Determining state of charge for battery powered devices including battery powered surface treatment apparatuses

Information

  • Patent Grant
  • 12339324
  • Patent Number
    12,339,324
  • Date Filed
    Friday, April 22, 2022
    3 years ago
  • Date Issued
    Tuesday, June 24, 2025
    4 months ago
Abstract
A surface treatment apparatus may include a power source having one or more batteries and an apparatus controller configured to estimate a state of charge of the one or more batteries based, at least in part, on an operational mode of the surface treatment apparatus.
Description
TECHNICAL FIELD

The present disclosure generally relates to battery powered devices and more specifically to a state of charge for battery powered surface treatment apparatuses (e.g., vacuum cleaners).


BACKGROUND INFORMATION

Surface treatment apparatuses can be configured to clean one or more surfaces (e.g., a floor). Surface treatment apparatuses may include, for example, a vacuum cleaner, a mop, a powered broom, and/or any other surface treatment apparatus. Surface treatment apparatuses may include one or more powered components (e.g., one or more suction motor(s), light(s), agitator motor(s), and/or any other electrical component). The one or more powered components may be powered by, for example, electrical mains and/or one or more batteries. When one or more batteries are used as a power source for the one or more powered components, the surface treatment apparatus may be configured to display a state of charge of the one or more batteries. The state of charge may be indicative of a remaining time left in which the one or more batteries are capable of providing sufficient electrical energy to power one or more powered components. Accuracy of the state of charge determination may be detrimentally influenced by large current draws generated by one or more powered components (e.g., generated by one or more motors).





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:



FIG. 1 is a schematic example of a surface treatment apparatus, consistent with embodiments of the present disclosure.



FIG. 2 is a schematic example of a controller, consistent with embodiments of the present disclosure.



FIG. 3 is a flow chart of an example of a method for estimating a state of charge of a power source, consistent with embodiments of the present disclosure.



FIG. 4 is a flow chart of an example of a method for determining a discharge curve or a discharge table that is associated with a respective operational mode in order to determine a state of charge of a power source, consistent with embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure is generally directed to a surface treatment apparatus (e.g., a vacuum cleaner). One example of the surface treatment apparatus may include a power source having one or more batteries and a controller. The controller is configured to estimate a state charge of the one or more batteries.



FIG. 1 shows a schematic example of a surface treatment apparatus 100. As shown, the surface treatment apparatus 100 includes a surface cleaning head 102, an upright section 104 moveably coupled to the surface cleaning head 102, a cleaning assembly 106 fluidly coupled to the surface cleaning head 102, and a power source 108 electrically coupled to one or more of the cleaning assembly 106 and/or the surface cleaning head 102. The surface cleaning head 102 includes an agitator 110 (e.g., a brush roll) and an agitator motor 112 configured to cause the agitator 110 to rotate. Rotation of the agitator 110 may cause debris on a surface 114 (e.g., a floor) to be disturbed.


The cleaning assembly 106 includes a dust cup 116 and a suction motor 118. The suction motor 118 is configured to cause air to flow into the surface cleaning head 102 and into the dust cup 116. In other words, the suction motor 118 is fluidly coupled to the dust cup 116 and the surface cleaning head 102. At least a portion of any debris disturbed by the rotation of the agitator 110 may become entrained within air flowing through the surface cleaning head 102. At least a portion of the entrained debris may be deposited into the dust cup 116. As such, the suction motor 118 may generally be described as being fluidly coupled to the dust cup 116 and the surface cleaning head 102.


The power source 108 is electrically coupled to one or more of the suction motor 118 and/or the agitator motor 112. In some instances, the power source 108 may be removably coupled to the upright section 104. The power source 108 may include one or more batteries 120 and a battery controller 122. The battery controller 122 may be configured to monitor one or more battery states (e.g., voltage, current draw, battery temperature, and/or any other battery state). The one or more batteries 120 may include rechargeable lithium ion batteries.


As shown, the surface treatment apparatus 100 may further include an apparatus controller 124, a user interface 126, and one or more motor sensors 128. The user interface 126 may be configured to display information relating to the surface treatment apparatus 100 (e.g., using one or more of light emitting diodes, liquid crystal displays, and/or any other form of displaying information) and/or to receive one or more user inputs (e.g., using one or more toggles or buttons). The one or more motor sensors 128 are each configured to monitor one or more motor states (e.g., current draw, voltage, motor temperature, and/or any other motor state) of a corresponding one or more of the suction motor 118 or the agitator motor 112. For example, the one or more motor sensors 128 may include a current sensor that is configured to measure a current draw of the agitator motor 112.


The apparatus controller 124 may be communicatively coupled (e.g., through a wireless or wired connection) to the battery controller 122, the user interface 126, and/or the one or more motor sensors 128. For example, the battery controller 122 may be configured to communicate one or more battery states (e.g., a state of charge of the one or more batteries 120 of the power source 108) to the apparatus controller 124 and each of the one or more motor sensors 128 may be configured to communicate a respective motor state to the apparatus controller 124. In this example, the apparatus controller 124 may be configured to cause the user interface 126 to display information that is based, at least in part, on the one or more battery states (e.g., display a visual representation corresponding to a state of charge of the one or more batteries 120 of the power supply 108) and/or the one or more motor states.


As shown, the apparatus controller 124 and the battery controller 122 may be communicatively coupled using apparatus communication circuitry 130 and power source communication circuitry 132. The apparatus communication circuitry 130 may be configured to wirelessly communicate with the power source communication circuitry 132. The apparatus communication circuitry 130 may include at least one of an apparatus transmitter 134 and/or an apparatus receiver 136 and the power source communication circuitry 132 may include at least one of a power source transmitter 138 and/or a power source receiver 140. As such, the apparatus communication circuitry 130 and the power source communication circuitry 132 may be configured for unidirectional or bidirectional communication. The transmitters 134 and 138 and the receivers 136 and 140 may be optical (e.g., infrared) transmitters and receivers. As such, the wireless connection may generally be described as being established using at least one infrared receiver and at least one infrared transmitter. Use of optical transmitters 134 and 138 and optical receivers 136 and 140 as opposed to, for example, electrical communication may prevent and/or other mitigate the effects of electrical interference on the communications, may provide galvanic isolation for communications, and may improve communication reliability (e.g., when the power source 108 is removably coupled to the upright section 104).


Alternatively, the battery controller 122 may not be communicatively coupled to the apparatus controller 124. In these instances, the apparatus controller 124 can be configured to estimate a state of charge of the one or more batteries of the power supply 108. For example, a state of charge of the batteries 120 may be estimated based, at least in part, on one or more of a current draw of the agitator motor 112, a measured voltage at the apparatus controller 124, and/or a calculated voltage drop resulting from electrical wiring/components that electrically couple the apparatus controller 124 with the agitator motor 112. The estimated state of charge may also reflect a power draw of other components (e.g., the suction motor 118). In some instances, the estimated state of charge may be based, at least in part, on an operational mode of the surface treatment apparatus 100.



FIG. 2 shows a schematic example of a controller 200, which may be an example of the apparatus controller 124 and/or the battery controller 122 of FIG. 1. As shown, the controller 200 includes one or more processors 202 communicatively coupled to one or more memories 204 (e.g., one or more non-transitory memories). At least one of the one or more memories 204 are configured to store one or more instructions configured to be executed on at least one of the one or more processors 202. As also shown, the controller 200 may further include a bus 206 configured to communicatively couple to one or more components of the surface treatment apparatus 100 (e.g., the one or more motor sensors 128, the apparatus communication circuitry 130, the power source communication circuitry 132, the user interface 126, and/or any other component).



FIG. 3 shows a flow chart of a method 300 for estimating a state of charge of one or more batteries (e.g., the power source 108) of a surface treatment apparatus (e.g., the surface treatment apparatus 100). The method 300 may be embodied as one or more instructions stored in one or more memories (e.g., the one or more memories 204 of FIG. 2), wherein the one or more instructions are configured to be executed on one or more processors (e.g., the one or more processors 202 of FIG. 2). For example, the controller 200 may be configured to cause one or more steps of the method 300 to be carried out. Additionally, or alternatively, one or more steps of the method 300 may be carried out in any combination of software, firmware, or circuitry (e.g., an application-specific integrated circuit).


The method 300 may include a step 302. The step 302 includes identifying an estimated resistance between the apparatus controller 124 and the agitator motor 112 and the power source 108. The estimated resistance may be a fixed value that is stored in the apparatus controller 124 (e.g., during manufacture). Identifying the estimated resistance may include, for example, referencing the stored value (e.g., in a look-up table) and/or associating the estimated resistance with a constant (e.g., in an equation). The estimated resistance is based, at least in part, on the properties of conductors (e.g., material, length, gauge, and/or any other property) electrically coupling the apparatus controller 124 to the agitator motor 112 and the power source 108. The estimated resistance may not account for secondary effects on resistance (e.g., as a result of changes in temperature).


The method 300 may include a step 304. The step 304 includes determining a current draw of the agitator motor 112. For example, the one or more motor sensors 128 may be configured to measure a current draw of the agitator motor 112. An estimated voltage drop may be determined based, at least in part, on the measured current draw of the agitator motor 112. For example, an estimated voltage drop over the conductors electrically coupling the apparatus controller 124 to the agitator motor 112 and the power source 108 may be determined based, at least in part, on the measured current draw of the agitator motor 112 and the estimated resistance.


The method 300 may include a step 306. The step 306 may include measuring a voltage at the apparatus controller 124 using the apparatus controller 124. When the voltage is measured at the apparatus controller 124, the measured voltage incorporates the voltage drop caused by the resistance of the conductors electrically coupling the apparatus controller 124 to the agitator motor 112 and the power source 108. As such, the estimated voltage drop over the conductors may be added to the measured voltage such that an estimated power source voltage (e.g., battery voltage) can be determined. The estimated battery voltage may generally be described as corresponding an estimation of the voltage of the battery.


The method 300 may include a step 308. The step 308 includes estimating a state of charge for the one or more batteries 120. The state of charge may be estimated by comparing the estimated battery voltage to a discharge curve or table. For example, the estimated battery voltage may be compared to a table to determine an estimated state of charge. The discharge curve or table may incorporate the effects of other power consuming components on the rate of discharge. For example, a discharge table may account for the discharge caused by operation of the suction motor 118. For a vacuum cleaner having multiple operational modes (e.g., different suction motor speeds, agitator speeds, and/or any other mode) there may be a plurality of discharge curves or tables, wherein each curve or table corresponds to a respective mode. Use of multiple curves or tables may allow for different power consumption rates to be accounted for. As such, the curve or table referenced may be selected based, at least in part, on the current mode of the vacuum cleaner. Alternatively, the vacuum cleaner may use a single discharge curve or table that approximates the power consumption rates of each mode (e.g., an average of the discharge rates of each mode).


The method 300 may include a step 310. The step 310 may include causing a visual representation corresponding to the estimated state of charge to be displayed to a user (e.g., on the user interface 126).



FIG. 4 shows a flow chart of a method 400 for determining a discharge curve or a discharge table that is associated with a respective operational mode in order to determine a state of charge of the power source 108, which may be an example of the step 308 of the method 300 of FIG. 3. The method 400 may be embodied as one or more instructions stored in one or more memories (e.g., the one or more memories 204 of FIG. 2), wherein the one or more instructions are configured to be executed on one or more processors (e.g., the one or more processors 202 of FIG. 2). For example, the controller 200 may be configured to cause one or more steps of the method 400 to be carried out. Additionally, or alternatively, one or more steps of the method 400 may be carried out in any combination of software, firmware, or circuitry (e.g., an application-specific integrated circuit).


The method 400 may include a step 402. The step 402 may include determining an operational mode (e.g., a hard floor mode, a carpet mode, an energy saver mode, a boost mode, or any other mode) of the surface cleaning apparatus 100. Each operational mode may cause, for example, one or more of the agitator motor 112 and/or the suction motor 118 to operate according to different rotational speeds (e.g., resulting in different current draws). For example, the user interface 126 may be configured to receive one or more inputs from a user regarding a desired operational mode and the apparatus controller 124 may be configured to cause the surface treatment apparatus 100 to operate (e.g., one or more of the motors 112 and 118) according to the operational mode.


The method 400 may include a step 404. The step 404 may include identifying a discharge curve or table associated with the operational mode.


The method may include a step 406. The step 406 may include estimating a state of charge for the one or more batteries 120 based, at least in part, on the identified discharge curve.


An example of a surface treatment apparatus, consistent with the present disclosure, may include a power source having one or more batteries and a battery controller and an apparatus controller communicatively coupled to the battery controller through a wireless connection.


In some instances, the wireless connection may be established using at least one infrared receiver and at least one infrared transmitter. In some instances, the wireless connection may be bidirectional. In some instances, the battery controller may be configured to communicate a state of charge of the one or more batteries to the apparatus controller. In some instances, the surface treatment apparatus may further include a user interface, the user interface being configured to display a visual representation corresponding to the state of charge.


Another example of a surface treatment apparatus, consistent with the present disclosure, may include a power source having one or more batteries and an apparatus controller configured to estimate a state of charge of the one or more batteries based, at least in part, on an operational mode of the surface treatment apparatus.


In some instances, determining the state of charge may include determining a discharge curve or a discharge table associated with the operational mode. In some instances, the surface treatment apparatus may further include a user interface, the user interface being configured to display a visual representation corresponding to the state of charge. In some instances, the surface treatment apparatus may further include a current sensor configured to measure a current draw of an agitator motor of the surface treatment apparatus. In some instances, an estimated voltage drop may be determined based, at least in part, on the current draw of the agitator motor. In some instances, the apparatus controller may be configured to measure a voltage at the apparatus controller. In some instances, the estimated voltage drop may be added to the voltage measured at the apparatus controller to obtain an estimated power source voltage. In some instances, the estimated power source voltage may be compared to a discharge curve or a discharge table associated with the operational mode.


Another example of a surface treatment apparatus, consistent with the present disclosure, may include a surface cleaning head having an agitator and an agitator motor configured to cause the agitator to rotate, a cleaning assembly including a suction motor and a dust cup, the suction motor fluidly coupled to the dust cup and the surface cleaning head, a power source electrically coupled to the suction motor and the agitator motor, the power source having one or more batteries, and an apparatus controller configured to estimate a state of charge of the one or more batteries based, at least in part, on a current draw of the agitator motor.


In some instances, the surface treatment apparatus may further include a user interface, the user interface being configured to display a visual representation corresponding to the state of charge. In some instances, an estimated voltage drop may be determined based, at least in part, on the current draw of the agitator motor. In some instances, the apparatus controller may be configured to measure a voltage at the apparatus controller. In some instances, the estimated voltage drop may be added to the voltage measured at the apparatus controller to obtain an estimated power source voltage. In some instances, the estimated power source voltage may be compared to a discharge curve or a discharge table. In some instances, the surface treatment apparatus may further include a current sensor configured to measure the current draw corresponding to the agitator motor.


While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.

Claims
  • 1. A surface treatment apparatus comprising: a surface cleaning head having an agitator and an agitator motor configured to cause the agitator to rotate;an upright section movably coupled to the surface cleaning head;a cleaning assembly including a dust cup and a suction motor;a power source electrically coupled to the suction motor and the agitator motor, the power source having one or more batteries and a battery controller; andan apparatus controller communicatively coupled to the battery controller through a wireless connection, the wireless connection being established via: apparatus communication circuitry coupled to the upright section, the apparatus communication circuitry including an apparatus transmitter and an apparatus receiver; andpower source communication circuitry coupled to the power source, the power source communication circuitry including a power source transmitter configured to optically couple with the apparatus receiver and a power source receiver configured to optically couple with the apparatus transmitter.
  • 2. The surface treatment apparatus of claim 1, wherein the apparatus transmitter and the power source transmitter are configured to generate an infrared signal.
  • 3. The surface treatment apparatus of claim 2, wherein the wireless connection is bidirectional.
  • 4. The surface treatment apparatus of claim 1, wherein the battery controller is configured to communicate a state of charge of the one or more batteries to the apparatus controller.
  • 5. The surface treatment apparatus of claim 4 further comprising a user interface, the user interface having at least one of a light emitting diode or a liquid crystal display, the user interface being configured to display a visual representation corresponding to the state of charge using at least one of the light emitting diode or the liquid crystal display.
  • 6. A surface treatment apparatus comprising: a surface cleaning head having an agitator and an agitator motor configured to cause the agitator to rotate;an upright section movably coupled to the surface cleaning head;a cleaning assembly including a dust cup and a suction motor;a power source having one or more batteries, the power source being electrically coupled to the agitator motor and the suction motor; andan apparatus controller configured to estimate a state of charge of the one or more batteries based, at least in part, on a discharge curve or table associated with an operational mode of the surface treatment apparatus, wherein the apparatus controller is configured to: measure a voltage at the apparatus controller;add a voltage drop to the voltage to obtain an estimated power source voltage; andcompare the estimated power source voltage to the discharge curve or table associated with the operational mode of the surface treatment apparatus to obtain the estimated state of charge of the one or more batteries.
  • 7. The surface treatment apparatus of claim 6 further comprising a user interface, the user interface being configured to display a visual representation corresponding to the estimated state of charge.
  • 8. The surface treatment apparatus of claim 6, wherein the estimated voltage drop is determined based, at least in part, on the current draw of the agitator motor.
  • 9. A surface treatment apparatus comprising: a surface cleaning head having an agitator and an agitator motor configured to cause the agitator to rotate;a cleaning assembly including a suction motor and a dust cup, the suction motor fluidly coupled to the dust cup and the surface cleaning head, the agitator motor and the suction motor selectively operable in a first operational mode or a second operational mode, wherein a rotational speed of at least one of the agitator motor or the suction motor is different between the first and second operational modes;a power source electrically coupled to the suction motor and the agitator motor, the power source having one or more batteries; andan apparatus controller configured to estimate a state of charge of the one or more batteries, wherein the apparatus controller is configured to: determine whether the agitator motor and the suction motor are operating according to the first operational mode or the second operational mode;measure a voltage at the apparatus controller;add a voltage drop to the voltage to obtain an estimated power source voltage;when the agitator motor and the suction motor are operating according to the first operational mode, compare the estimated power source voltage to a first discharge curve or table to obtain the estimated state of charge of the one or more batteries; andwhen the agitator motor and the suction motor are operating according to the second operational mode, compare the estimated power source voltage to a second discharge curve or table to obtain the estimated state of charge of the one or more batteries.
  • 10. The surface treatment apparatus of claim 9 further comprising a user interface, the user interface being configured to display a visual representation corresponding to the estimated state of charge.
  • 11. The surface treatment apparatus of claim 10, wherein the voltage drop is determined based, at least in part, on the current draw of the agitator motor.
  • 12. The surface treatment apparatus of claim 9 further comprising a current sensor configured to measure the current draw corresponding to the agitator motor.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application Ser. No. 63/178,924, filed on Apr. 23, 2021, entitled Determining State of Charge for Battery Powered Devices including Battery Powered Surface Treatment Apparatuses, which is fully incorporated herein by reference.

US Referenced Citations (159)
Number Name Date Kind
4745654 Yamamoto et al. May 1988 A
5014388 Schiazza et al. May 1991 A
5589288 Coulson et al. Dec 1996 A
5771448 Cooper Jun 1998 A
5829090 Melito et al. Nov 1998 A
6360399 Vandenbelt et al. Mar 2002 B1
6456035 Crisp et al. Sep 2002 B1
6457205 Conrad Oct 2002 B1
7091697 Mader et al. Aug 2006 B2
7137169 Murphy et al. Nov 2006 B2
7356873 Nielsen Apr 2008 B2
7665180 Haan Feb 2010 B2
9504364 Reed et al. Nov 2016 B2
10568481 Reed et al. Feb 2020 B2
10870360 Campbell Dec 2020 B2
11458771 Thorne Oct 2022 B2
11484169 Howard Nov 2022 B2
11497366 Xu Nov 2022 B2
11998150 Innes Jun 2024 B2
20030201754 Conrad Oct 2003 A1
20040134026 Brinkhoff et al. Jul 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050015918 Rukavina et al. Jan 2005 A1
20050055795 Zeiler Mar 2005 A1
20050155177 Baer et al. Jul 2005 A1
20060137133 Yik et al. Jun 2006 A1
20060164032 Johnson et al. Jul 2006 A1
20070226946 Best Oct 2007 A1
20080040883 Beskow et al. Feb 2008 A1
20080047092 Schnittman et al. Feb 2008 A1
20080134460 Conrad Jun 2008 A1
20080148512 Beskow et al. Jun 2008 A1
20120260944 Martins, Jr. Oct 2012 A1
20130058635 Vrdoljak Mar 2013 A1
20130152337 Thorne Jun 2013 A1
20140150201 McGee Jun 2014 A1
20140366286 Zheng Dec 2014 A1
20150013102 Bilger Jan 2015 A1
20150040340 Bilger et al. Feb 2015 A1
20150135474 Gidwell May 2015 A1
20150297054 Weeks et al. Oct 2015 A1
20150351596 Thorne Dec 2015 A1
20160128530 Thorne et al. May 2016 A1
20160174793 Burke et al. Jun 2016 A1
20160220080 Thorne Aug 2016 A1
20160220081 Xu et al. Aug 2016 A1
20160220082 Thorne et al. Aug 2016 A1
20160324388 Vrdoljak et al. Nov 2016 A1
20160374533 Innes et al. Dec 2016 A1
20170042319 Conrad et al. Feb 2017 A1
20170112343 Innes et al. Apr 2017 A1
20170127896 Carter et al. May 2017 A1
20170135541 Kwak May 2017 A1
20170144562 Thomas May 2017 A1
20170144810 Birdsell May 2017 A1
20170215667 Thorne et al. Aug 2017 A1
20170245711 Son et al. Aug 2017 A1
20170347848 Carter et al. Dec 2017 A1
20180035854 Thorne Feb 2018 A1
20180064301 Cottrell et al. Mar 2018 A1
20180068815 Cottrell Mar 2018 A1
20180070785 Udy et al. Mar 2018 A1
20180210452 Shin et al. Jul 2018 A1
20180255991 Der Marderosian et al. Sep 2018 A1
20180296046 Thorne et al. Oct 2018 A1
20180306432 Ognjen et al. Oct 2018 A1
20180325252 Hopke et al. Nov 2018 A1
20180338654 Kelsey Nov 2018 A1
20180338656 Carter et al. Nov 2018 A1
20190038098 Thorne et al. Feb 2019 A1
20190059668 Thorne et al. Feb 2019 A1
20190069740 Thorne et al. Mar 2019 A1
20190069744 Liggett et al. Mar 2019 A1
20190090701 Tonderys et al. Mar 2019 A1
20190090705 Thorne et al. Mar 2019 A1
20190191947 Freese et al. Jun 2019 A1
20190193120 Brown et al. Jun 2019 A1
20190246853 Sardar et al. Aug 2019 A1
20190274500 Thorne et al. Sep 2019 A1
20190274501 Antonisami et al. Sep 2019 A1
20190302793 Leech et al. Oct 2019 A1
20190320865 Brown et al. Oct 2019 A1
20190320866 Thorne et al. Oct 2019 A1
20190335968 Harting et al. Nov 2019 A1
20190343349 Clare et al. Nov 2019 A1
20190357740 Thorne et al. Nov 2019 A1
20200000298 Brown et al. Jan 2020 A1
20200022543 Gill et al. Jan 2020 A1
20200022544 Gill et al. Jan 2020 A1
20200022553 Gill et al. Jan 2020 A1
20200037833 Niedzwecki et al. Feb 2020 A1
20200037843 Fiebig et al. Feb 2020 A1
20200046184 Freese et al. Feb 2020 A1
20200077855 Brown et al. Mar 2020 A1
20200085267 Thorne et al. Mar 2020 A1
20200085269 Thorne Mar 2020 A1
20200093342 Jeong Mar 2020 A1
20200121144 Gacin et al. Apr 2020 A1
20200121147 Izawa et al. Apr 2020 A1
20200121148 Hoffman et al. Apr 2020 A1
20200138260 Sutter et al. May 2020 A1
20200166949 Leech et al. May 2020 A1
20200170470 Liggett et al. Jun 2020 A1
20200201348 Leech Jun 2020 A1
20200205631 Brown et al. Jul 2020 A1
20200205634 Sutter et al. Jul 2020 A1
20200237171 Xu et al. Jul 2020 A1
20200241914 Barker et al. Jul 2020 A1
20200251914 Arnold Aug 2020 A1
20200254154 Reasoner Aug 2020 A1
20200288929 Brunner Sep 2020 A1
20200288930 Wells Sep 2020 A1
20200297172 Tonderys et al. Sep 2020 A1
20200301430 Irkliy et al. Sep 2020 A1
20200315418 Howard et al. Oct 2020 A1
20200345190 Buehler Nov 2020 A1
20200345196 Innes et al. Nov 2020 A1
20200367711 Thorne et al. Nov 2020 A1
20200371526 Kamada Nov 2020 A1
20200383547 Sutter et al. Dec 2020 A1
20210007569 Howard et al. Jan 2021 A1
20210022574 Harting Jan 2021 A1
20210030227 Mathieu et al. Feb 2021 A1
20210038032 Brown Feb 2021 A1
20210059492 Taylor Mar 2021 A1
20210059495 Gill et al. Mar 2021 A1
20210085144 Woodrow et al. Mar 2021 A1
20210169289 Thorne et al. Jun 2021 A1
20210175772 Aini Jun 2021 A1
20210177223 Der Marderosian et al. Jun 2021 A1
20210186282 Mathieu et al. Jun 2021 A1
20210204684 Heman-Ackah et al. Jul 2021 A1
20210254615 Burbank Aug 2021 A1
20210307581 Thorne et al. Oct 2021 A1
20210315428 Udy et al. Oct 2021 A1
20210386261 Woodrow et al. Dec 2021 A1
20210386262 Uchendu et al. Dec 2021 A1
20220031131 McClay et al. Feb 2022 A1
20220031133 Der Marderosian et al. Feb 2022 A1
20220031134 Yang et al. Feb 2022 A1
20220061614 Yu et al. Mar 2022 A1
20220071459 Gacin et al. Mar 2022 A1
20220095864 Der Marderosian et al. Mar 2022 A1
20220125256 Lessard et al. Apr 2022 A1
20220187380 Bryan Jun 2022 A1
20220287521 Cottrell et al. Sep 2022 A1
20220322903 Lessard Oct 2022 A1
20220400922 McClay et al. Dec 2022 A1
20220408994 Hill Dec 2022 A1
20230043567 Copeland et al. Feb 2023 A1
20230070147 Harting et al. Mar 2023 A1
20230157495 Copeland et al. May 2023 A1
20230248192 Brown et al. Aug 2023 A1
20230320550 Teuscher et al. Oct 2023 A1
20230329502 Chirikjian Oct 2023 A1
20230355065 Finnegan Nov 2023 A1
20230414052 McClay et al. Dec 2023 A1
20240008699 Innes et al. Jan 2024 A1
20240415352 McClay et al. Dec 2024 A1
Foreign Referenced Citations (12)
Number Date Country
0401531 Dec 1990 EP
1075906 Feb 2001 EP
1498999 Jan 2005 EP
2405787 Mar 2005 GB
2420031 May 2006 GB
2001321306 Nov 2001 JP
2005052339 Mar 2005 JP
2006095210 Apr 2006 JP
2008206613 Sep 2008 JP
2004032696 Apr 2004 WO
WO-2004032696 Apr 2004 WO
2006084561 Aug 2006 WO
Non-Patent Literature Citations (4)
Entry
PCT Search Report and Written Opinion mailed Aug. 1, 2022, received in corresponding PCT Application No. PCT/US22/25863, 11 pages.
Dahmus et al. “Modular Product Structure” ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference Sep. 10-13, 2000, 11 pages.
“VersaPak System” Wayback Machine; www.Archive.org., Oct. 30, 1996, (http://blackanddecker.com:80/versapak/index.shtml;) 2 pages.
“Black and Decker Timeline,” http://www.blackanddecker100years.com/timeline/ (1994), 1 page.
Related Publications (1)
Number Date Country
20220342001 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
63178924 Apr 2021 US