1. Technical Field
The present invention relates generally to measurement systems, and more particularly, to determining a matching problem of a measurement system under test to a fleet including at least one other measurement system, and also determining a root cause issue of the matching problem. In addition, the invention relates to determining a root cause of a matching problem of a measurement system and a fleet and/or a fleet measurement precision for a measurement system.
2. Related Art
Measurement systems are applied in a variety of industries in which precise and accurate measurements are required, such as semiconductor manufacturing. Challenges relative to attaining quality measurement are presented in terms of individual measurement systems and across a fleet of measurement systems.
In terms of individual measurement systems, each tool is typically required to achieve small tolerances to achieve better quality products and fewer rejections in the manufacturing process. For example, in the semiconductor manufacturing industry, the 1999 Edition of the International Technology Roadmap for Semiconductors (ITRS precision specification) lists the necessary precision needed for isolated line control in the year 2001 to be 1.8 nm. Correctly assessing and optimizing the measurement potential of a measurement system is difficult for a number of reasons. For example, an evaluator normally has limited access to the various instruments under consideration. In addition, each instrument needs to be evaluated under a wide range of conditions in order to gain a valid impression of how it will perform in the actual manufacturing setting. Finally, there are no widely accepted standards relative to the required parameters and how the parameters should be measured. One approach, disclosed in PCT Publication WO/2004/059247, which is hereby incorporated by reference, involves assessing and optimizing a measurement system by determining a total measurement uncertainty (TMU) based on precision and accuracy. The TMU is calculated based on a linear regression analysis and removing a reference measuring system uncertainty (URMS) from a net residual error. The fundamental question answered in the TMU PCT publication is how to correct or accurately determine how the measurement system under test or fleet under test measures. The TMU publication, however, does not address how similarly the measurement system under test matches the reference measurement system.
When quality measurement is evaluated across a fleet of measurement systems, the above-described challenges for assessing and optimizing a single metrology tool are multiplied. The ITRS precision specification referred to in the previous paragraph actually applies to whatever set of tools is used to monitor and control critical steps in the semiconductor manufacturing process. It is more cost effective to avoid dedicating tools to specific manufacturing steps by allowing any tool of the full fleet in the manufacturing line to make measurements. This, however, places great demand on achieving and maintaining good measurement matching for all tools in the fleet. Typically, measurement systems having similar measurement technology are selected for use together. Then, the measurement systems across a fleet are preferably manually matched as much as possible. In order to achieve matching, in one approach, an average offset value between measurements of tools within a fleet is minimized to match the tools as much as possible. A common practice is to compare measurements of a series of different design linewidths on a given wafer spanning the range of smallest to largest dimensions expected to be encountered in the manufacturing line, and then minimize the average difference (offset) between the measurements of different tools. One shortcoming of this approach is that there is insufficient information to understand the root cause of an unacceptable average offset. Another approach attempts to have instruments to be matched produce data having a straight line with unity slope and zero intercept or average offset when comparing measurements of different design linewidths. This approach is an improvement in that the slope provides magnification error information but also suffers from the problem that insufficient diagnostic information is generated to identify root causes of unacceptable matching. In addition, both approaches fail to produce a comprehensive metric that combines all relevant matching information. Another shortcoming in current practices is the use of simplified artifacts for the matching measurements. Matching artifacts are often chosen because they are stable, reliably manufactured, and with little process-induced variation. Unfortunately, these very properties imply they are not leading edge technology examples nor do they display the full range of measurement challenges present in manufacturing.
In view of the foregoing, there is a need in the art for improved methods that address the problems of the related art.
The invention includes methods, systems and program products for determining whether a measurement system under test (MSUT) matches a fleet including at least one other measurement system. The invention implements realistic parameters for analyzing a matching problem including single tool precision, tool-to-tool non-linearities and tool-to-tool offsets. A bottom-line tool matching precision metric that combines these parameters into a single value is then implemented. The invention also includes methods for determining a root cause issue of a matching problem, and for determining a fleet measurement precision metric. The invention also includes method, system and program product for attempting to determine a root cause of a subject problem related to at least one of a measurement system under test (MSUT) and a fleet of at least one other measurement system.
The methodology is applicable to many metrology matching situations and the concepts of this invention can be applied to multiple measurement system types. Although the invention will be described relative to linewidths in the semiconductor industry, the measurand, i.e., the object to be measured, is not limited to this application. Further, the methodology is not restricted to tools of the same type. When the tools being compared are the same model, this is defined as homogeneous tool matching. Heterogeneous tool matching refers to this methodology applied across multiple generations or brands of metrology systems.
A first aspect of the invention is directed to a method of determining whether a measurement system under test (MSUT) matches a fleet including at least one other measurement system, the method comprising the steps of: calculating a tool matching precision based on a set of parameters including: a slope-induced shift offset (SISOffset) between a MSUT measurement of an artifact and a benchmark measurement of the artifact by a benchmark measurement system (BMS) and a non-linearity (σnon-linearity) of a linear regression analysis comparing the MSUT and the BMS; and determining whether the tool matching precision meets a matching threshold, wherein the MSUT is considered matched in the case that the matching threshold is met.
A second aspect of the invention includes a system for determining whether a measurement system under test (MSUT) matches a fleet including at least one other measurement system, the system comprising: means for calculating a tool matching precision based on a set of parameters including: a slope-induced shift offset (SISOffset) between a MSUT measurement of an artifact and a benchmark measurement of the artifact by a benchmark measurement system (BMS) and a non-linearity (σnon-linearity) of a Mandel regression analysis comparing the MSUT and the BMS; and means for determining whether the tool matching precision meets a matching threshold, wherein the MSUT is considered matched in the case that the matching threshold is met.
A third aspect of the invention related to a program product stored on a computer readable medium for determining whether a measurement system under test (MSUT) matches a fleet including at least one other measurement system, the computer readable medium comprising program code for performing the following steps: calculating a tool matching precision based on a set of parameters including: a slope-induced shift offset (SISOffset) between a MSUT measurement of an artifact and a benchmark measurement of the artifact by a benchmark measurement system (BMS) and a non-linearity ((σnon-linearity) of a Mandel regression analysis comparing the MSUT and the BMS; and determining whether the tool matching precision meets a matching threshold, wherein the MSUT is considered matched in the case that the matching threshold is met.
A fourth aspect of the invention is directed to a method of determining a root cause issue of a matching problem between a measurement system under test (MSUT) and a fleet of at least one other measurement system, the method comprising the steps of: calculating a tool matching precision indicative of an ability of the MSUT to match the fleet; determining that the tool matching precision does not meet a matching threshold; and determining the root cause issue of the matching problem based on an analysis of at least one parameter of the tool matching precision.
A fifth aspect includes a method of attempting to determine a root cause of a subject problem related to at least one of a measurement system under test (MSUT) and a fleet of at least one other measurement system, the method comprising the steps of: storing a plurality of root cause signatures, each root cause signature including an association of a stored problem profile including characteristics of a known problem and at least one root cause of the known problem; determining whether the subject problem exists by evaluating at least one of a tool matching precision and a fleet matching precision; in response to the subject problem existing, creating a subject problem profile including characteristics of the subject problem; and attempting to determine the root cause of the subject problem by comparing the subject problem profile to the stored problem profiles of the plurality of root cause signatures, whereby the root cause is determined by a match between the subject problem profile and at least one of the stored problem profiles of the plurality of root cause signatures.
A sixth aspect of the invention relates to a system for attempting to determine a root cause of a subject problem related to at least one of a measurement system under test (MSUT) and a fleet of at least one other measurement system, the system comprising: means for storing a plurality of root cause signatures, each root cause signature including an association of a stored problem profile including characteristics of a known problem and at least one root cause of the known problem; means for creating a subject problem profile including characteristics of the subject problem; and means for attempting to determine the root cause of the subject problem by comparing the subject problem profile to the stored problem profiles of the plurality of root cause signatures, whereby the root cause is determined by a match between the subject problem profile and at least one of the stored problem profiles of the plurality of root cause signatures.
A seventh aspect of the invention includes a computer program product comprising a computer readable medium having a computer readable program code for attempting to determine a root cause of a subject problem related to at least one of a measurement system under test (MSUT) and a fleet of at least one other measurement system, the computer program product comprising: program code for storing a plurality of root cause signatures, each root cause signature including an association of a stored problem profile including characteristics of a known problem and at least one root cause of the known problem; program code for creating a subject problem profile including characteristics of the subject problem; and program code for attempting to determine the root cause of the subject problem by comparing the subject problem profile to the stored problem profiles of the plurality of root cause signatures, whereby the root cause is determined by a match between the subject problem profile and at least one of the stored problem profiles of the plurality of root cause signatures.
The foregoing and other features of the invention will be apparent from the following more particular description of embodiments of the invention.
The embodiments of this invention will be described in detail, with reference to the following figures, wherein like designations denote like elements, and wherein:
The description includes the following headings for clarity purposes only: I. Introduction and Definitions, II. System Overview, III. Operational Methodology, IV. Root Cause Determination, and V. Conclusion.
I. Introduction and Definitions
Referring to
The invention implements realistic parameters for analyzing a matching problem of an MSUT to a fleet including single tool precision, tool-to-tool non-linearities and tool-to-tool offsets. The specifics of these generic parameters will be described in greater detail below. A bottom-line tool matching precision (TMP) metric that combines these parameters into a single value is then implemented. The TMP is indicative of an ability of the MSUT to match the fleet. Comparison of the TMP to a matching threshold indicates whether the MSUT is matched to the fleet. When an MSUT does not match, the invention implements methods for determining a root cause issue of the matching problem. Root cause issue determination generally leads to determining a root cause and corrective action to eliminate the problem.
The invention also implements a fleet measurement precision (FMP) based on fleet-specific parameters. The FMP provides an indication of the fleet's comprehensive precision.
II. System Overview
With reference to the accompanying drawings,
Alternatively, a user can interact with another computing device (not shown) in communication with computer 102. In this case, I/O interface 116 can comprise any device that enables computer 102 to communicate with one or more other computing devices over a network (e.g., a network system, network adapter, I/O port, modem, etc.). The network can comprise any combination of various types of communications links. For example, the network can comprise addressable connections that may utilize any combination of wireline and/or wireless transmission methods. In this instance, the computing devices (e.g., computer 102) may utilize conventional network connectivity, such as Token Ring, Ethernet, WiFi or other conventional communications standards. Further, the network can comprise one or more of any type of network, including the Internet, a wide area network (WAN), a local area network (LAN), a virtual private network (VPN), etc. Where communications occur via the Internet, connectivity could be provided by conventional TCP/IP sockets-based protocol, and a computing device could utilize an Internet service provider to establish connectivity to the Internet.
Computer 102 is only representative of various possible combinations of hardware and software. For example, processor 114 may comprise a single processing unit, or be distributed across one or more processing units in one or more locations, e.g., on a client and server. Similarly, memory 112 and/or storage system 122 may reside at one or more physical locations. Memory 112 and/or storage system 122 can comprise any combination of various types of computer-readable media and/or transmission media including magnetic media, optical media, random access memory (RAM), read only memory (ROM), a data object, etc. I/O interface 116 can comprise any system for exchanging information with one or more I/O devices. Further, it is understood that one or more additional components (e.g., system software, math co-processor, etc.) not shown in
As discussed further below, system 100 is shown including a tool matching precision (TMP) calculator 130, a comparator 132, a fleet measurement precision (FMP) calculator 134, a root cause issue determinator 136 and other system components 138. In addition, system 100 may also include a signature creator 150, a root cause analyzer 152 including a comparator 154. Root cause issue determinator 136 may include a comparator 140 and a determinator 142. The comparators 132, 140 and 154 may be integrated, if desired. Other system components 138 may include any other functionality necessary for carrying out the invention and not explicitly described below.
One particular storage system 122 may include a root cause signature (sig.) database 154. The purpose of which will be described in more detail below in Section IV.
III. Operational Methodology
Turning to
There are a number of preliminary steps (not shown) that precede the inventive method. First, a benchmarking measurement system (BMS) is qualified. A “benchmarking measurement system” is a tool(s) against which a MSUT will be compared. In one embodiment, a BMS is a single trusted measurement system that has been carefully evaluated to ensure that it passes long-term precision and other tests, e.g., acceptable accuracy as measured by TMU analysis. A measurement of an MSUT of an artifact can then be compared to “benchmark measurement” of the same artifact by the BMS. Other parameters of the MSUT can also be compared to the same parameter for the BMS. In an alternative embodiment, a BMS is fleet 12. In this case, BMS values are based on average values for the fleet. For example, if each tool of the fleet made measurements at N sites on a matching artifact, the benchmark measurement of the artifact would be a fleet average measurements of the N sites on the artifact.
Second, measurement recipes for a process stress artifact(s)(one or more) is established. For an MSUT with full automation, a measurement recipe is a coded set of instructions to control the system which defines where to measure and what to measure. In the absence of automation, measurement plans would be established that define where to measure and what to measure. Process stressed “artifacts” are many different semiconductor wafers at critical process steps that challenge the capabilities of an MSUT on structures and materials likely to be encountered in application targeted by the matching exercise.
Finally, the process stressed artifact(s) would be measured by the MSUT, yielding a series of measurement values that can be analyzed according to the inventive method.
Turning to the flow diagram of
By convention used in this invention, the BMS data is regressed on the MSUT data which means that the BMS data corresponds to the y-axis, while the MSUT data corresponds to the x-axis. This convention implies that the estimated slope {circumflex over (β)} of the best-fit regression line represents a unit change in BMS measurement divided by a unit change in MSUT measurement. Other regressions that handle errors in both x and y can be used, but the Mandel regression is preferred. The Mandel regression output parameters used in this invention are the {circumflex over (β)}MSUT and the Net Residual Error (NRE), which is the square-root of the mean-square error of the sum of the squares of the residuals of the data from the best-fit line. NRE is also designated as σMandel Residual. Instead of the intercept of the best-fit regression line, the average offset between the BMS and the MSUT measurements is used.
With further regard to TMP, “slope-induced shift offset” (hereinafter “SISoffset”) indicates the non-unity slope penalty further away from the process window center between a MSUT measurement of an artifact and a benchmark measurement of the artifact by a BMS; and “non-linearity” indicates the amount of statistically significant scatter about the best-fit line based on the Mandel regression analysis comparing the MSUT and the BMS. In one embodiment, SISoffset may be defined as: SISoffset=υ(Process Window Size)(1−βMSUT), where SISoffset is the slope-induced shift offset, υ is a user-selectable fraction of the process window size or range of the data, and βMSUT is the slope of the linear (Mandel if used) regression analysis comparing the MSUT and the BMS. In one embodiment, where the Mandel regression analysis is used, the non-linearity is defined as: σ2non-linearity=σ2Mandel Residual−σ2BMS−σ2MSUT, where σ2non-linearity is the non-linearity, σ2Mandel Residual is a residual of the Mandel regression analysis, σ2BMS is a precision estimate of the benchmark measurement, and σ2MSUT is a precision estimate of the MSUT measurement. A “precision estimate” as used herein includes a variance estimate based on the square of the precision from a respective BMS or MSUT. Ideally, the σ2BMS, the σ2MSUT, and the σ2Mandel Residual should all be estimated concurrently, which maximizes the ability to statistically determine a significant σ2non-linearity because σ2Mandel Residual contains both σ2BMS and σ2MSUT quantities.
The SISoffset and non-linearity parameters provide a more realistic interpretation of MSUT 10 ability to match fleet 12. The set of parameters may further include: a slope (βMSUT) of the Mandel regression analysis comparing the MSUT and the BMS, a precision of the MSUT (σMSUT), an average offset between the MSUT measurement of the artifact and the benchmark measurement of the artifact by the BMS, a BMS average offset (offsetBMS) between the benchmark measurement of the artifact and a fleet average measurement of the artifact, and a BMS slope-induced offset (SISoffsetBMS) between the benchmark measurement of the artifact and the fleet average measurement of the artifact.
In one embodiment, TMP is defined using this set of parameters as:
where TMP is the tool matching precision, βMSUT is the slope of the Mandel regression analysis, σMSUT is the precision of the MSUT, offset is the average offset, offsetBMS is the BMS average offset, SISoffset is the slope-induced shift offset, SISoffsetBMS is the BMS shift-induced offset, and σnon-linearity is the non-linearity.
A special case relative to TMP is presented where fleet 12 includes only a single measurement system. In particular, the set of parameters may be reduced to include the SISoffset and non-linearity (σnon-linearity), and only the slope (βMSUT), precision of the MSUT (σMSUT), and average offset. In this case, TMP2 can be defined as:
where TMP2 is the tool matching precision, β2,MSUT is the slope of the Mandel regression analysis, σMSUT is the precision of the MSUT, offset2 is the average offset, SISoffset2 is the slope-induced shift offset and σ2,non-linearity is the non-linearity. The sub-script “2” indicates only two measurement systems are being evaluated, i.e., the MSUT and the single measurement system in fleet 12.
Continuing with
In the case that the TMP meets the matching threshold, i.e., YES at step S2, this indicates that the MSUT can be used for production to measure relevant processes—step S3. That is, no matching problem exists. Subsequent to this step, a fleet measurement precision is calculated by FMP calculator 134 at step S4 for all measurement systems 14 in fleet 12. “Fleet measurement precision” (hereinafter “FMP”) is a metric that provides an indication of the fleet's overall measurement precision. In one embodiment, FMP is defined as:
FMP=3√{square root over (Vpp+Vpo+Vps+Vpn)},
where Vpp is a pooled corrected precision of all tools and MSUT (as shown in
where Vpp is the pooled corrected precision, σi,MSUT is a single tool precision of the ith tool, and βi,MSUT is the slope of the Mandel regression analysis of the ith tool. The pooled average offset may be defined as:
where Vpo is the pooled average offset, offseti is the average offset of the ith tool to the BMS and offsetBMS is the average offset of the BMS to a fleet average. The pooled average sloped-induced offset is defined as:
where Vps is the pooled average sloped-induced offset, SISoffseti is the sloped-induced offset of the ith tool to the BMS, and SISoffsetBMS is the sloped-induced offset to the fleet average. The pooled non-linearity is defined as:
where Vpn is the pooled non-linearity, and σnon-linearity,i is the non-linearity of the ith tool. In each of the above-described formulations, N is a number of tools in fleet 12.
Returning to step S2 in
Continuing with the methodology, a first step S5 includes comparator 140 determining which at least one of the following TMP parameters is more significant: i) a square of an average offset between the MSUT measurement of the artifact and the benchmark measurement of the artifact by the BMS, ii) a square of the non-linearity (σnon-linearity), iii) a precision estimate (σ2MSUT) of the MSUT measurement, i.e., a square of the MSUT precision, and iv) a square of the SISoffset. As used herein, “more significant” indicates which value or values is/are the largest, or, if the inverses of the values are used, which is/are the smallest. The number of root cause issues selected can be user selected. Although a separate comparator 140 has been illustrated, it should be recognized that functioning may be shared with comparator 132.
Next, in steps S6-S9, determinator 142 determines a root cause issue of the matching problem includes: i) an offset issue, in step S6, in the case that the square of an average offset is more significant, ii) a non-linearity issue, in step S7, in the case that the square of the non-linearity (σnon-linearity) is more significant, iii) a stability issue, in step S8, in the case that the precision estimate (σ2MSUT) is more significant, and iv) an SISoffset issue, in step S9, in the case that the square of the SISoffset is more significant.
Each root cause issue of a matching problem delineated above has a corresponding one or more MSUT characteristics that are known root causes of the root cause issue. At step S10, these root cause issues are presented to a user, e.g., via I/O device 120, for evaluation by a user, so that the user can manually determine the root cause by evaluating one or more MSUT characteristics that are known root causes of the root cause issue. When the root causes are determined by the user, they can lead to modifications to attempt to correct the matching problem depending on the type of MSUT. Examples of root causes of a measurement system problem are, for example, a calibration, a hardware module, equipment setup, and an operating environment.
The above-described process is executed for the entire set of artifacts. In the end, when all artifacts have been run, a summarization of the matching contributor magnitudes and the FMP is available. An evaluation of trends can then be completed. For example, some matching issues may be artifact and feature specific and some matching issues may be common across the fleet. By summarizing FMP and the magnitudes of each matching contributor for all artifacts, one can easily identify these artifact specific or common fleet issues and drive the proper resolution.
IV. Root Cause Determination
Turning to
Turning to
Turning to
In a first step S101, root cause analyzer 152 determines whether the subject problem exists by evaluating at least one of a tool matching precision (TMP) and a fleet matching precision (FMP). As shown in
In sub-step S101A, TMP is calculated by root cause analyzer 152 using TMP calculator 130. As described above, TMP is indicative of an ability of MSUT 10 (
where TMP is the tool matching precision, βMSUT is a slope of a Mandel regression analysis comparing the MSUT and a benchmarking measurement system (BMS), σMSUT is a precision of the MSUT, offset is an average offset between an MSUT measurement of an artifact and a benchmark measurement of the artifact by the BMS, offsetBMS is a BMS average offset between the benchmark measurement of the artifact and a fleet average measurement of the artifact, SISoffset is a slope-induced shift offset (SISOffset) between the MSUT measurement of the artifact and the benchmark measurement of the artifact by the BMS, SISoffsetBMS is a BMS slope-induced offset between the benchmark measurement of the artifact and the fleet average measurement of the artifact, and σnon-linearity is the non-linearity of the Mandel regression analysis. As above, the BMS is: a) the fleet, in which case the benchmark measurement is a fleet average measurement, or b) a single trusted measurement system.
Returning to step S101, in sub-step S101B, root cause analyzer 152 determines that a subject problem exists in the case that the TMP does not meet a matching threshold. In the case that the TMP does not meet the matching threshold, i.e., NO at sub-step S101B, the subject problem is a matching problem between the MSUT and the fleet of at least one other measurement system. Here, processing proceeds to step S102, which includes PS creator 150 creating a subject problem profile including characteristics of the subject problem. In this situation, i.e., NO at sub-step S101B, PS creator 150 creates the subject problem profile based on the MSUT and the tool matching precision because the subject problem is related to the MSUT not matching the fleet. The subject problem profile may include characteristics of the MSUT, the TMP parameters and/or other characteristics. For example, if TMP parameters are used, there are four TMP parameters: offset, SISoffset, σnon-linearity, and σMSUT. Each TMP parameter, in one embodiment, may have two settings, e.g., low or high. Other embodiments may use more or less settings. Accordingly, from combinatorial analysis, this yields potentially 70 different profiles.
An example subject problem in the metrology technology of critical dimension scanning electron microscopes (CDSEM) is a mismatch of magnification between the MSUT and the BMS. In this case, the subject problem profile of TMP parameters is likely to exhibit the following characteristics: offset [high], SISoffset [high], σnon-linearity, [low], and σMSUT [low, or good]. Another example comes from the metrology technology of a semiconductor manufacturer using an optical technology to measure the effectiveness of overlaying one lithographic layer to another. In this case, an optical overlay tool with optical misalignment would exhibit a high σnon-linearity, measuring a set of artifacts with a scanner focus as a process variable. The resulting subject problem profile of TMP parameters may exhibit the following characteristics: offset [low], SISoffset [low], σnon-linearity, [high], and σMSUT [low]. A third example may include the use of a scanning force microscope for measuring depths in semiconductor manufacturing. Tip-to-tip radius differences during measurement of a set of test artifacts could result in a subject problem profile of TMP parameters exhibiting the following characteristics: offset [high], SISoffset [low], σnon-linearity, [high], and σMSUT [low].
In a next step S103, root cause analyzer 152 attempts to determine the root cause of the subject problem by using comparator 154 to compare the subject problem profile to the stored problem profiles of the plurality of root cause signatures, i.e., in root cause signature database 160. The comparison can be performed in any now known or later developed fashion. For example, comparison of subject problem profile characteristics, as described above, with those of stored problem profiles. Where a match is determined by comparator 154, i.e., MATCH FOUND at step S103, between the subject problem profile and at least one of the stored problem profiles of the plurality of root cause signatures, the root cause can be drawn from the root cause signature. The degree of matching necessary between stored problem profiles and the subject problem profile can be user-defined. In some cases, subject problem profiles may correspond to multiple stored problem profiles. In other words, there can be multiple root causes for the same subject problem profile. In the case of multiple matches, several root causes will need to be investigated.
Next, if there is a match, then at step S104, the root cause can be addressed, i.e., corrected, after which processing may return to sub-step S101B to ensure the MSUT matching problem is corrected. Alternatively, where a match is not determined by comparator 154, i.e., NO MATCH FOUND at step S103, between the subject problem profile and at least one of the stored problem profiles of the plurality of root cause signatures, the root cause is indeterminable. In this case, at step S105, a manual investigation can be carried out by a user to manually determine the root cause. In addition, the MSUT can be removed from the fleet until the problem is corrected. If the root cause is found, the MSUT can be added to the fleet, and a new root cause signature can be added to root cause signature database 160 in any now known or later developed manner, e.g., via I/O 116 and a graphical user interface.
Returning to step S101, in sub-step S101C, in the alternative situation that the TMP meets the matching threshold, i.e., YES at sub-step S101B, the MSUT may be released by a user for use in the fleet. That is, the MSUT is found to match the fleet.
In one embodiment, if this is all the user wishes to determine, then processing may cease. Optionally, processing may proceed to sub-step S101D. At sub-step S101D, FMP is calculated by root cause analyzer 152 using FMP calculator 134. As described above, FMP is indicative of a precision of a fleet including the-MSUT. As also described above, in one embodiment, FMP can be calculated as:
FMP=3√{square root over (Vpp+Vpo+Vps+Vpn)},
where Vpp is a pooled corrected precision of all tools in the fleet, Vpo is a pooled average offset of all tools in the fleet, Vps is a pooled average slope-induced offset of all tools in the fleet and Vpn is a pooled non-linearity of all tools in the fleet. Here, the pooled corrected precision is defined as:
where Vpp is the pooled corrected precision, σi,MSUT is a single tool precision of the ith tool, βi,MSUT is the slope of the linear regression analysis of the ith tool. In addition, the pooled average offset is defined as:
where Vpo is the pooled average offset, offseti is the average offset of the ith tool to the BMS and offsetBMS is the average offset of the BMS to a fleet average. Further, the pooled average sloped-induced offset is defined as:
where Vps is the pooled average sloped-induced offset, SISoffseti is the sloped-induced offset of the ith tool to the BMS, and SISoffsetBMS is the sloped-induced offset to the fleet average. Also, the pooled non-linearity is defined as:
where Vpn is the pooled non-linearity, and σnon-linearity,i is the non-linearity of the ith tool; and
wherein N in each expression is a number of tools in the fleet.
Returning to step S101, in the next sub-step S101E, root cause analyzer 152 determines that a subject problem exists in the case that the fleet measurement precision does not meet a precision threshold. It should be recognized that the precision threshold of sub-step S101E is established after having acquired some experience with the fleet. At this point, or a later one chosen at the discretion of the user of this methodology, the calculated FMP becomes the specification for future applications of the methodology. After establishing an FMP precision threshold, the determination at sub-step S101E indicates that a new or returning tool to the fleet is tested for FMP and if the recalculated FMP fails this test, this MSUT's performance is further analyzed in step S106.
In the case that the FMP does not meet the precision threshold, i.e., NO at sub-step S101E, the subject problem is a fleet measurement precision problem. Here, processing proceeds to step S106, which includes PS creator 150 creating a subject problem profile including characteristics of the subject problem. In this situation, i.e., NO at sub-step S101E, PS creator 150 creates the subject problem profile based on the MSUT and the fleet measurement precision. Subject problem profile may include characteristics of the MSUT, the FMP value and other characteristics. For example, similar to the examples given for TMP analysis for a CDSEM in a semiconductor manufacturing setting with a magnification problem, a subject problem profile may include FMP parameters such as: pooled corrected precision of all tools in the fleet Vpp [low], pooled average offset of all tools in the fleet Vpo [high], pooled average slope-induced offset of all tools in the fleet Vps [high], and pooled non-linearity of all tools in the fleet Vpn [low].
Next, processing proceeds to steps S103-105, which are substantially identical as those described above. One difference between processing of steps S103-105 in terms of the subject problem being a tool matching problem (step S102) and a fleet matching problem (step S106) is that the root causes returned are typically different. Accordingly, the corrections carried out by a user at step S104 are typically different. Here, after step S104, processing can return to sub-step S101D to ensure that the fleet precision problem has been corrected, or to sub-step S101B to ensure the MSUT matching problem has not been created by the fleet matching corrections. The processing route can be user-defined. Another difference from the tool matching problem processing is the nature of a new root cause signature created at step S105, where a root cause is indeterminable at step S103. That is, the new root cause signature will have details of a now known fleet matching problem rather than a tool matching problem.
Returning to step S101, in the case that the FMP meets the precision threshold, i.e., YES at sub-step S101E, system 100 indicates that there is no problem with the MSUT and fleet for the given artifact, and processing stops.
The processing of the
V. Conclusion
It is understood that the order of the above-described steps is only illustrative. To this extent, one or more steps can be performed in parallel, in a different order, at a remote time, etc. Further, one or more of the steps may not be performed in various embodiments of the invention.
It is understood that the present invention can be realized in hardware, software, a propagated signal, or any combination thereof, and may be compartmentalized other than as shown. Any kind of computer/server system(s)—or other apparatus adapted for carrying out the methods described herein—is suitable. A typical combination of hardware and software could be a general purpose computer system with a computer program that, when loaded and executed, carries out the respective methods described herein. Alternatively, a specific use computer, containing specialized hardware for carrying out one or more of the functional tasks of the invention could be utilized. The present invention also can be embedded in a computer program product or a propagated signal, which comprises all the respective features enabling the implementation of the methods described herein, and which—when loaded in a computer system—is able to carry out these methods. Computer program, propagated signal, software program, program, or software, in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form. Furthermore, it should be appreciated that the teachings of the present invention could be offered as a business method on a subscription or fee basis. For example, the system and/or computer could be created, maintained, supported and/or deployed by a service provider that offers the functions described herein for customers. That is, a service provider could offer the functionality described above.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims.
This application is a continuation-in-part of application Ser. No. 11/065,740, filed Feb. 25, 2005, now U.S. Pat. No. 7,340,374, and also claims benefit of U.S. Provisional Application No. 60/656,162, filed Feb. 25, 2005, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5526293 | Mozumder et al. | Jun 1996 | A |
6432760 | Kothandaraman et al. | Aug 2002 | B1 |
6587744 | Stoddard et al. | Jul 2003 | B1 |
6604013 | Hamidieh et al. | Aug 2003 | B1 |
6859754 | Shieh | Feb 2005 | B2 |
6885977 | Gavra et al. | Apr 2005 | B2 |
6965895 | Smith et al. | Nov 2005 | B2 |
7062411 | Hopkins et al. | Jun 2006 | B2 |
7065423 | Prager et al. | Jun 2006 | B2 |
7127358 | Yue et al. | Oct 2006 | B2 |
7212950 | Poolla | May 2007 | B2 |
Number | Date | Country |
---|---|---|
WO 2004059247 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060195295 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60656162 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11065740 | Feb 2005 | US |
Child | 11245865 | US |