This disclosure relates to fracturing fluids that can be flowed through formations.
Oil and gas wells produce crude oil, natural gas and/or byproducts from subterranean hydrocarbon reservoirs. Such reservoirs can include finite-dimensional, discontinuous, inhomogeneous, anisotropic, non-elastic (DIANE) rock formations. In their natural state, i.e., prior to any fracture treatment, such formations are characterized by natural fractures and faults of various sizes, shapes and orientations. Hydraulic fracturing can be implemented to improve the conductivity of products through the hydrocarbon reservoirs. In fracturing, a pressurized fluid is used to form fractures in a low-permeability rock. Proppants, e.g., solid particles, are then used to keep the fractures open.
Modeling the fracturing process, e.g., using computer-implemented software models, can enable developing an efficient design for the process, and also efficient analysis and optimization of the process. A hydraulic fracture model can be based on, for example, fracture propagation, rock deformation, fluid flow, and proppant transport. Such models can be implemented to model fracturing in unconventional reservoirs, e.g., shale and tight gas reservoirs, in which the induced fractures interact with natural fractures resulting in the formation of a discrete, complex fracture network. A parameter that affects the hydraulic fracture model is the fracturing rheological behavior of the fracturing fluid, e.g., the fracturing fluid viscosity.
Like reference numbers and designations in the various drawings indicate like elements.
This disclosure relates to determining fracturing rheological behavior of fracturing fluids. Fracturing fluids can be Newtonian or non-Newtonian fluids, may or may not include proppants or other additives, and can be implemented in a wide range of operating conditions, e.g., shear rate, temperature, pressure, and other similar conditions. Fracturing fluids can be classified as water-based fluids, acids, linear gels, cross-linked gels, and other treatment fluids. The fracturing rheological behavior of a fracturing fluid describes the fracturing fluid's properties that enable a formation (i.e., creation) of the fracture network or maintenance of the fracture network subsequent to forming or combinations of them. The techniques described here can be implemented as a generic fluid model that can predict the fracturing rheological behavior of different fracturing fluids.
In some formations, e.g., unconventional reservoirs, the fracture treatment can be implemented in multiple stages. Different fracturing fluids can be used for the different stages, and sometimes in the same stage. For example, initial fracturing (or “fracking”) can be performed using a friction reducer fluid and subsequent fracturing can be implemented using a gelled/viscous fluid for efficient proppant transport. As the fracture network develops, two or more fracturing fluids coming in from different streams can mix at one or more fracture junctions. A mixture of miscible fracturing fluids can combine to have fracturing rheological behavior that may be different from that of each fracturing fluid in the mixture. This disclosure also describes techniques to model the fracturing rheological behavior of such a mixture of two or more fracturing fluids.
The fluid model described here can be implemented to model and validate the complete rheological behavior, including the fracturing rheological behavior, of multiple fracturing fluids including Newtonian and non-Newtonian fracturing fluids. The fracturing fluids can be of different types, e.g., water, diesel, base gel, cross-linked gel and other fracturing fluid types. As described below, the fluid model can be based on an input variable that includes a reference viscosity of the fracturing fluid at a specified shear rate and a specified temperature. The fluid model can receive the reference viscosity as a primary input parameter instead of, e.g., gel concentration. The fluid model can be based on multiple fluid properties of the fracturing fluid including, e.g., age, temperature, pressure, salinity, shear rate, hydration time, gel concentration (when the fracturing fluid is a gel), cross-linker chemistry (when the fracturing fluid is cross-linked) such as thermal kinetics, proppant information (including, e.g., proppant concentration), and proppant and foam internal phase fractions (when the fracturing fluid includes proppants).
The computer system 110 can be implemented to include a computer-readable storage medium storing instructions executable by one or more processors to perform operations including modeling a fracturing rheological behavior of a fracturing fluid or a mixture of two or more fracturing fluids (or both). For example, the computer system 110 can be a desktop computer, a laptop computer, a tablet computer, a personal digital assistant, a smartphone, or any other computer system. In some implementations, the computer system 110 can implement the example process 200 shown in
At 202, a reference viscosity of a fracturing fluid is received. For example, the computer system 110 can receive the reference viscosity at a specified shear rate and a specified temperature. The specified shear rate and the specified temperature can be selected such that the reference viscosity at these specified parameters is easily measurable in the field. In certain instances, the specified shear rate can be 511 s−1 and the specified temperature can be 25° C. In other instances, the reference viscosity can be at a different specified shear rate and/or temperature.
At 204, fluid properties of the fracturing fluid are received. For example, the computer system 110 can be connected to one or more computer-readable storage devices that stores the fracturing fluid properties including age 204a, temperature 204b, pressure 204c, salinity 204d, hydration time 204e, gel concentration 204f, cross-linker chemistry 204g, proppant or foam internal phase fractions 204h, and other fracturing fluid properties. The computer system 110 may not receive each fracturing fluid property for each instance of modeling. Rather, the computer system 110 can receive those fracturing fluid properties that are relevant to the fracturing fluid being modeled. For example, when the fracturing fluid is water, the computer system 110 may not receive gel concentration 204f or cross-linker chemistry 204g. In another example, the computer system 110 can receive fluid properties based on whether the fracturing fluid is a Newtonian fluid or a non-Newtonian fluid. In some implementations, the computer system 110 can receive additional fluid properties not shown in
As described above, the fluid model can model the fracturing rheological behavior of Newtonian and non-Newtonian fluids. The fluid model can include multiple fluid modules, which can be received (e.g., accessed) at 206. For example, the fluid modules can include a shear rate module (Γ) 206a, a reference viscosity module (Ψ) 206b, a thermal module (Θ) 206c, a salinity (ionic strength) module (Σ) 206d, a cross-linker chemistry module (X) 206e, an age module (Λ) 206f, and a proppant and foam internal phase fraction module (Φ) 206g. Each module can represent one or more rheological parameters of the fracturing fluid that affect the fracturing rheological behavior of the fracturing fluid. The fluid model can be independent of shear history of the fracturing fluid. In some implementations, each module can be represented by a respective mathematical formula that includes variables that represent the respective rheological parameter. For example, the reference viscosity module (Ψ) 206b can be represented by a mathematical formula that includes the specified shear rate and the specified temperature as input variables.
The computer system 110 can be connected to one or more computer-readable storage devices that store the mathematical formulas that represent each module. The one or more computer-readable storage devices can also store one or more coefficients for each module. At 208, the coefficients for each module of the multiple fluid modules can be received. At 210, the fracturing rheological behavior of the fracturing fluid can be modeled based, in part, on the received reference viscosity and the received fluid properties using the multiple fluid modules. In some implementations, the fracturing rheological behavior of the fracturing fluid can be multiple viscosities of the fracturing fluid at respective shear rates and/or multiple temperatures. Thus, the fluid model can be mathematically represented as shown in Equation 1.
μ=[Γ][Ψ][Θ][Σ][Λ][Φ][X] (Equation 1)
The shear rate module (Γ) 206a can be represented by Equations 2 and 3 shown below. The apparent viscosity for a Carreau model is given by Equation 2.
In Equation 2, μ0 and μ are the low-shear and infinite shear viscosity, np is power law index, γ is shear rate, and γL is the transition shear rate. In the fields, apparent viscosity is measured typically at 511 s−1 from which transition shear rate can be obtained as shown in Equation 3.
The stimulation fluids are categorized into 1. Waters, 2. Acids, 3. base gels, 4. cross-linked gels, and 5. other treatment fluids. The primary component of these fluids is either water or oil. Therefore, the high shear viscosity is approximated as the viscosity of water or diesel at given temperature and pressure. Consequently, the correlations are needed only for μ0, np, and μ511. The apparent viscosity and hence the Carreau parameters depend on polymer concentration, operating conditions (temperature, pressure), the presence of crosslinkers, age (defined later) and additives (salts, etc.). These effects and the developed models are illustrated in the following subsections. We make use of ML fitting functions [see table 1] for modeling various types of behavior.
The reference viscosity module (Ψ) 206b can be represented by Equations 4A, 4B, 5A and 5B shown below.
In Equations 4A, 4B, 5A and 5B, tbr and tcr are the crosslink and break times and ebr and ecr are the exponents. The exponents (α,β) and infinity values used for Carreau parameters are different and are shown in the table below.
The crosslink carreau parameters are functions of temperature and base gel viscosity. In addition, the reaction kinetics depends on the underlying polymer structure. Therefore, temperature and polymer loading effects are unique for each crosslinker and hence the fluid.
The thermal module (Θ) 206c and the salinity (ionic strength) module (Σ) 206d are defined by hydration kinetics. The proppant and foam internal phase fraction module (Φ) 206g is represented by Equations below. Effective internal phase fraction due to particles and foam is represented by Equation below. In fracturing operation, to facilitate the proppant transport and to minimize the fluid loss to formations, a high viscosity fluid can be used. One way to increase the viscosity of the water-based fluids is to add a polymer that will bind with water molecules. Such polymer solutions are sometimes known as linear or base gels. Examples of such gels include WG-35™, WG-18™, BP-10™, which differ in the type of polymer (guar, HPC, xanthan, cellulose etc.) used to bind with water. The polymer undergoes hydration process and forms a viscous network causing an increase in the viscosity of the fluid in time. The ratio of viscosity of partially hydrated gel and fully hydrated gel over time with varying temperature shows that the viscosity starts with water viscosity at the reference temperature and reaches its fully hydrated value after approximately 1 hr. This behavior can be modeled using the empirical correlation shown in Equation 6.
In Equation 6,fit_cr is a fitting function represented by Equation 7.
In Equation 7, xl, xr and xt are temperature values, yl, yr and yt are viscosity values, and parameter b is kept constant and specific to the underlying polymer. The parameters of correlation are determined by executing computer instructions that use a built-in non-linear fit function. The parameter, a, obtained for each temperature is then plotted versus temperature. Physically, at high temperatures, the transport of polymer molecules is enhanced that leads to speed up of the hydration process. Therefore, the parameter a signifies the inverse of diffusion coefficient of the polymer chains in water. The behavior of a with temperature can be modeled using the correlation shown in Equation 8.
a(T)=fit_pl(T,278.15,yl,c,338.15,yr) (Equation 8)
In Equation 8, T is the temperature. Experiments to determine the effect of salt concentration on hydration rate for WG-37™ reveals that the added salt molecules hinder the transport of polymer chains leading to decrease in the rate of hydration. The effect is captured by proposing a correction to parameter a as shown in Equation 9.
The parameter a2 is a function of salt molarity. The effect saturates after a weight fraction of 20%. The term, a2(Is) can be predicted using the correlation shown in Equation 10.
a2(Is)=fit_pl(Is,xl,1.0,c,xr,yr) (Equation 10)
In some implementations, the model parameters of hydration kinetics can be determined by implementing the following techniques. Plot apparent viscosity, μ511, versus hydration time for different temperatures for zero salt concentration. Select parameter b=constant (range 1-25) by trial and error procedure (or solver) and find a(T)=a1(T). Plot a1(T) versus temperature and use equations above to obtain model parameters for a1(T). Plot apparent viscosity, μ511, versus hydration time for different salt concentrations at 298K. Keeping the same parameter b, find a. Find a2(Is) from the relation shown in Equation 11.
a=a1(T=298 K)/a2(Is) (Equation 11)
The proppant and foam internal phase fraction module (Φ) 206g is represented by Equation 12.
Correction for foam collapse is represented by Equation 13.
Relative change in viscosity of the base fluid is represented by Equation 14.
μr=(1−f)−1.8 (Equation 14)
Crosslink fluids are represented by Equations 15 and 16.
Carreau parameters are modified as shown in Equation 17.
μ0fac=Dμr;μ511fac=Dμrn;nfac=1 (Equation 17)
The cross-linker chemistry module (X) 206e is represented by Equation 18.
μcr=fit_ct(T,Tl,μl,a,b,Tt,μt,c,d,Trμw) (Equation 18)
In Equation 18, μw is the viscosity of water at reference T and P. The parameters a, b, c, d are constants and are specific to each fluid. The other parameters of the correlation are functions of base gel viscosity. The approximations made for base gel viscosity dependence are kept uniform for all fracturing fluids. The functionalities are summarized in the table below.
Functional approximations for parameters of crosslink μ0 and μ511
For cross-link power-law index, Equation 19 is used.
ncr=fit_pt(μbg,xl,yl,a,xt,yt,b,xr,yr) (Equation 19)
The parameters b and yl in Equation 19 are constant (for a material). The rest are functions of temperature as shown in the table below.
Functional approximations for parameters of crosslink np.
In some implementations, the computer system 110 can model the fracturing rheological behavior of the fracturing fluid using the multiple fluid modules shown in Equation 1. To do so, for example, the computer system 110 can receive the coefficient for each module, input the received fracturing fluid properties into the appropriate mathematical formulas, and solve for an output viscosity at a specified shear rate or at a specified temperature (or both a shear rate and a temperature). In this manner, multiple viscosities at multiple shear rates and/or multiple temperatures can be determined at 212.
After modeling the fracturing rheological behavior of the fracturing fluid to determine multiple viscosities of the fracturing fluid at respective multiple shear rates and/or the multiple temperatures, the computer system 110 can provide the fracturing rheological behavior of the fracturing fluid. To do so, a plot of the multiple viscosities and the multiple shear rates and/or the multiple temperatures can be generated, at 214, and provided for display, at 216. Alternatively, or in addition, at 218, the multiple viscosities and the multiple shear rates and/or the multiple temperatures can be provided as input to a fracture network simulator that can implement a complex fracture network simulation. In some implementations, the computer system 110 can provide the multiple viscosities and the multiple shear rates to one or more computer systems or computer-readable storage devices (or both) over one or more wired or wireless networks, e.g., local area networks, wide area networks, the Internet, or other similar networks. In some implementations, the computer system 110 can provide the multiple viscosities and the multiple shear rates to a printing device that print one or more plots of the viscosities versus shear rates.
The fluid model used to model the fracturing rheological behavior of a fracturing fluid has been validated in the plots shown in
In some implementations, the techniques described above to model the fracturing rheological behavior of a fracturing fluid can be repeated for different fracturing fluids used or to be used during different fracturing phases. For example, in a first phase of fracturing and a subsequent second phase of fracturing, a first fracturing fluid and a second fracturing fluid can be used, respectively. The computer system 110 can initially receive an input identifying the first fracturing fluid. In response, the computer system 110 can model the fracturing rheological behavior of the first fracturing fluid by implementing the techniques described above. Subsequently, the computer system 110 can receive an input identifying the second phase fracturing fluid. In response, the computer system 110 can model the fracturing rheological behavior of the second phase fracturing fluid based, in part, on a reference viscosity and fluid properties of the second phase fracturing fluid. The first phase and second phase of fracturing can represent separate stages (e.g., successive stages) of fracturing or can represent sub-stages during the same stage of fracturing.
In some implementations, the fracturing fluid can be a mixture of a first fracturing fluid and a second fracturing fluid. As described with reference to process 300 shown in
In some implementations, the computer system 110 can implement the mixing rheological model to determine a rheological behavior, e.g., a viscosity, of the mixture. For a gel-based fracturing fluid, for example, the computer system 110 can implement the mixing rheological model to predict the rheology of the mixture based on a dilution of base gels and by recovering the apparent viscosity from a final polymer concentration. For example, when WG-35 with reference viscosity of 0.02 Pa*s is mixed with water, the gel concentration in the mixture can be obtained and the mixture viscosity recalculated based on viscosity-gel relations (quadratic). The mixing rheological model can be formulated based on mixing the Carreau parameters (μ0, μ511, np) and the mass fraction (ci) of individual fluids in the mixture, as shown in Equations 20-24.
The Carreau parameters (μ0,i, μ511,i, μ∞,i, ni) for individual fluids in the mixture can be obtained from the fracturing rheological model described above. Power law, a, is different for each Carreau parameter and also changes with fluid. The Carreau parameters shown in Equations 25-27 were determined after testing with dilution of base gels, e.g., guar and bio-polymer based gels).
The power law of mixing rule, α, is found to be function of polymer strength, S. The polymer strength can be measured by taking the ratio of maximum and minimum low shear viscosities fluids in the mixture. Remaining parameters are determined as S0=6, N0=2.
The mixing rheological model used to model the rheological behavior of the mixture has been validated in the plots shown in
Returning to
The network 180 can include any type of data communication network. For example, the network 180 can include a wireless and/or a wired network, a Local Area Network (LAN), a Wide Area Network (WAN), a private network, a public network (such as the Internet), a WiFi network, a network that includes a satellite link, and/or another type of data communication network. The network 180 can include some or all of the communication link 118 of
The memory 150 can store instructions (e.g., computer code) associated with an operating system, computer applications, and/or other resources. The memory 150 can also store application data and data objects that can be interpreted by one or more applications and/or virtual machines running on the computer system 110. As shown in
The processor 160 can execute instructions, for example, to generate output data based on data inputs. For example, the processor 160 can execute the fluid model or the mixing rheological model (or both) by executing and/or interpreting the software, scripts, programs, functions, executables, and/or other modules as which either or both models are implemented. The processor 160 may perform one or more of the operations described above. The input data received by the processor 160 and/or the output data generated by the processor 160 may include input from a user or input from one or both models.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
20040067855 | Hughes | Apr 2004 | A1 |
20100071957 | Huang | Mar 2010 | A1 |
20100314118 | Quintero | Dec 2010 | A1 |
20110071056 | Saini | Mar 2011 | A1 |
20110083902 | Huang | Apr 2011 | A1 |
20120181033 | Saini | Jul 2012 | A1 |
20120232859 | Pomerantz | Sep 2012 | A1 |
20130124178 | Bowen | May 2013 | A1 |
20130204588 | Copeland | Aug 2013 | A1 |
20130220604 | El-Rabaa | Aug 2013 | A1 |
20140014338 | Crews | Jan 2014 | A1 |
Entry |
---|
Walters, Harold G., et al., “Kinetic Rheology of Hydraulic Fracturing Fluids,” SPE 71660, 2001 SPE Annual Technical Conference and Exhibition, Sep. 30-Oct. 3, 2001, 12 pages. |
Lee, Seungjun, et al., “Development of a Comprehensive Rheological Property Database for EOR Polymers,” SPE 124798, 2009 SPE Annual Technical Conference and Exhibition, Oct. 4-7, 2009, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20150066452 A1 | Mar 2015 | US |