In object detection there is a tension between the task of object classification (“is it a pedestrian?”) and localization (“where is the pedestrian? what is its size/scale?”).
While classification task benefits from scale-invariant representations (pedestrians of all sizes have the same representation therefore it is easy to identify them), the localization task needs to preserve the scale of objects in the image
There is a growing need to provide efficient manners to provide object detection solutions that may solve this tension.
A method for determining object information related to an object that appears in a media element, the method may include receiving or generating a signature of the media element, wherein the signature may include identifiers, wherein the identifiers may include an object identifier related to the object, wherein the object identifier points to locations of output elements, within an output of a convolutional neural network, of elements of significance in relation to the object; finding a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object; and determining object information related to the object based on a distribution of the group of the contributing portions of the media element.
The signature may include a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object.
The method may include generating the signature in an iterative manner, wherein each iteration may include maintaining a mapping between (a) elements of an output of the iteration, and (b) contributing portions of the media element that had a significant contribution to a generation of the elements of the output of the iteration.
The method may include maintaining mapping related only to output elements of significance of an output of the convolutional neural network.
The object information may be scale information.
The object information may be orientation information.
The finding of the group of contributing portions of the media element may include multiple search iterations; wherein each search iteration may be applied on significance contributing output elements of a current layer of the convolutional neural network; wherein each search iteration may include searching, for each one of the significance contributing output elements of the current layer for a group of significant contribution output elements of a previous layer of the convolutional neural network.
Each search iteration may include applying, at each layer of the convolutional neural network, a search function that inverses an operation of the layer of the convolutional neural network.
The operation of the current layer of the convolutional neural network may be a maxpool operation for selecting a local maximum out of a subgrid of output elements of the previous layer; and wherein the search function searches for the output element of the previous layer that had a value of the subgrid.
The operation of the current layer of the convolutional neural network may be applying a convolution kernel on a subgrid of output elements of the previous layer; and wherein the search function searches a product out of a multiplication of each output element of the sub-grid by a weight of the convolution kernel.
The media unit may be an image.
The output of the convolutional neural network may be a tensor that may include a vector of values per each segment of the image; wherein the object appears in a certain segment and wherein the object identifier points to locations of significant values, within a certain vector associated with the certain segment; and wherein the portions of the media element may be image pixels.
There may be provided a non-transitory computer readable medium for determining object information related to an object that appears in a media element, the non-transitory computer readable medium may store instructions receiving or generating a signature of the media element, wherein the signature may include identifiers, wherein the identifiers may include an object identifier related to the object, wherein the object identifier points to locations of output elements, within an output of a convolutional neural network, of elements of significance in relation to the object; finding a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object; and determining object information related to the object based on a distribution of the group of the contributing portions of the media element.
The signature may include a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object.
There may be provided a non-transitory computer readable medium that may store instructions for generating the signature in an iterative manner, wherein each iteration may include maintaining a mapping between (a) elements of an output of the iteration, and (b) contributing portions of the media element that had a significant contribution to a generation of the elements of the output of the iteration.
The non-transitory computer readable medium that may store instructions for maintaining mapping related only to output elements of significance of an output of the convolutional neural network.
The object information may be scale information.
The object information may be orientation information.
The finding of the group of contributing portions of the media element may include multiple search iterations; wherein each search iteration may be applied on significance contributing output elements of a current layer of the convolutional neural network; wherein each search iteration may include searching, for each one of the significance contributing output elements of the current layer for a group of significant contribution output elements of a previous layer of the convolutional neural network.
Each search iteration may include applying, at each layer of the convolutional neural network, a search function that inverses an operation of the layer of the convolutional neural network.
The operation of the current layer of the convolutional neural network may be a maxpool operation for selecting a local maximum out of a subgrid of output elements of the previous layer; and wherein the search function searches for the output element of the previous layer that had a value of the subgrid.
The operation of the current layer of the convolutional neural network may be applying a convolution kernel on a subgrid of output elements of the previous layer; and wherein the search function searches a product out of a multiplication of each output element of the sub-grid by a weight of the convolution kernel.
The media unit may be an image.
The output of the convolutional neural network may be a tensor that may include a vector of values per each segment of the image; wherein the object appears in a certain segment and wherein the object identifier points to locations of significant values, within a certain vector associated with the certain segment; and wherein the portions of the media element may be image pixels.
There may be provided a processing circuit for executing at least one of the methods disclosed in the specification and/or the claims and/or the drawings. The processing circuitry may be implemented as a central processing unit (CPU), and/or one or more other integrated circuits such as application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), full-custom integrated circuits, etc., or a combination of such integrated circuits.
The processing circuit may be configured to determining object information related to an object that appears in a media element, by (a) receiving or generating a signature of the media element, wherein the signature may include identifiers, wherein the identifiers may include an object identifier related to the object, wherein the object identifier points to locations of output elements, within an output of a convolutional neural network, of elements of significance in relation to the object; (b) finding a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object; and (c) determining object information related to the object based on a distribution of the group of the contributing portions of the media element.
The embodiments of the disclosure will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Because the illustrated embodiments of the present invention may for the part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Any reference in the specification to a method should be applied mutatis mutandis to a device or system capable of executing the method and/or to a non-transitory computer readable medium that stores instructions for executing the method.
Any reference in the specification to a system or device should be applied mutatis mutandis to a method that may be executed by the system, and/or may be applied mutatis mutandis to non-transitory computer readable medium that stores instructions executable by the system.
Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a device or system capable of executing instructions stored in the non-transitory computer readable medium and/or may be applied mutatis mutandis to a method for executing the instructions.
Any combination of any module or unit listed in any of the figures, any part of the specification and/or any claims may be provided.
There may be provided a system, non-transitory computer readable medium and method for extracting object information such as a scale information, orientation information or other information from a signature of an image that does not explicitly include that image information.
Thus—the signature itself may be compact and robust to changes in scale, to changes in orientation or to other changes—but the scale information or orientation information may be extracted.
Using such a signature increases the accuracy of object detection, required less storage and processing resources. For example—less signatures may be stored (as there is no need in a signature per scale, per orientation, and the like), in order to match signatures fewer processing resources should be allocated.
The object information may be at least one out of (a) any statistics (for example—aggregated statistics) regarding the contributing portions of the media element (the statistics may be applied on a pixel basis or on a coarser basis), (b) precise location of the contributing portions, for example—in a case of an image size of a contributing area aka “scale” and the orientation of the area, (c) in case of an image-predominant color of the pixels in the contributing portion, (d) apply additional filters/layers only to specified contributing portions. For example—the method may find a particular identifier, find a contributing portion associated with the identifier and then apply a smaller auxiliary network only to this contributing portion. This will be much more computationally efficient than applying this auxiliary network to the whole media unit.
In the following text it is assumed that the media unit is an image—although the media unit may be an audio unit, a multimedia unit, any representation of a measurement of a natural signals, any other measurements, and the like.
The following text may refer to a significant value or to a significant contribution. The significant value may be the most significant value and the significant contribution may be the highest contribution. A significant value is a value that fulfills a significant criterion. The significant value may be a value that exceeds a threshold, a value that is within a predefined value range, belong to a group of highest values, have a highest absolute value, be below a certain threshold, be of a smallest value, belong to a group of lowest values, and the like. The significance criterion may be determined by the function applied by one or more layers of the CNN, may be determined based on a response of one or more layers of the CNN to objects that were marked or determined as significant, and the like.
An image 6001 is fed to a convolutional network layer (CNN) 6010 that has multiple (N) layers 6010(1)-6010(N), N being a positive integer that may exceed three.
Each layer applies a function and the CNN applies N functions 6015(1)-6015(N). The output of the N'th layer 6010(N) is denoted CNN output 6018. The CNN output is further processed (by step 6020 of a completion of signature generation) to provide an image signature 6028.
CNN output 6018 may include multiple values per each segment of the media unit. The values may represent attributes, properties, and the like.
Step 6020 of completion of signature generation may include selecting, out of values of the CNN output the significant values per media unit segment.
The image 6001 is virtually segments to segments 6000(i,k). The segments may be of the same shape and size but this is not necessarily so. One or more segments may at least partially overlap and/or one or more segments may not overlap.
CNN output 6018 is a tensor that includes a vector of values per each segment of the media unit. An object appears in a certain segment. An object identifier (of the signature) points to locations of significant values, within a certain vector associated with the certain segment.
For example—a top left segment (6001(1,1)) of the image may be represented in the CNN output 6018 by a vector V(1,1) 6018(1,1) that has multiple values. The number of values per vector may exceed 100, 200, 500, 1000, and the like.
The significant values (for example—more than 10, 20, 30, 40 values, and/or more than 0.1%, 0.2%. 0.5%, 1%, 5% of all values of the vector and the like) may be selected. The significant values may have the values—but may be selected in any other manner.
The image signature 6028 includes five indexes for the retrieval of the five significant values—first till fifth identifiers ID1-ID5 are indexes for retrieving the first till fifth significant values.
Once the values of the CNN output are selected and the selected values are identified by identifiers in the signature—information related to pixels that are related to non-elected values may be deleted—to save storage space.
Thus—the outcome of the N layers of the CNN network (6010(1)-6010(N)) also includes the pixels that are linked to the output of each of the layer —6018(1)-6018(N).
The process includes tracing back, for each layer (of the second till N'th layer) of the CNN the outputs of a previous layer that contributed to the significant values of the current layer. For the first layer—tracing back the pixels that contributed to the significant values of the output of the first CNN layer.
Thus N traceback (TB) functions are applied—from first TB function till N'th TB function 6017(1)-6017(N).
Thus, for a first identifier ID1 in the signature—(identifier first significant value SV16014(1,1)), the N'th TB function 6017(N) finds the set of contributing (N−1)'th layer outputs 6013(N−1). The first TB function 6017(1) finds the pixels (set of pixels) related to ID16001(9)—by searching pixels that contributed to significant first layer output values 6013(1).
The first and second images are segmented to segments and each segment may be represented by a vector, out of which significant values will be selected and identified by identifiers (indexes) that belong to the first image signature and the second image signature respectively.
The first person 6051 will be identified by first index ID116061 in the signatures of the first and second images and the second person 6052 will be identified by second index ID126062 in the signatures of the first and second images. These signature do not include (explicitly) the scale and orientation of the first and second persons—but the methods disclosed in the application extract the scale and orientation information.
Method 6100 includes a sequence of steps 6102, 6104, 6106, 6108, 6110, and 6112.
Step 6102 may include selecting an index out of multiple indices of an image signature, wherein the image signature lacks explicit scale fields.
The selection can be made according to various criteria. For example—the selection may follow a match between a concept structure and a signature of an image. The concept structure may include signatures and metadata related to the signatures. A concept may represent an object.
Step 6102 may include steps 6102(1), 6102(2) and 6102(3).
Step 6102(1) may include receiving or generating a signature of an image 6102(1).
Step 6102(2) may include checking if the signature of the image matches a signature of a concept structure that includes a collection of signatures. A match occurs if at least a predefined number of identifies in the signature of the image match identifiers of a signature of the concept structure.
If a matching occurs—selecting (6102(3)) the matching signatures to undergo steps 6104-6112.
Step 6104 may include using the index to find a set of significant responses in a tensor that is outputted from a last (N'th) layer of a convolutional neural network (CNN).
Step 6106 may include, for each significant response of the set—tracing back the set of contributing output elements of the (N−1)th layer of the CNN.
Step 6108 may include performing, for each layer of the CNN, out of the (N−1) layer to the second layer of the CNN, finding, for each contributing output element of the set of contributing output elements of a current layer, the set of contributing output elements of the pervious layer.
Step 6110 may include finding, for each contributing output element of the set of contributing output elements of the first layer, the pixels of the image that are the contributing pixels to the contributing output element.
Step 6112 may include determining one or more property of the object associated with the selected index based on the distribution of the contributing pixels.
Method 6200 may include steps 6202, 6204 and 6206.
Step 6202 may include receiving or generating a signature of the media element, wherein the signature may include identifiers. The identifiers may include an object identifier related to the object. The object identifier points to locations of output elements, within an output of a convolutional neural network, of elements of significance in relation to the object.
The output of the convolutional neural network may be a tensor that may include a vector of values per each segment of the image; wherein the object appears in a certain segment and wherein the object identifier points to locations of significant values, within a certain vector associated with the certain segment; and wherein the portions of the media element may be image pixels. Step 6204 may applied on selected identifiers—such as identifier that match a signature of a concept data structure.
Step 6204 may include finding a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object.
Step 6206 may include determining object information related to the object based on a distribution of the group of the contributing portions of the media element.
The signature may include a group of contributing portions of the media element that had a significant contribution to the generation, by the convolutional neural network, of the output elements of significance in relation to the object.
Step 6202 may include generating the signature in an iterative manner, wherein each iteration may include maintaining a mapping between (a) elements of an output of the iteration, and (b) contributing portions of the media element that had a significant contribution to a generation of the elements of the output of the iteration. In this case step 6204 may included in step 6202 or may include retrieving the information generated in step 6204.
Step 6202 may include maintaining mapping related only to output elements of significance of an output of the convolutional neural network.
The object information may be scale information.
The object information may be orientation information.
Step 6204 may include multiple search iterations; wherein each search iteration may be applied on significance contributing output elements of a current layer of the convolutional neural network; wherein each search iteration may include searching, for each one of the significance contributing output elements of the current layer for a group of significant contribution output elements of a previous layer of the convolutional neural network.
Each search iteration may include applying, at each layer of the convolutional neural network, a search function that inverses an operation of the layer of the convolutional neural network.
The operation of the current layer of the convolutional neural network may be a maxpool operation for selecting a local maximum out of a subgrid of output elements of the previous layer; and wherein the search function searches for the output element of the previous layer that had a value of the subgrid.
The operation of the current layer of the convolutional neural network may be applying a convolution kernel on a subgrid of output elements of the previous layer; and wherein the search function searches a product out of a multiplication of each output element of the sub-grid by a weight of the convolution kernel.
The object 6300 should be identified by the same identifier—but its distribution differs as a function of scale and orientation.
The distribution of the pixels related to each of the object may represent an approximation of the border of the objects and may provide information about properties such as scale and orientation. The orientation may be determined in various manners—for example find axes that cross the object and may pass through a center of gravity of the object and determine the orientation of the object based on the orientation of the axes. The orientation may be determined during a learning period, based on an equation or a lookup table.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Furthermore, the terms “assert” or “set” and “negate” (or “deassert” or “clear”) are used herein when referring to the rendering of a signal, status bit, or similar apparatus into its logically true or logically false state, respectively. If the logically true state is a logic level one, the logically false state is a logic level zero. And if the logically true state is a logic level zero, the logically false state is a logic level one.
Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.
Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality may be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.
Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.
However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
It is appreciated that various features of the embodiments of the disclosure which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the embodiments of the disclosure which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.
It will be appreciated by persons skilled in the art that the embodiments of the disclosure are not limited by what has been particularly shown and described hereinabove. Rather the scope of the embodiments of the disclosure is defined by the appended claims and equivalents thereof.
This application claims priority from U.S. provisional patent Ser. No. 62/821,144, filing date Mar. 20, 2019.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5078501 | Hekker et al. | Jan 1992 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5412564 | Ecer | May 1995 | A |
5436653 | Ellis et al. | Jul 1995 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5754938 | Herz et al. | May 1998 | A |
5763069 | Jordan | Jun 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5835901 | Duvoisin et al. | Nov 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5926812 | Hilsenrath et al. | Jul 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6163510 | Lee et al. | Dec 2000 | A |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6314419 | Faisal | Nov 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6546405 | Gupta et al. | Apr 2003 | B2 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6618711 | Ananth | Sep 2003 | B1 |
6640015 | Lafruit | Oct 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6704725 | Lee | Mar 2004 | B1 |
6732149 | Kephart | May 2004 | B1 |
6742094 | Igari | May 2004 | B2 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6985172 | Rigney et al. | Jan 2006 | B1 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7158681 | Persiantsev | Jan 2007 | B2 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7289643 | Brunk et al. | Oct 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302089 | Smits | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340358 | Yoneyama | Mar 2008 | B2 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7383179 | Alves et al. | Jun 2008 | B2 |
7433895 | Li et al. | Oct 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7529659 | Wold | May 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7801893 | Gulli | Sep 2010 | B2 |
7805446 | Potok et al. | Sep 2010 | B2 |
7860895 | Scofield et al. | Dec 2010 | B1 |
7872669 | Darrell et al. | Jan 2011 | B2 |
7921288 | Hildebrand | Apr 2011 | B1 |
7933407 | Keidar et al. | Apr 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8275764 | Jeon | Sep 2012 | B2 |
8285718 | Ong et al. | Oct 2012 | B1 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
8386400 | Raichelgauz et al. | Feb 2013 | B2 |
8396876 | Kennedy et al. | Mar 2013 | B2 |
8418206 | Bryant et al. | Apr 2013 | B2 |
RE44225 | Aviv | May 2013 | E |
8442321 | Chang et al. | May 2013 | B1 |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8495489 | Everingham | Jul 2013 | B1 |
8527978 | Sallam | Sep 2013 | B1 |
8634980 | Urmson | Jan 2014 | B1 |
8635531 | Graham et al. | Jan 2014 | B2 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8655878 | Kulkarni et al. | Feb 2014 | B1 |
8781152 | Momeyer | Jul 2014 | B2 |
8782077 | Rowley | Jul 2014 | B1 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8954887 | Tseng et al. | Feb 2015 | B1 |
8990199 | Ramesh et al. | Mar 2015 | B1 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9298763 | Zack | Mar 2016 | B1 |
9311308 | Sankarasubramaniam et al. | Apr 2016 | B2 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9440647 | Sucan | Sep 2016 | B1 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
9679062 | Schillings et al. | Jun 2017 | B2 |
9734533 | Givot | Aug 2017 | B1 |
9807442 | Bhatia et al. | Oct 2017 | B2 |
9875445 | Amer et al. | Jan 2018 | B2 |
9984369 | Li et al. | May 2018 | B2 |
10133947 | Yang | Nov 2018 | B2 |
10347122 | Takenaka | Jul 2019 | B2 |
10491885 | Hicks | Nov 2019 | B1 |
20010019633 | Tenze et al. | Sep 2001 | A1 |
20010034219 | Hewitt et al. | Oct 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20020004743 | Kutaragi et al. | Jan 2002 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn et al. | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020042914 | Walker et al. | Apr 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020087828 | Arimilli et al. | Jul 2002 | A1 |
20020091947 | Nakamura | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020113812 | Walker et al. | Aug 2002 | A1 |
20020126002 | Patchell | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020163532 | Thomas et al. | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020184505 | Mihcak et al. | Dec 2002 | A1 |
20030004966 | Bolle et al. | Jan 2003 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101150 | Agnihotri et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030110236 | Yang et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030140257 | Peterka et al. | Jul 2003 | A1 |
20030165269 | Fedorovskaya et al. | Sep 2003 | A1 |
20030174859 | Kim | Sep 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040059736 | Willse | Mar 2004 | A1 |
20040091111 | Levy | May 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098671 | Graham et al. | May 2004 | A1 |
20040111432 | Adams et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040162820 | James et al. | Aug 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050080788 | Murata | Apr 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050163375 | Grady | Jul 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050193015 | Logston | Sep 2005 | A1 |
20050226511 | Short | Oct 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050249398 | Khamene et al. | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060015580 | Gabriel et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060033163 | Chen | Feb 2006 | A1 |
20060050993 | Stentiford | Mar 2006 | A1 |
20060069668 | Braddy et al. | Mar 2006 | A1 |
20060080311 | Potok et al. | Apr 2006 | A1 |
20060100987 | Leurs | May 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060120626 | Perlmutter | Jun 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060218191 | Gopalakrishnan | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242130 | Sadri et al. | Oct 2006 | A1 |
20060248558 | Barton et al. | Nov 2006 | A1 |
20060251338 | Gokturk et al. | Nov 2006 | A1 |
20060251339 | Gokturk | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20060288002 | Epstein et al. | Dec 2006 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070033170 | Sull et al. | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070136782 | Ramaswamy et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070196013 | Li | Aug 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080027983 | Erol | Jan 2008 | A1 |
20080049789 | Vedantham et al. | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080079729 | Brailovsky | Apr 2008 | A1 |
20080109433 | Rose | May 2008 | A1 |
20080152231 | Gokturk | Jun 2008 | A1 |
20080159622 | Agnihotri et al. | Jul 2008 | A1 |
20080165861 | Wen et al. | Jul 2008 | A1 |
20080166020 | Kosaka | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080201361 | Castro et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080247543 | Mick et al. | Oct 2008 | A1 |
20080253737 | Kimura et al. | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080270569 | McBride | Oct 2008 | A1 |
20080294278 | Borgeson | Nov 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090022472 | Bronstein | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090034791 | Doretto | Feb 2009 | A1 |
20090037088 | Taguchi | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz | Feb 2009 | A1 |
20090080759 | Bhaskar | Mar 2009 | A1 |
20090096634 | Emam et al. | Apr 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090165031 | Li et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090208106 | Dunlop et al. | Aug 2009 | A1 |
20090208118 | Csurka | Aug 2009 | A1 |
20090216761 | Raichelgauz | Aug 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090278934 | Ecker | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20090297048 | Slotine et al. | Dec 2009 | A1 |
20100042646 | Raichelgauz | Feb 2010 | A1 |
20100082684 | Churchill | Apr 2010 | A1 |
20100104184 | Bronstein et al. | Apr 2010 | A1 |
20100111408 | Matsuhira | May 2010 | A1 |
20100125569 | Nair et al. | May 2010 | A1 |
20100162405 | Cook et al. | Jun 2010 | A1 |
20100191391 | Zeng | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100212015 | Jin et al. | Aug 2010 | A1 |
20100284604 | Chrysanthakopoulos | Nov 2010 | A1 |
20100293057 | Haveliwala et al. | Nov 2010 | A1 |
20100306193 | Pereira | Dec 2010 | A1 |
20100312736 | Kello | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100325138 | Lee et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110029620 | Bonforte | Feb 2011 | A1 |
20110035373 | Berg et al. | Feb 2011 | A1 |
20110038545 | Bober | Feb 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110164180 | Lee | Jul 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110216209 | Fredlund et al. | Sep 2011 | A1 |
20110218946 | Stern et al. | Sep 2011 | A1 |
20110246566 | Kashef | Oct 2011 | A1 |
20110276680 | Rimon | Nov 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120133497 | Sasaki | May 2012 | A1 |
20120136853 | Kennedy et al. | May 2012 | A1 |
20120167133 | Carroll et al. | Jun 2012 | A1 |
20120179642 | Sweeney et al. | Jul 2012 | A1 |
20120179751 | Ahn | Jul 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120207346 | Kohli et al. | Aug 2012 | A1 |
20120221470 | Lyon | Aug 2012 | A1 |
20120227074 | Hill et al. | Sep 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120265735 | McMillan et al. | Oct 2012 | A1 |
20120294514 | Saunders et al. | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130043990 | Al-Jafar | Feb 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski et al. | Apr 2013 | A1 |
20130103814 | Carrasco | Apr 2013 | A1 |
20130151522 | Aggarwal et al. | Jun 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130212493 | Krishnamurthy | Aug 2013 | A1 |
20130226820 | Sedota, Jr. | Aug 2013 | A1 |
20130226930 | Amgren et al. | Aug 2013 | A1 |
20130227023 | Raichelgauz et al. | Aug 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130346412 | Raichelgauz et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140059443 | Tabe | Feb 2014 | A1 |
20140095425 | Sipple | Apr 2014 | A1 |
20140111647 | Atsmon | Apr 2014 | A1 |
20140125703 | Roveta et al. | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140149918 | Asokan et al. | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140156691 | Conwell | Jun 2014 | A1 |
20140169681 | Drake | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140198986 | Marchesotti | Jul 2014 | A1 |
20140201330 | Lozano Lopez | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20140363044 | Williams et al. | Dec 2014 | A1 |
20140379477 | Sheinfeld | Dec 2014 | A1 |
20150033150 | Lee | Jan 2015 | A1 |
20150052089 | Kozloski et al. | Feb 2015 | A1 |
20150100562 | Kohlmeier et al. | Apr 2015 | A1 |
20150117784 | Lin | Apr 2015 | A1 |
20150120627 | Hunzinger et al. | Apr 2015 | A1 |
20150127516 | Studnitzer et al. | May 2015 | A1 |
20150134688 | Jing | May 2015 | A1 |
20150248586 | Gaidon et al. | Sep 2015 | A1 |
20150254344 | Kulkarni et al. | Sep 2015 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150286872 | Medioni et al. | Oct 2015 | A1 |
20150324356 | Gutierrez et al. | Nov 2015 | A1 |
20150332588 | Bulan et al. | Nov 2015 | A1 |
20150363644 | Wnuk | Dec 2015 | A1 |
20160007083 | Gurha | Jan 2016 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160132194 | Grue et al. | May 2016 | A1 |
20160210525 | Yang | Jul 2016 | A1 |
20160221592 | Puttagunta | Aug 2016 | A1 |
20160275766 | Venetianer et al. | Sep 2016 | A1 |
20160306798 | Guo et al. | Oct 2016 | A1 |
20160342683 | Kwon | Nov 2016 | A1 |
20160357188 | Ansari | Dec 2016 | A1 |
20170017638 | Satyavarta et al. | Jan 2017 | A1 |
20170032257 | Sharifi | Feb 2017 | A1 |
20170041254 | Agara et al. | Feb 2017 | A1 |
20170109602 | Kim | Apr 2017 | A1 |
20170154241 | Shambik et al. | Jun 2017 | A1 |
20170255620 | Raichelgauz | Sep 2017 | A1 |
20170262437 | Raichelgauz | Sep 2017 | A1 |
20170323568 | Inoue | Nov 2017 | A1 |
20180081368 | Watanabe | Mar 2018 | A1 |
20180101177 | Cohen | Apr 2018 | A1 |
20180108258 | Dilger | Apr 2018 | A1 |
20180157903 | Tu et al. | Jun 2018 | A1 |
20180157916 | Doumbouya | Jun 2018 | A1 |
20180158323 | Takenaka | Jun 2018 | A1 |
20180189613 | Wolf | Jul 2018 | A1 |
20180204111 | Zadeh | Jul 2018 | A1 |
20180373929 | Ye | Dec 2018 | A1 |
20190005726 | Nakano | Jan 2019 | A1 |
20190039627 | Yamamoto | Feb 2019 | A1 |
20190043274 | Hayakawa | Feb 2019 | A1 |
20190045244 | Balakrishnan | Feb 2019 | A1 |
20190056718 | Satou | Feb 2019 | A1 |
20190065951 | Luo | Feb 2019 | A1 |
20190096135 | Mutto et al. | Mar 2019 | A1 |
20190171912 | Vallespi-Gonzalez et al. | Jun 2019 | A1 |
20190188501 | Ryu | Jun 2019 | A1 |
20190220011 | Della Penna | Jul 2019 | A1 |
20190279046 | Han et al. | Sep 2019 | A1 |
20190304102 | Chen et al. | Oct 2019 | A1 |
20190317513 | Zhang | Oct 2019 | A1 |
20190364492 | Azizi | Nov 2019 | A1 |
20190384303 | Muller | Dec 2019 | A1 |
20190384312 | Herbach | Dec 2019 | A1 |
20190385460 | Magzimof | Dec 2019 | A1 |
20190389459 | Berntorp | Dec 2019 | A1 |
20200004248 | Healey | Jan 2020 | A1 |
20200004251 | Zhu | Jan 2020 | A1 |
20200004265 | Zhu | Jan 2020 | A1 |
20200005631 | Visintainer | Jan 2020 | A1 |
20200018606 | Wolcott | Jan 2020 | A1 |
20200018618 | Ozog | Jan 2020 | A1 |
20200020212 | Song | Jan 2020 | A1 |
20200050973 | Stenneth | Feb 2020 | A1 |
20200073977 | Montemerlo | Mar 2020 | A1 |
20200090484 | Chen | Mar 2020 | A1 |
20200097756 | Hashimoto | Mar 2020 | A1 |
20200133307 | Kelkar | Apr 2020 | A1 |
20200043326 | Tao | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
1085464 | Jan 2007 | EP |
0231764 | Apr 2002 | WO |
2003067467 | Aug 2003 | WO |
2005027457 | Mar 2005 | WO |
2007049282 | May 2007 | WO |
2014076002 | May 2014 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
2016070193 | May 2016 | WO |
Entry |
---|
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China, Available online Mar. 12, 2002, pp. 239-263. |
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002). |
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011). |
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006). |
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016). |
Chen, Yixin, James Ze Wang, and Robert Krovetz. “Clue: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005). |
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: 8 May 2018). (Year: 2018). |
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th Acm Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015). |
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ]. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010). |
Fathy et al, “A Parallel Design and Implementation for Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3. |
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009). |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106. |
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017. |
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017. |
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103. |
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005). |
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251. |
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Ma et el “Semantics modeling based image retrieval system using neural networks”, 2005. |
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
Mcnamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292. |
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014). |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions on circuits and systems for video technology 8.5 (1998): 644-655. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230. |
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275. |
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56. |
Stolberg et al (“Hibrid-Soc: A Multi-Core SOC Architecture for Multimedia Signal Processing” 2003). |
Stolberg et al, “Hibrid-SOC: A Mul ti-Core SOC Architecture for Mul timedia Signal Processing”, 2003 IEEE, pp. 189-194. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281. |
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007). |
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12. |
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5. |
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University Advent Technical Report #222, 2007, pp. 2006-2008. |
Number | Date | Country | |
---|---|---|---|
20200302174 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62821144 | Mar 2019 | US |