systems, methods, and components. The need still further includes systems, methods, and components that can use a parameter such as pump speed in conjunction with other data gathered from non-intrusive sensors already available within fluid sensing methodology to determine the fluid flow accurately and precisely across a pump. The need includes accurately and precisely monitoring the fluid flow across the rotatory pump of a fluid transport system. The need extends to systems, components, and methods for obtaining additional parameters such as pressure, power consumption, and fluid density to model the fluid flow. The need includes a non-contact flow sensing methodology. The need still includes non-contact systems, methods, and components that can determine fluid flow rates of chemical or hazardous liquid. The need also includes systems, methods, and components having high safety and that can determine the mechanical or electrical load on a pump or uneven loading in the system.
The problem to be solved is to monitor the fluid flow accurately and precisely without contacting the measured fluid. The solution is to model the fluid flow using the measured current drawn by the pump, inlet pressure, outlet pressure, pump rotational speed, and fluid density as independent variables and using the model to obtain the flow rate.
The first aspect of the invention relates to a system for fluid flow. In any embodiment, the system can include a rotary pump; an inflow line and an outflow line in fluid communication with the rotary pump; an inlet pressure sensor at the inflow line; an outlet pressure sensor at the outflow line; a current sensor measuring the current drawn by the rotary pump; and a circuit calculating fluid flow rate through the system based on a density value for a fluid pumping through the system, rotational speed of the rotary pump, inlet pressure at the inflow line, outlet pressure at the outflow line, and current drawn by the rotary pump.
In any embodiment, the system can further include a temperature sensor measuring a temperature of the fluid pumping through the system, the density value for the fluid determined from the measured temperature.
In any embodiment, the inlet pressure sensor, the outlet pressure sensor, and the temperature sensor can each be non-intrusive sensors.
In any embodiment, the fluid can be peritoneal dialysis fluid. The density value for the liquid can be a known value for the density of peritoneal dialysis fluid at the measured temperature.
In any embodiment, the rotary pump can include a driver controlling the rotational speed of the rotary pump, the driver communicating the rotational speed of the rotary pump to the circuit calculating the liquid flow rate through the system.
In any embodiment, the circuit can determine a resistance for the rotary pump based on the rotational speed of the rotary pump and the current drawn by the rotary pump, the determined resistance relating a known voltage of the rotary pump to the drawn current.
In any embodiment, the circuit can relate fluid flow, Q, to an area A within the inflow line and a velocity v of fluid flow within the inflow line according to the equation: Q=A*v.
In any embodiment, the circuit can relate fluid flow, Q, to an area A within the outflow line and a velocity v of fluid flow within the outflow line according to the equation: Q=A*v.
In any embodiment, the circuit can relate the inlet pressure, po, the outlet pressure, pi, and the fluid density value, ρ, according to the equation: vi2/2+g*hi+pi/ρ=vo2/2+g*ho+po/ρ; where vi is the velocity of fluid flow within the inflow line, vo is the velocity of flow within the outflow line, g is the acceleration due to gravity, hi is the height of the inflow line, and ho is the height of the outflow line.
The features disclosed as being part of the first aspect of the invention can be in the first aspect of the invention, either alone or in combination, or follow any arrangement or permutation of any one or more of the described elements. Similarly, any features disclosed as being part of the first aspect of the invention can be in the second aspect of the invention described below, either alone or in combination, or follow any arrangement or permutation of any one or more of the described elements.
The second aspect of the invention relates to a method for determining fluid flow across a rotary pump. In any embodiment, the method can include the step of calculating a fluid flow rate based on a rotational speed of the rotary pump, a measured pressure difference between a fluid intake and fluid discharge across the rotary pump, a determined density value for the fluid, and a measured current drawn by the rotary pump.
In any embodiment, the method can further include the steps of calculating a pressure difference between the fluid inflow line and the fluid outflow line based on a measured suction pressure at a fluid inflow line in fluid communication with the rotary pump and a discharge pressure at a fluid outflow line in fluid communication with the rotary pump.
In any embodiment, the method can further include the steps of measuring the current, I, drawn by the rotary pump; comparing the drawn current and a known voltage, V, of the rotary pump to the rotational speed of the rotary pump to determine a resistance, R, for the rotary pump according to the following equation: V=I*R; wherein the fluid flow is calculated based on the determined resistance.
In any embodiment, the method can further include the step of displaying the calculated fluid flow rate.
In any embodiment, the density value for fluid moving across the rotary pump can be determined by measuring a temperature for the fluid and calculating the density based on the measured temperature.
In any embodiment, the rotational speed of the rotary pump can be measured by a driver regulating the speed of the rotary pump.
In any embodiment, calculating the fluid flow, Q, can include relating to an area A within the inflow line and a velocity v of fluid flow within the inflow line according to the equation: Q=A*v.
In any embodiment, calculating the fluid flow, Q, can include relating to an area A within the outflow line and a velocity v of fluid flow within the outflow line according to the equation: Q=A*v.
In any embodiment, the method can include the step of relating the inlet pressure, po, the outlet pressure, pi, and the fluid density value, ρ, according to the equation: vi2/2+g*hi+pi/ρ=vo2/2+g*ho+po/ρ; where vi is the velocity of fluid flow within the inflow line, vo is the velocity of flow within the outflow line, g is the acceleration due to gravity, hiis the height of the inflow line, and ho is the height of the outflow line.
In any embodiment, the method can further include the steps of applying current drawn by the rotary pump and temperature of the fluid as independent variables in modeling the fluid flow across the pump; and calculating the fluid flow based on the modeling.
In any embodiment, measured suction pressure at an inflow line and measured discharge pressure at an outflow line can also be independent variables in modeling the fluid flow across the pump.
In any embodiment, the rotational speed of the rotary pump can also be an independent variable in modeling the fluid flow across the pump.
The features disclosed as being part of the second aspect of the invention can be in the second aspect of the invention, either alone or in combination, or follow any arrangement or permutation of any one or more of the described elements. Similarly, any features disclosed as being part of the second aspect of the invention can be in the first, aspect of the invention described above, either alone or in combination, or follow any arrangement or permutation of any one or more of the described elements.
Unless defined otherwise, all technical and scientific terms used have the same meaning as commonly understood by one of ordinary skill in the art.
The articles “a” and “an” are used to refer to one to over one (i.e., to at least one) of the grammatical object of the article. For example, “an element” means one element or over one element.
To “associate” means to identify one piece of information as related to a second piece of information.
To “calculate,” “calculating,” and the like means to determine a particular value by applying one or more equations and/or functions to one or more values.
A “circuit” is a component of a system that is in electrical communication with other components. A circuit can be a processor, controller, or other electronic or digital component that sends, receives, and/or processes electronic data, instructions, and/or information.
The terms “communication,” “communicate,” “communicating,” and the like can refer to the ability to transmit electronic data, instructions, information wirelessly, via direct electrical connection, or any other electrical transmission means between one or more components.
The terms “compare,” “comparing,” and the like means to determine whether two files or data are the same or different. A difference between the two file or data can be obtained by the comparison.
The term “comprising” includes, but is not limited to, whatever follows the word “comprising.” Use of the term indicates the listed elements are required or mandatory but that other elements are optional and may be present.
The term “consisting of” includes and is limited to whatever follows the phrase “consisting of.” The phrase indicates the limited elements are required or mandatory and that no other elements may be present.
The term “consisting essentially of” includes whatever follows the term “consisting essentially of” and additional elements, structures, acts or features that do not affect the basic operation of the apparatus, structure or method described.
A “controller” or “driver” is a device capable of sending signals to manage the operation of one or more devices in a system. A single component, such as a processor, circuit, or other device, may be a controller or driver for more than one component of a system.
“Current” is a measure of electricity drawn by a device. Any movement of electrical charge within a system is considered current.
A “current sensor” is a device capable of measuring the current flow across any electrical component of a system, either directly or indirectly. Devices that use other quantities of electrical circuits such as resistance, voltage, power, and/or heat to indirectly determine current are also considered current sensors if they calculate and/or report current measurements as part of their regular function.
“Density” or “fluid density” is the proportion of a fluid's mass to volume. The density of a fluid can vary based on other properties of the fluid, such as temperature and pressure. A “density value” is a measurement or calculation of density.
The term “device,” as used herein, refers to any device that can authenticate a user or USB authentication device.
The term “determining” or to “determine” refers to ascertaining a particular state of a component or system.
The term “device” is to be interpreted in the broadest sense and can include anything made for a particular purpose, a contrivance of any type, particularly a mechanical or electrical component or hardware. Some examples of devices can include a medical device such as a dialysis machine, laptop, computer, computer peripherals of any type, computer terminals, portable devices, smart phones, and smart watches.
A “dialysis system” is a collection of medical devices used to provide dialysis treatment to one or more patients.
The term “execute” means to perform a step or series of steps.
The terms “flowing” or to “flow” “refer to the movement of a fluid.
A “fluid” is a substance in a liquid and/or gaseous phase. A liquid substance having a combination of gas and liquid phases is a fluid. Notably, a liquid, as used herein, can therefore also have a mixture of gas and liquid phases of matter.
A “fluid characteristic” is any sensed characteristic of a fluid, including temperature, pressure, concentration, or any other characteristic.
The term “fluid communication” means that two chambers are connected, either directly or indirectly, with or without intervening elements such as valves, membranes, stoppers, or the like, so that fluid flows from one chamber into another. Chambers are in “fluid communication” whether or not the fluid flows in both directions.
A “fluid flow path” refers to a pathway through which a fluid, gas, and combinations thereof can travel.
An “inflow line” or “fluid inlet” refers to a refers to a conduit or opening through which fluid, gas, and combinations thereof can enter a component or apparatus.
“Inlet pressure” is pressure measured at a fluid inlet.
A component is “intrusive” if positioned within a chamber for holding or transporting liquid such that the component will come in physical contact with the liquid.
The term “medical device” refers to a device used to perform medical treatment or diagnosis of any type.
To “measure,” “measuring,” and the like, to determine a quantifiable property of a component or system. The measured or sensed property or parameter can be obtained via a sensor of any type known to those of ordinary skill.
A system or method is “non-intrusive” if containing no intrusive components—that is, if every component of the system or used to implement the method is positioned outside of the chambers where liquid is transported and stored so that none of the components come in physical contact with the liquid.
An “outflow line” or “fluid outlet” refers to a refers to a conduit or opening through which fluid, gas, and combinations thereof can exit a component or apparatus.
“Outlet pressure” or “discharge pressure” is pressure measured at a fluid outlet.
The term “peritoneal dialysis fluid” refers to the mixture that is injected into a patient during peritoneal dialysis treatment. When properties of peritoneal dialysis fluid are described herein, such as its dielectric properties and permittivity, they refer to the properties of the fluid before use in treatment.
A “peritoneal dialysis system” is a collection of medical devices used to provide peritoneal dialysis treatment to a patient.
A “pressure sensor” is a system component that measures the pressure of a fluid at a particular point in the fluid flow path.
The term “programmed” can mean a series of instructions that cause a device or system to perform certain steps.
A “pump” is a component that applies mechanical force to move fluid.
The term “receiving” refers to the process of obtaining electronic information by any means.
“Resistance” refers to electrical resistance, defined as the ratio between electric potential and electric current in a circuit element. Resistance is calculated based on measured voltage and current, applying the equations disclosed herein.
A “rotary pump” is a pump with one or more rotating elements that can move a fluid along a flow path.
“Rotational speed” refers to the rate at which a component or device rotates about a given axis. Rotational speed can be measured in rotations per unit time by establishing when a particular orientation is referred to.
A “rotor” is a component of a rotating device, such as a rotary pump, that is designed to rotate relative to other components during normal operation of the device.
The term “sending” refers to the process of transmitting electronic information to be received.
A “sensor” is a device configured to determine a particular state of a component or system.
A “stepper motor” is device that drives a rotor by activating and deactivating a series of stationary electromagnets to exert asymmetrical forces on components of the rotor moves, thereby applying torque to the rotor.
“Suction pressure” refers to a negative pressure difference across a fluid path. In one non-limiting example, a pump having an inflow and outflow line can induce a suction pressure on an inflow line in the downstream direction during operation.
The term “upstream” refers to a position of a first component in a flow path relative to a second component wherein fluid will pass by the first component prior to the second component during normal operation. The first component can be said to be “upstream” of the second component, while the second component is “downstream” of the first component.
Sensors Across Pump
To determine the pressure differential introduced by the pump 101, pressure sensor 105 and pressure sensor 106 can be placed in the fluid inlet 103 and fluid outlet 104, respectively. The pressure sensor 105 and pressure sensor 106 can be intrusive sensors that detect fluid pressure in proportion to the pressure exerted on each of pressure sensor 105 and pressure sensor 106 by the fluid. In some implementations, one or both pressure sensor 105 and pressure sensor 106 may be built into valves (not shown) that can provide additional control over the fluid flow within the fluid paths of the fluid inlet 103 and fluid outlet 104. As the pressure at the fluid inlet 103 may primarily come from the action of the rotary pump 101, drawing fluid into the chamber 102, the inlet sensor 105 can be a suction pressure sensor configured to detect and measure the negative pressure from downstream. Correspondingly, the outlet sensor 106 may be a discharge sensor configured to detect and measure the positive pressure from upstream due to the rotary pump 101 pushing fluid out of the chamber 102.
A temperature sensor 107 can be included within the fluid paths of the fluid inlet 103 and fluid outlet 104 to measure the temperature of the fluid. The temperature sensor 107 may be, for example, a thermocouple or other temperature-sensitive element. Depending on the thermal properties of the fluid and of the walls of the fluid inlet 103, fluid outlet 104, and chamber 102, the temperature sensor 107 may be a non-intrusive sensor placed on any outside wall surface. In other embodiments, the temperature sensor 107 may be placed within a flow path to contact the fluid directly.
The rotary pump 101 may in turn be controlled by a pump driver 202, which may send control signals to the pump 101 to regulate rotational speed. In some embodiments, the pump driver 202 may include hardware or software components in common with the system controller 201. The driver 202 can also communicate the pump rotational speed to the system controller 201. In some embodiments, this speed may represent a setting used by the driver 202; in some embodiments, rotational speed may be a measurement obtained by the pump driver 202 according to one or more readings taken by sensors disposed about the pump in communication with the pump driver 202.
A current sensor 203 can send sensor data to the system controller 201 based on measurements taken of components of the system. The current sensor is configured to monitor and return data on the current load drawn to run the rotary pump 101 and can be disposed anywhere within the rotary pump motor and power source to measure and relay this data.
Each of the electromagnet 304a, electromagnet 304b, electromagnet 304c, electromagnet 304d, and electromagnet 304e, can be switched on or off to impel the rotor 301 to rotate in the intended direction based on the positions of the vane magnet 302a, a vane magnet 302b, and a vane magnet 302c, which are known using Hall effect circuits 305a and 305b. The known position and distance of the Hall effect circuits, which report the proximity of a vane magnet, allow for the pump driver to determine the speed and relative rotational position of the rotor 301 and operate the electromagnet 304a, electromagnet 304b, electromagnet 304c, electromagnet 304d, and electromagnet 304e in the appropriate sequence.
Under controlled conditions, each of the variables 401-405 is adjusted, alone and in combination with the others, to create a fit function fflow( ) that models the effects of the independent variables on the system's flow rate. The resulting fit function, which may be any analytical function or set of functions as known in the art, can then be applied to calculate the flow rate when the independent variables are measured as described herein.
The pressure variables po and pi are related according to Bernoulli's equation to the density of the fluid, ρ, as follows:
vi2/2+g*hi+pi/ρ=vo2/2+g*ho+po/ρ
where vi and vo are the fluid inflow and outflow speeds, respectively, g is acceleration due to gravity, and h is the elevation at each point.
Fluid density is related to the measured independent variable, Tfluid, according to a reference density ρ0 defined at a set temperature T0 and a volumetric temperature coefficient β that is characteristic for each fluid. The density is then given by the equation:
ρ=ρ0/(1+β(Tfluid−T0)
The torque necessary for the pump rotor to rotate at a particular speed will depend on the drag offered by the fluid in which the rotor moves, which in turn will vary based on the flow speed. Drag on the rotor will translate into resistance on the pump circuit, which is proportional to current drawn as follows:
Vpump=Ipump*Rpump
where Vpump and Rpump relate the voltage and resistance of the pump driver circuit to the current Ipump of the circuit that is measured as described herein.
Subtracting the pressure at the inlet sensor from the pressure at the outlet sensor is the most straightforward way of determining the differential. However, one of ordinary skill in the art will recognize that other methods of using the two data points may be used. For example, data from one or both sensors may be adjusted before it is used to determine a pressure differential. A raw inlet pressure measurement pi and outlet pressure measurement po might be first adjusted using fit formulas finlet and foutlet as follows:
p*inlet=finlet(pi)
p*outlet=finlet(po)
Δp=p*outlet−p*inlet
The fit formulas may, for example, be linear, polynomial, quadratic, or any analytic formula determined by experimentation with pressure sensors the rotary pump.
At step 504, the fluid temperature is monitored, which is then used to determine the density of the fluid (step 505). Density values may, in some embodiments, be calculated using a formula that is based on knowing the fluid for which the system is used. For example, when a pump is used to transport water for filtration and use in medical treatment, the known density of water at different temperatures can be used to determine the density of water based on measured temperature in the flow system. When a pump is used to transport peritoneal dialysis fluid, additional properties of the fluid, such as the solute concentration for different additives, may also be needed to accurately calculate fluid density. These properties may be measured or may be received from controller elements associated with the preparation and/or administration of the fluid. In different embodiments, controller elements associated with preparation and/or administration of the fluid may be integrated with, or separate from, controller elements associated with monitoring and controlling the rotary pump as described herein.
At step 506, the system receives the speed of the rotary pump, which may come from the pump driver or an analogous component. In different embodiments, this speed may reflect a measurement of the pump rotor or may instead reflect a setting for what speed a command to the pump indicates it should move at. Depending on the measurement fidelity, and/or the accuracy of the pump driver compared to its setting, the received value may be calibrated before it is used.
At step 507, the current used by the pump is monitored. This reflects the load required by the stepper motor or other device driving the rotary pump to maintain the pump at the regulated speed, with a higher load representing greater resistance by the fluid.
At step 508, if any of the given settings are outside established limits, the system may take corrective action (step 509). This may be in the form of an automated adjustment, an alert to user or other system, or a temporary halt to the pump or some other fluid flow components. The action taken can depend on the number of parameters exceeded, the specific parameter being monitored, and the scalar difference.
If all the reported values fall within acceptable limits, then the system calculates the fluid flow across the pump (step 510). Rather than a simple linear or polynomial equation, this calculation may involve the application of different analytic functions depending on where each of the measured and calculated values fall. We can generalize the equation to a four-parameter analytic function as follows:
Qflow=fflow(Δρ, δfluid, vpump, Ipump)
where ρfluid is the fluid density, vpump is the angular velocity of the pump, and Ipump is the current load of the pump. The resulting value is the volumetric flow rate for the fluid flow path across the pump.
A temperature sensor 607 can be placed at the fluid outlet 604. The fluid outlet 604 may be found, experimentally, to provide a more accurate temperature measurement for the purposes of calculating an accurate fluid flow, or the position may be more convenient for placing the sensor 607 for mechanical reasons. A barrier 608 may also be present within the chamber 602 that can be passed by the vanes 601′ but reduces the flow of fluid in the upper sector of the chamber 602 between the inlet 603 and outlet 604. This can help prevent undesired backflow that might otherwise be expected as part of the rotational movement of the pump rotor.
The shape of the chamber 702 is shown to be roughly elliptical, but the shape and the shape of the rotors 701a and 702b can vary according to the desired flow characteristics of the pump. In some embodiments, the shape and size of the pump chamber and the rotors, as well as the number and positions of the rotors, may be additional independent variables that are investigated in generating accurate calculation models for fluid flow.
One skilled in the art will understand that various combinations and/or modifications and variations can be made in the described systems and methods depending upon the specific needs for operation. Various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. Moreover, features illustrated or described as being part of an aspect of the disclosure may be used in the aspect of the disclosure, either alone or in combination, or follow a preferred arrangement of one or more of the described elements. Depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., certain described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as performed by a single module or unit for purposes of clarity, the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a device.
Number | Name | Date | Kind |
---|---|---|---|
474732 | Gilmore | May 1892 | A |
3602222 | Herndon | Aug 1971 | A |
3608729 | Haselden | Sep 1971 | A |
3669878 | Marantz | Jun 1972 | A |
3669880 | Marantz | Jun 1972 | A |
3730183 | Goldsmith | May 1973 | A |
3754867 | Guenther | Aug 1973 | A |
3850835 | Marantz | Nov 1974 | A |
3884808 | Scott | May 1975 | A |
3989622 | Marantz | Nov 1976 | A |
3989625 | Mason | Nov 1976 | A |
4060485 | Eaton | Nov 1977 | A |
4371385 | Johnson | Feb 1983 | A |
4374382 | Markowitz | Feb 1983 | A |
4381999 | Boucher | May 1983 | A |
4460555 | Thompson | Jul 1984 | A |
4556063 | Thompson | Dec 1985 | A |
4562751 | Nason | Jan 1986 | A |
4581141 | Ash | Apr 1986 | A |
4650587 | Polak | Mar 1987 | A |
4661246 | Ash | Apr 1987 | A |
4678408 | Mason | Jul 1987 | A |
4685903 | Cable | Aug 1987 | A |
4747822 | Peabody | May 1988 | A |
4750494 | King | Jun 1988 | A |
4772560 | Attar | Sep 1988 | A |
4799493 | DuFault | Jan 1989 | A |
4826663 | Alberti | May 1989 | A |
4828693 | Lindsay | May 1989 | A |
4976683 | Gauthier | Dec 1990 | A |
5032265 | Jha | Jul 1991 | A |
5080653 | Voss | Jan 1992 | A |
5091642 | Chow | Feb 1992 | A |
5092838 | Faict | Mar 1992 | A |
5092886 | Dobos-Hardy | Mar 1992 | A |
5097122 | Coiman | Mar 1992 | A |
5127404 | Wyborny | Jul 1992 | A |
5141493 | Jacobsen | Aug 1992 | A |
5284470 | Beltz | Feb 1994 | A |
5302288 | Meidl | Apr 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5318750 | Lascombes | Jun 1994 | A |
5468388 | Goddard | Nov 1995 | A |
5507723 | Keshaviah | Apr 1996 | A |
5643201 | Peabody | Jul 1997 | A |
5651893 | Kenley | Jul 1997 | A |
5683432 | Goedeke | Nov 1997 | A |
5744031 | Bene | Apr 1998 | A |
5762782 | Kenley | Jun 1998 | A |
5819007 | Elghazzawi | Oct 1998 | A |
5902336 | Mishkin | May 1999 | A |
5944684 | Roberts | Aug 1999 | A |
5987352 | Klein | Nov 1999 | A |
6042721 | Peters | Mar 2000 | A |
6048732 | Anslyn | Apr 2000 | A |
6052622 | Holmstrom | Apr 2000 | A |
6058331 | King | May 2000 | A |
6156002 | Polaschegg | Dec 2000 | A |
6230059 | Duffin | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6254567 | Treu | Jul 2001 | B1 |
6321101 | Holmstrom | Nov 2001 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6363279 | Ben-Haim | Mar 2002 | B1 |
6505075 | Weiner | Jan 2003 | B1 |
6554798 | Mann | Apr 2003 | B1 |
6555986 | Moberg | Apr 2003 | B2 |
6589229 | Connelly | Jul 2003 | B1 |
6602399 | Fromherz | Aug 2003 | B1 |
6609023 | Fischell | Aug 2003 | B1 |
6627164 | Wong | Sep 2003 | B1 |
6645191 | Knerr | Nov 2003 | B1 |
6676608 | Keren | Jan 2004 | B1 |
6689083 | Gelfand | Feb 2004 | B1 |
6706007 | Gelfand | Mar 2004 | B2 |
6711439 | Bradley | Mar 2004 | B1 |
6726647 | Sternby | Apr 2004 | B1 |
6758836 | Zawacki | Jul 2004 | B2 |
6780322 | Bissler | Aug 2004 | B1 |
6818196 | Wong | Nov 2004 | B2 |
6878283 | Thompson | Apr 2005 | B2 |
6887214 | Levin | May 2005 | B1 |
6890315 | Levin | May 2005 | B1 |
6960179 | Gura | Nov 2005 | B2 |
7074332 | Summerton | Jul 2006 | B2 |
7077819 | Goldau | Jul 2006 | B1 |
7131956 | Pirazzoli | Nov 2006 | B1 |
7175809 | Gelfand | Feb 2007 | B2 |
7207946 | Sirokman | Apr 2007 | B2 |
7208092 | Micheli | Apr 2007 | B2 |
7276042 | Polaschegg | Oct 2007 | B2 |
7399289 | Gelfand | Jul 2008 | B2 |
7404799 | Koh | Jul 2008 | B1 |
7500958 | Asbrink | Mar 2009 | B2 |
7566432 | Wong | Jul 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7610086 | Ke | Oct 2009 | B1 |
7674231 | McCombie | Mar 2010 | B2 |
7704361 | Garde | Apr 2010 | B2 |
7736507 | Wong | Jun 2010 | B2 |
7744553 | Kelly | Jun 2010 | B2 |
7754852 | Burnett | Jul 2010 | B2 |
7756572 | Fard | Jul 2010 | B1 |
7775983 | Zhang | Aug 2010 | B2 |
7775986 | Roeher | Aug 2010 | B2 |
7776210 | Rosenbaum | Aug 2010 | B2 |
7785463 | Bissler | Aug 2010 | B2 |
7794141 | Perry | Sep 2010 | B2 |
7850635 | Polaschegg | Dec 2010 | B2 |
7857976 | Bissler | Dec 2010 | B2 |
7867214 | Childers | Jan 2011 | B2 |
7896831 | Sternby | Mar 2011 | B2 |
7922686 | Childers | Apr 2011 | B2 |
7922911 | Micheli | Apr 2011 | B2 |
7947179 | Rosenbaum | May 2011 | B2 |
7955291 | Sternby | Jun 2011 | B2 |
7967022 | Grant | Jun 2011 | B2 |
7981082 | Wang | Jul 2011 | B2 |
8034161 | Gura | Oct 2011 | B2 |
8070709 | Childers | Dec 2011 | B2 |
8096969 | Roberts | Jan 2012 | B2 |
8105260 | Tonelli | Jan 2012 | B2 |
8183046 | Lu | May 2012 | B2 |
8187250 | Roberts | May 2012 | B2 |
8197439 | Wang | Jun 2012 | B2 |
8202241 | Karakama | Jun 2012 | B2 |
8246826 | Wilt | Aug 2012 | B2 |
8273049 | Demers | Sep 2012 | B2 |
8282828 | Wallenas | Oct 2012 | B2 |
8292594 | Tracey | Oct 2012 | B2 |
8313642 | Yu | Nov 2012 | B2 |
8317492 | Demers | Nov 2012 | B2 |
8357113 | Childers | Jan 2013 | B2 |
8366316 | Kamen | Feb 2013 | B2 |
8366655 | Kamen | Feb 2013 | B2 |
8394601 | Klein | Mar 2013 | B2 |
8404091 | Ding | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8496809 | Roger | Jul 2013 | B2 |
8499780 | Wilt | Aug 2013 | B2 |
8500676 | Jansson | Aug 2013 | B2 |
8512271 | Moissl | Aug 2013 | B2 |
8518260 | Raimann | Aug 2013 | B2 |
8521482 | Akonur | Aug 2013 | B2 |
8535525 | Heyes | Sep 2013 | B2 |
8560510 | Brueggerhoff | Oct 2013 | B2 |
8580112 | Updyke | Nov 2013 | B2 |
8597227 | Childers | Dec 2013 | B2 |
8696626 | Kirsch | Apr 2014 | B2 |
8903492 | Soykan | Dec 2014 | B2 |
8926542 | Gerber | Jan 2015 | B2 |
9700663 | Burbank | Jul 2017 | B2 |
9907897 | Burbank | Mar 2018 | B2 |
10046100 | Burbank | Aug 2018 | B2 |
10076599 | Eyrard | Sep 2018 | B2 |
10076735 | Jansson | Sep 2018 | B2 |
10172992 | Neftel | Jan 2019 | B2 |
10173881 | Beavis | Jan 2019 | B2 |
10459459 | Beavis | Oct 2019 | B2 |
10478544 | Friederichs | Nov 2019 | B2 |
10610630 | Burbank | Apr 2020 | B2 |
20020016550 | Sweeney | Feb 2002 | A1 |
20020042561 | Schulman | Apr 2002 | A1 |
20020112609 | Wong | Aug 2002 | A1 |
20030028089 | Galley | Apr 2003 | A1 |
20030069481 | Hervy | Apr 2003 | A1 |
20030080059 | Peterson | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030105435 | Taylor | Jun 2003 | A1 |
20030113931 | Pan | Jun 2003 | A1 |
20030114787 | Gura | Jun 2003 | A1 |
20030187479 | Thong | Oct 2003 | A1 |
20040019312 | Childers | Jan 2004 | A1 |
20040060865 | Callan | Apr 2004 | A1 |
20040068219 | Summerton | Apr 2004 | A1 |
20040099593 | DePaolis | May 2004 | A1 |
20040121982 | Martis | Jun 2004 | A1 |
20040147900 | Polaschegg | Jul 2004 | A1 |
20040168969 | Sternby | Sep 2004 | A1 |
20040215090 | Erkkila | Oct 2004 | A1 |
20050065760 | Murtfeldt | Mar 2005 | A1 |
20050113796 | Taylor | May 2005 | A1 |
20050126961 | Bissler | Jun 2005 | A1 |
20050131331 | Kelly | Jun 2005 | A1 |
20050126998 | Childers | Jul 2005 | A1 |
20050150832 | Tsukamoto | Jul 2005 | A1 |
20050214863 | McDevitt | Sep 2005 | A1 |
20050234354 | Rowlandson | Oct 2005 | A1 |
20050234357 | Xue | Oct 2005 | A1 |
20050234381 | Niemetz | Oct 2005 | A1 |
20050234534 | Rowlandson | Oct 2005 | A1 |
20050236330 | Nier | Oct 2005 | A1 |
20050265895 | Kopelman | Dec 2005 | A1 |
20050274658 | Rosenbaum | Dec 2005 | A1 |
20060025661 | Sweeney | Feb 2006 | A1 |
20060025748 | Ye | Feb 2006 | A1 |
20060217771 | Soykan | Feb 2006 | A1 |
20060058731 | Burnett | Mar 2006 | A1 |
20060191850 | Bosetto | Aug 2006 | A1 |
20060195064 | Plahey | Aug 2006 | A1 |
20060226079 | Mori | Oct 2006 | A1 |
20060241709 | Soykan | Oct 2006 | A1 |
20060247548 | Sarkar | Nov 2006 | A1 |
20060264894 | Moberg | Nov 2006 | A1 |
20070007208 | Brugger | Jan 2007 | A1 |
20070038138 | Gill | Feb 2007 | A1 |
20070066928 | Lannoy | Mar 2007 | A1 |
20070073168 | Zhang | Mar 2007 | A1 |
20070138011 | Hofmann | Jun 2007 | A1 |
20070161113 | Ash | Jul 2007 | A1 |
20070175827 | Wariar | Aug 2007 | A1 |
20070179431 | Roberts | Aug 2007 | A1 |
20070213653 | Childers | Sep 2007 | A1 |
20070215545 | Bissler | Sep 2007 | A1 |
20070255250 | Moberg | Nov 2007 | A1 |
20070276270 | Tran | Nov 2007 | A1 |
20080006570 | Gura | Jan 2008 | A1 |
20080015487 | Szamosfalvi | Jan 2008 | A1 |
20080021337 | Li | Jan 2008 | A1 |
20080053905 | Brugger | Mar 2008 | A9 |
20080067132 | Ross | Mar 2008 | A1 |
20080093276 | Roger | Apr 2008 | A1 |
20080200866 | Prisco | Aug 2008 | A1 |
20080215247 | Tonelli | Sep 2008 | A1 |
20080253427 | Kamen | Oct 2008 | A1 |
20090007642 | Busby | Jan 2009 | A1 |
20090020471 | Tsukamoto | Jan 2009 | A1 |
20090036825 | Petersen | Feb 2009 | A1 |
20090101577 | Fulkerson | Apr 2009 | A1 |
20090124869 | Hu | May 2009 | A1 |
20090124963 | Hogard | May 2009 | A1 |
20090127193 | Updyke | May 2009 | A1 |
20090149776 | Adams | Jun 2009 | A1 |
20090171261 | Sternby | Jul 2009 | A1 |
20090264776 | Vardy | Oct 2009 | A1 |
20090275849 | Stewart | Nov 2009 | A1 |
20090275883 | Chapman | Nov 2009 | A1 |
20090281484 | Childers | Nov 2009 | A1 |
20090282980 | Gura | Nov 2009 | A1 |
20090314063 | Sternby | Dec 2009 | A1 |
20100004588 | Yeh | Jan 2010 | A1 |
20100010425 | Yu | Jan 2010 | A1 |
20100010429 | Childers | Jan 2010 | A1 |
20100042035 | Moissl | Feb 2010 | A1 |
20100076398 | Scheurer | Mar 2010 | A1 |
20100078381 | Merchant | Apr 2010 | A1 |
20100078387 | Wong | Apr 2010 | A1 |
20100084330 | Wong | Apr 2010 | A1 |
20100087771 | Karakama | Apr 2010 | A1 |
20100094158 | Solem | Apr 2010 | A1 |
20100113891 | Barrett | May 2010 | A1 |
20100114012 | Sandford | May 2010 | A1 |
20100137693 | Porras | Jun 2010 | A1 |
20100137782 | Jansson | Jun 2010 | A1 |
20100168546 | Kamath | Jul 2010 | A1 |
20100217180 | Akonur | Aug 2010 | A1 |
20100217181 | Roberts | Aug 2010 | A1 |
20100224492 | Ding | Sep 2010 | A1 |
20100234795 | Wallenas | Sep 2010 | A1 |
20100241045 | Kelly | Sep 2010 | A1 |
20100264086 | Noack | Oct 2010 | A1 |
20100312172 | Hoffman | Dec 2010 | A1 |
20110017665 | Updyke | Jan 2011 | A1 |
20110048949 | Ding et al. | Mar 2011 | A1 |
20110066006 | Banet | Mar 2011 | A1 |
20110066043 | Banet | Mar 2011 | A1 |
20110071465 | Wang | Mar 2011 | A1 |
20110077574 | Sigg | Mar 2011 | A1 |
20110077575 | Kraemer | Mar 2011 | A1 |
20110079558 | Raimann | Apr 2011 | A1 |
20110081728 | Putnam | Apr 2011 | A1 |
20110087187 | Beck | Apr 2011 | A1 |
20110088484 | Camilleri | Apr 2011 | A1 |
20110100909 | Stange | May 2011 | A1 |
20110106003 | Childers | May 2011 | A1 |
20110130666 | Dong | Jun 2011 | A1 |
20110137136 | Kotanko | Jun 2011 | A1 |
20110141116 | Dalesch | Jun 2011 | A1 |
20110144570 | Childers | Jun 2011 | A1 |
20110184340 | Tan | Jul 2011 | A1 |
20110208105 | Brandl | Aug 2011 | A1 |
20110272337 | Palmer | Nov 2011 | A1 |
20110301447 | Park | Dec 2011 | A1 |
20110301472 | Grober | Dec 2011 | A1 |
20120016228 | Kroh | Jan 2012 | A1 |
20120029937 | Neftel | Feb 2012 | A1 |
20120083729 | Childers | Apr 2012 | A1 |
20120085707 | Beiriger | Apr 2012 | A1 |
20120115248 | Ansyln | May 2012 | A1 |
20120135396 | McDevitt | May 2012 | A1 |
20120181230 | Kloeffel | Jul 2012 | A1 |
20120220528 | VanAntwerp | Aug 2012 | A1 |
20120258545 | Ash | Oct 2012 | A1 |
20120258546 | Marran | Oct 2012 | A1 |
20120259276 | Childers | Oct 2012 | A1 |
20120273354 | Orhan et al. | Nov 2012 | A1 |
20120273415 | Gerber | Nov 2012 | A1 |
20120273420 | Gerber | Nov 2012 | A1 |
20120277546 | Soykan | Nov 2012 | A1 |
20120277551 | Gerber | Nov 2012 | A1 |
20120277552 | Gerber | Nov 2012 | A1 |
20120277604 | Gerber | Nov 2012 | A1 |
20120277650 | Gerber | Nov 2012 | A1 |
20120277655 | Gerber | Nov 2012 | A1 |
20120277722 | Gerber | Nov 2012 | A1 |
20120283581 | Olde et al. | Nov 2012 | A1 |
20120303079 | Mahajan | Nov 2012 | A1 |
20130037465 | Heyes | Feb 2013 | A1 |
20130062265 | Balschat | Mar 2013 | A1 |
20130116578 | QiAn | May 2013 | A1 |
20130158461 | Sasaki | Jun 2013 | A1 |
20130168316 | Noguchi | Jul 2013 | A1 |
20130186759 | Lin | Jul 2013 | A1 |
20130193073 | Hogard | Aug 2013 | A1 |
20130199998 | Kelly | Aug 2013 | A1 |
20130211730 | Wolff | Aug 2013 | A1 |
20130213890 | Kelly | Aug 2013 | A1 |
20130228517 | Roger | Sep 2013 | A1 |
20130231607 | Roger | Sep 2013 | A1 |
20130248426 | Pouchoulin | Sep 2013 | A1 |
20130274642 | Soykan | Oct 2013 | A1 |
20130324915 | (Krensky)Britton | Dec 2013 | A1 |
20130330208 | Ly | Dec 2013 | A1 |
20130331774 | Farrell | Dec 2013 | A1 |
20140018727 | Burbank | Jan 2014 | A1 |
20140018728 | Plahey | Jan 2014 | A1 |
20140042092 | Akonur | Feb 2014 | A1 |
20140065950 | Mendelsohn | Mar 2014 | A1 |
20140088442 | Soykan | Mar 2014 | A1 |
20140276375 | Minkus | Mar 2014 | A1 |
20140110340 | White | Apr 2014 | A1 |
20140110341 | White | Apr 2014 | A1 |
20140158538 | Collier | Jun 2014 | A1 |
20140158588 | Pudil | Jun 2014 | A1 |
20140158623 | Pudil | Jun 2014 | A1 |
20140190876 | Meyer | Jul 2014 | A1 |
20140216250 | Meyer | Aug 2014 | A1 |
20140217028 | Pudil | Aug 2014 | A1 |
20140217029 | Meyer | Aug 2014 | A1 |
20140217030 | Meyer | Aug 2014 | A1 |
20140220699 | Pudil | Aug 2014 | A1 |
20140314625 | Clift | Oct 2014 | A1 |
20150032023 | Soykan | Jan 2015 | A1 |
20150080682 | Gerber | Mar 2015 | A1 |
20150088047 | Gerber | Mar 2015 | A1 |
20150141512 | Kizhakkedathu | May 2015 | A1 |
20150144539 | Pudil | May 2015 | A1 |
20150148697 | Burnes | May 2015 | A1 |
20150149096 | Soykan | May 2015 | A1 |
20150211906 | Skovmose Kallesoe | Jul 2015 | A1 |
20150250427 | Soykan | Sep 2015 | A1 |
20150343126 | Merchant | Dec 2015 | A1 |
20150352269 | Gerber | Dec 2015 | A1 |
20150367054 | Gerber | Dec 2015 | A1 |
20160018347 | Drbal | Jan 2016 | A1 |
20160023467 | Smith | Feb 2016 | A1 |
20160143774 | Burnett | May 2016 | A1 |
20160166753 | Meyer | Jun 2016 | A1 |
20160206801 | Gerber | Jul 2016 | A1 |
20160331884 | Sigg | Nov 2016 | A1 |
20170319768 | Szpara | Nov 2017 | A1 |
20180043080 | Gerber | Feb 2018 | A1 |
20180221555 | Rohde | Aug 2018 | A1 |
20180252566 | Fjalestad | Sep 2018 | A1 |
20190125952 | Jansson | May 2019 | A1 |
20190125954 | Mathiot | May 2019 | A1 |
20190151526 | Wieslander | May 2019 | A1 |
20190240389 | Rohde | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
1273535 | Nov 2000 | CN |
1643368 | Jul 2005 | CN |
101193667 | Jun 2008 | CN |
101300476 | Nov 2008 | CN |
201342127 | Nov 2009 | CN |
202048893 | Mar 2011 | CN |
103394139 | Nov 2013 | CN |
103619372 | Mar 2014 | CN |
103751871 | Apr 2014 | CN |
103717132 | Sep 2014 | CN |
104174077 | Dec 2014 | CN |
104271173 | Jan 2015 | CN |
104833635 | Aug 2015 | CN |
104884102 | Sep 2015 | CN |
105008893 | Oct 2015 | CN |
105142692 | Dec 2015 | CN |
105692957 | Jun 2016 | CN |
205672288 | Nov 2016 | CN |
107206147 | Sep 2017 | CN |
3224823 | Jan 1984 | DE |
102006028172 | Dec 2017 | DE |
0266795 | Nov 1987 | EP |
0402505 | Dec 1990 | EP |
0272414 | Oct 1991 | EP |
0330892 | Jul 1994 | EP |
1124599 | May 2000 | EP |
1175238 | Nov 2000 | EP |
1085295 | Nov 2001 | EP |
1281351 | Feb 2003 | EP |
2308526 | Oct 2003 | EP |
1364666 | Nov 2003 | EP |
1523347 | Jan 2004 | EP |
1523350 | Jan 2004 | EP |
0906768 | Feb 2004 | EP |
1691863 | Apr 2005 | EP |
2116269 | Feb 2008 | EP |
1450879 | Oct 2008 | EP |
1514562 | Apr 2009 | EP |
2219703 | May 2009 | EP |
1592494 | Jun 2009 | EP |
2398529 | Nov 2010 | EP |
2575827 | Dec 2010 | EP |
2100553 | Aug 2011 | EP |
2576453 | Dec 2011 | EP |
2701580 | Nov 2012 | EP |
2701595 | Nov 2012 | EP |
1345856 | Mar 2013 | EP |
2344220 | Apr 2013 | EP |
1351756 | Jul 2013 | EP |
2190498 | Jul 2013 | EP |
2701596 | Mar 2014 | EP |
1582226 | Jan 2016 | EP |
S55138462 | Oct 1980 | JP |
S63-143077 | Nov 1987 | JP |
2002533170 | Oct 2002 | JP |
2002542900 | Dec 2002 | JP |
2003235965 | Aug 2003 | JP |
2005-533573 | Nov 2005 | JP |
5-99464 | Oct 2012 | JP |
WO1992005814 | Apr 1992 | WO |
1995003839 | Feb 1995 | WO |
WO 1998054563 | Dec 1998 | WO |
WO1999006082 | Feb 1999 | WO |
9937342 | Jul 1999 | WO |
0057935 | Oct 2000 | WO |
2000066197 | Nov 2000 | WO |
200170307 | Sep 2001 | WO |
2001085295 | Sep 2001 | WO |
0185295 | Nov 2001 | WO |
2002013691 | Feb 2002 | WO |
WO 20020053211 | Jul 2002 | WO |
2003043677 | May 2003 | WO |
2003043680 | May 2003 | WO |
2003051422 | Jun 2003 | WO |
2004008826 | Jan 2004 | WO |
2004009156 | Jan 2004 | WO |
2004009158 | Jan 2004 | WO |
2004030716 | Apr 2004 | WO |
2004030717 | Apr 2004 | WO |
2004064616 | Aug 2004 | WO |
2005033701 | Apr 2005 | WO |
2005061026 | Jul 2005 | WO |
2005123230 | Dec 2005 | WO |
2006011009 | Feb 2006 | WO |
2006017446 | Feb 2006 | WO |
2007038347 | Apr 2007 | WO |
2007089855 | Aug 2007 | WO |
WO2009094035 | Jan 2008 | WO |
2008037410 | Apr 2008 | WO |
2009026603 | Dec 2008 | WO |
2009024566 | Feb 2009 | WO |
2009061608 | May 2009 | WO |
2009094184 | Jul 2009 | WO |
2009157877 | Dec 2009 | WO |
2009157878 | Dec 2009 | WO |
WO2009154955 | Dec 2009 | WO |
2010024963 | Mar 2010 | WO |
2010028860 | Mar 2010 | WO |
2010033314 | Mar 2010 | WO |
2010033699 | Mar 2010 | WO |
2010077851 | Jul 2010 | WO |
2010096659 | Oct 2010 | WO |
2010121820 | Oct 2010 | WO |
2011025705 | Mar 2011 | WO |
2011026645 | Mar 2011 | WO |
WO2013022760 | Aug 2011 | WO |
WO 2011132046 | Oct 2011 | WO |
2011137693 | Nov 2011 | WO |
WO2011161056 | Dec 2011 | WO |
2012042323 | Apr 2012 | WO |
2012050781 | Apr 2012 | WO |
2012051996 | Apr 2012 | WO |
2012073420 | Jul 2012 | WO |
WO 2012129501 | Sep 2012 | WO |
2012148781 | Nov 2012 | WO |
2012148784 | Nov 2012 | WO |
2012148786 | Nov 2012 | WO |
2012148787 | Nov 2012 | WO |
2012148789 | Nov 2012 | WO |
2012162515 | Nov 2012 | WO |
WO2012148788 | Nov 2012 | WO |
WO 20120148784 | Nov 2012 | WO |
2012172398 | Dec 2012 | WO |
2013019179 | Feb 2013 | WO |
2013019994 | Feb 2013 | WO |
2013025844 | Feb 2013 | WO |
2013028809 | Feb 2013 | WO |
103037917 | Apr 2013 | WO |
2013101292 | Jul 2013 | WO |
2013103607 | Jul 2013 | WO |
2013103906 | Jul 2013 | WO |
2013110906 | Aug 2013 | WO |
2013110919 | Aug 2013 | WO |
2013114063 | Aug 2013 | WO |
2013121162 | Aug 2013 | WO |
2013140346 | Sep 2013 | WO |
2013141896 | Sep 2013 | WO |
2013101292 | Oct 2013 | WO |
14066254 | May 2014 | WO |
14066255 | May 2014 | WO |
14077082 | May 2014 | WO |
2014121162 | Aug 2014 | WO |
2014121163 | Aug 2014 | WO |
2014121167 | Aug 2014 | WO |
2014121169 | Aug 2014 | WO |
WO2014121161 | Aug 2014 | WO |
W02015081221 | Jun 2015 | WO |
WO 20150159280 | Oct 2015 | WO |
WO2016049542 | Mar 2016 | WO |
WO 20160080883 | May 2016 | WO |
WO 20170034452 | Mar 2017 | WO |
WO 2017176687 | Oct 2017 | WO |
WO 2017176701 | Oct 2017 | WO |
WO2018229125 | Dec 2018 | WO |
Entry |
---|
Dejardin, et al, Intraperitoneal pressure in PD patients: relationship to intraperitoneal volume body size and PD-related complications, Nephrol Dial Transplant. May 2007;22(5):1437-44. |
F. Locatelli, et al: “Haemodialysis with on-line monitoring equipment: tools or toys?” Nephrology Dialysis Transplantation., vol. 20, No. 1, Jan. 1, 2005. |
Heiko Hickstein, et al; “Clinical application of fuzzy-controlled blood pressure stabilization in patients prone to hypotension duirng hemodiaylsis”, Dyalysis & Transplantation, vol. 38, No. 2, Feb. 1, 2009, pp. 58-64. |
Henderson, et al, “Online Preparation of Sterile Pyrogen-Free Electrolyte Solution,” Trans. Am. Soc. Artif.Intern.Organs, 1978 pp. 465-467. |
Laurent, Jeanpierre, “Continuous Monitoring of Dynamic Systems: Application to Monitoring of Dialyzed Patients” Oct. 30, 2004, received from internet: http://laurent.jeanpierre1.free.fr/recherche/papiers/aista2004.pdf. |
[NPL105] Brynda, et. al., The detection of toman 2-microglcbuiin by grating coupler immunosensor with three dimensional antibody networks. Biosensors & Bioelectronics, 1999, 363-368, 14(4). |
[NPL10] Wheaton, et al., Dowex Ion Exchange Resins—Fundamentals of Ion Exchange; Jun. 2000, pp. 1-9 http://www.dow.com/scripts/litorder.asp?filepath=liquidseps/pdfs/noreg/177-01837.pdf. |
[NPL111] Zhong, et. al., Miniature urea sensor based on H(+)-ion sensitive field effect transistor and its application in clinical analysis, Chin. J. Biotechnol., 1992, 57-65. 8(1). |
[NPL121] Roberts M, The regenerative dialysis (REDY) sorbent system. Nephrology, 1998, 275-278:4. |
[NPL142] Hemametrics, Crit-Line Hematocrit Accuracy, 2003, 1-5, vol. 1, Tech Note No. 11 (Rev. D). |
[NPL144] Weissman, S., et al., Hydroxyurea-induced hepatitis in human immunodeficiency virus-positive patients. Clin. Infec. Dis, (Jul. 29, 1999): 223-224. |
[NPL14] Foley, et al., Long Interdialytic Interval and Martality among Patients Receiving Hemodialysis, N Engl Jrnl Med. 2011:365(12):1099-1107. |
[NPL169] Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-10G: Suppl. |
[NPL170] Bleyer, et al., Kidney International. Jun. 2006; 69(12):2268-2273. |
[NPL176] Bleyer, et. al., Sudden and cardiac death rated in hemodialysis patients, Kidney International. 1999, 1553-1559: 55. |
[NPL205] Culleton, BF et al. Effect of Frequent Nocturnal Hemodialysis vs. Conventional Hemodialysis on Left Ventricular Mass and Quality of Life. 2007 Journal of the American Medical Association 298 (11), 1291-1299. |
[NPL230] Redfield, et. al., Restoration of renal response to atria! natriuretic factor in experimental low-output heat failure, Am. J. Physiol., Oct. 1, 1989, R917-923:257. |
[NPL231] Rogoza, et. al., Validation of A&D UA-767 device for the self-measurement of blood pressure, Blood Pressure Monitoring, 2000, 227-231, 5(4). |
[NPL234] Lima, et. al., An electrochemical sensor based on nanostructure hollandite-type manganese oxide for detection of potassium ion, Sensors, Aug. 24, 2009, 6613-8625, 9. |
[NPL235] Maclean, et, al., Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat, J. App. Physiol., 1998, 1583-1592, 85(4). |
[NPL268] Ronco et al. 2008, Cardiorenal Syndrome, Journal American College Cardiology, 52:1527-1539, Abstract. |
[NPL26] Overgaard, et. al., Activity-induced recovery of excitability in K+-depressed rat soleus muscle, Am. J. P 280: R48-R55, Jan. 1, 2001. |
[NPL27] Overgaard et. al., Relations between excitability and contractility in rate soleusmuscle: role of the NA+-K+ pump and NA+-K-S gradients. Journal of Physiology, 1999, 215-225, 518(1). |
[NPL285] Zoccali, Pulmonary Congestion Predicts Cardiac Events and Mortality in ESRD, Clinical Epidemiology, J. Am Soc Nephrol 24:639-646, 2013. |
[NPL306] Coast, et al. 1990, An approach to Cardiac Arrhythmia analysis Using Hidden Markov Models, IEEE Transactions On Biomedical Engineering. 1990, 37(9):826-835. |
[NPL309] Weiner, et. al., Article: Cardiac Function and Cardiovascular Disease in Chronic Kidney Disease, Book: Primer on Kidney Diseases (Author: Greenberg, et al.), 2009,499-505, 5th Ed., Saunders Elsevier, Philadelphia, PA. |
[NPL322] Velasco, Optimal Fluid Control can Normalize Cardiovascular Risk Markers and Limit Left Ventricular Hypertrophy in Thrice Weekly Dialysis Patients, Hemodialysis Intenational, 16:465-472, 2012. |
[NPL323] Whitman, CKD and Sudden Cardiac Death: Epidemiology, Mechanisms, and Therapeutic Approaches, J Am Soc Nephrol, 23:1929-1939, 2012. |
[NPL324] Hall, Hospitalization for Congestive Heart Failure: United States, 2000-2010, NCHS Data Brief, No. 108, Oct. 2012. |
[NPL325] Albert, Fluid Management Strategies in Heart Failure, Critical Care Nurse, 32:20-32, 2012. |
[NPL328] Genovesi, et al., Nephrology, Dialysis, Transplantation 2009; 24(8):2529-2536. |
[NPL32] Secemsky, et. al., High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm, Apr. 2011, 592-598 : vol. 8, No. 4. |
[NPL35] Wei, et. al., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Analytica Chimica Acta, 2001,77-85:437. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 1-140. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 141-280. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 281-420. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 421-534. |
[NPL383] Leifer et al., A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles, J. Atmospheric & Oceanic Tech., vol. 17, pp. 1392-1402, Oct. 2000. |
[NPL384] Talaia, Terminal Velocity of a Bubble Rise in a Liquid Column World Acad. of Sci., Engineering & Tech., vol. 28, pp. 264-268, Published Jan. 1, 2007. |
[NPL386] The FHN Trial Group. In-Center. Hemodialysis Six Times per Week versus Three Times per Week, New England Journal of Medicine, 2010 Abstract. |
[NPL46] Siegenthaler, et al., Pulmonary fluid status monitoring with intrathoracic impedance, Journal of Clinical Monitoring and Computing, 24:449-451, published Jan. 12, 2011. |
[NPL494] John Wm Agar: Review: Understanding sorbent dialysis systems, Nephrology, vol. 15, No. 4, Jun. 1, 2010, pp. 406-411. |
[NPL632] Lakerveld et al., Primary prevention of diabetes mellitus type 2 and cardiovascular diseases using a cognitive behavior program aimed at lifestyle changes in people at risk: Design of a randomized controlled trial, 2008, BMC Endocrine Disorders, 8(6): 1-19. |
[NPL633] Gordhandas et al, Real-Time Extraction and Analysis of Key Morphological Features in the Electrocardiogram, for Data Compression and Clinical Decision Support, 2004, Computational Physiology, pp. 15-18. |
[NPL90] Nedelkov, et. al., Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry, Proteomics, 2002, 441-446, 2(4). |
[NPL] Green et al., Sudden Cardiac Death in Hemodialysis Patients: an In-Depth Review , Am J Kidney Dis 57(6)921:929; published Apr. 18, 2011. |
[NPL] Rajan et al. Generalized Feature Extraction for Time-Varying Autoregressive Models, IEEE Transacion Signal Processing vol. 44, No. 10; published Oct. 1, 1996. |
Castellanos, et al., Clinical Relevance of Intraperitoneal Pressure in Peritoneal Dialysis Patients, Perit Dial Int. Sep.-Oct. 2017;37(5):562-567. doi: 10.3747/pdi.2016.00267. Epub Jul. 11, 2017. |
Wollenstein, et al, “Colorimetric gas sensors for the detection of ammonia, nitrogen dioxide, and carbon monoxide: current status and research trends”, Sensor and Test Conference 2011, Jan. 2, 2011, pp. 562-567. |
Number | Date | Country | |
---|---|---|---|
20230152136 A1 | May 2023 | US |