The invention relates to a method for determining estimated states of a physical system by using an observer according to the preamble of claim 1 and to an observer according to the preamble of claim 3.
A method of the above type is disclosed in an article “Observer-based Resolver Conversion in Industrial Servo Systems”, PCIM 2001 Conference, Jun. 21, 2001, Nurnberg, Germany, by George Ellis and Dr. Jens Krah (http://www.motionvillage.com/welcome_center/articles/pcim2001rd_observer.pdf).
Observers are commonly used to determine internal states of a system based on measurements of other states. Observers are often applied in cases where the observed states cannot be measured because mounting a sensor is either impractical or too expensive. Observers can also be used simply to improve the quality of measured signals. For example, a resolver measures motor position, but in doing so, it adds considerable phase lag. An observer removes such phase lag. By supplying the observer with the same input data as supplied to the physical system the observer determines estimated values of particular entities or states of the system, which can be used to control the system by comparing at least one of the estimated values to a reference value.
The prior art method requires the use of an analogue to digital converter (ADC) for supplying a value of an entity of the system for comparison with an estimated value of a corresponding entity of the modeled system. Disadvantages of the use of ADC's with an observer are that they introduce a time delay, they allow limited conversion speed and limited resolution, and they increase complexity and costs of the system as a whole.
It is an object of the invention to solve the drawbacks of the prior art as described above.
The above object of the invention is achieved by providing a method as described in claim 1.
Accordingly, no ADC is needed, so that all disadvantages associated with the use of an ADC are removed.
The above object of the invention is achieved also by providing an observer as described in claim 3.
The invention will become more gradually apparent from the following exemplary description in connection with the accompanying drawing. In the drawing:
The diagram of the prior art arrangement shown in
The clock 8 supplies the mathematical model or modeled system 6 with clock pulses clk. With each clock pulse the model 6 is evaluated, that is, dependent on recent input values and previous evaluated values it determines values of entities of the model 6. The model 6 is designed such that certain entities Y1b, Y2b, Y3b, . . . of entities of the model 6 correspond to entities Y1, Y2, Y3, . . . of the physical system 2. The model 6 is supplied with that (those) input(s) IN, which is (are) supplied to the physical system 2 also. Therefore, with a properly designed model 6, with each evaluation of the model 6, said certain entities Y1b, Y2b, Y3b, . . . of the model 6 should have values which are identical to values of the corresponding entities Y1, Y2, Y3, of the physical system 2. Therefore also, the values of said certain entities Y1b, Y2b, Y3b, of the model are called estimated values and, for simplicity, are referred to in here as Y1b, Y2b, Y3b, . . . also.
The estimated values Y1b, Y2b, Y3b, . . . can be used for further processing, such as for control purposes, instead of using values of the entities Y1, Y2, Y3, . . . of the physical system, in which latter case measuring of the entities Y1, Y2, Y3, . . . of the physical system would be required. By doing so, the arrangement as a whole can be made physically relatively simple with reduced costs for installation and maintenance.
However, the model 6 may not be perfect, that is, operating exactly identical to the physical system 2. Therefore it is known to compensate for differences between real values and related estimated values as explained below.
At least one entity, for example Y1, of the physical system 2 is monitored. In fact, the monitored entity Y1 is measured and its measured value is converted into a digital value Y1d by ADC 16. The model 6 is designed to provide an estimated value (Y1b) of an entity of the model 6 which corresponds to said monitored entity Y1.
The estimated value Y1b is subtracted from the digital value Y1d by subtracting member 10 to provide an estimated difference or difference e1.
The multiplier 12 multiplies e1 by a vector k. Elements k1, k2, k3, . . . of vector k are associated with different entities Y1b, Y2b, Y2b, . . . , respectively, of the model. As a result, the multiplier 12 provides a vector c consisting of each element ki (i=1, 2, 3, . . . ) of vector k times the difference e1. The vector c is supplied to the model 6. The vector c is stored and refreshed with each event Trig1, which is generated with fixed intervals by the timer 14. It is only during the trigger events Trig1 that it is necessary to operate the ADC 16, the subtracting member 10 and the multiplier 12.
The elements c1, c2, c3, . . . of vector c are used to compensate entities Y1b, Y2b, Y3b, . . . of the model 6, respectively, in particular by adding them to obtain Y1b+c1, Y2b+c2, Y3b+c3, . . . , respectively, and such that the difference e1 is decreased.
The use of an ADC with the prior art observer 4 shown in
The arrangement shown in
The observer 18 shown in
If the compared values Y1 and Y1ref become equal, the values supplied to the subtracting element 10 are identical to Y1b and Y1. Therefore, at that time observer 18 operates the same way as observer 4 of
With the prior art observer 4 the triggering event represented by Trig1 occurs at regular, fixed intervals. With the observer 18 according to the invention the triggering event represented by Trig2 occurs at times which are unknown on beforehand and which will be irregular in general.
It must be contemplated that a change of Trig2 happens often enough within a certain observation interval. Therefore the reference value Y1ref must be selected properly within a value range of the associated entity Y1 of the physical system 2. That is a matter of design and required specifications of the arrangement and is not per se part of the invention.
As illustrated by
To be able to perform the compensating of estimated values Y1b, Y2b, Y3b, the value of the monitored entity Y1 of the physical system 2 should become and/or pass (cross) the reference value Y1ref at least once.
The method and observer according to the invention as described above can be modified by a skilled person within the scope of the invention as described by the claims.
For example, the above method and observer can be applied for any number of monitored entities Y1, Y2, Y3 . . . , given reference values Y1ref, Y2ref, Y3ref . . . , estimated entities Y1b, Y2b, Y3b . . . , and differences e1, e2, e3 . . . , respectively. The triggering event (Trig2) may then be defined by the occurrence of any monitored entity Y1, Y2, Y3 . . . becoming equal to its associated reference value Y1ref, Y2ref, Y3ref . . . , respectively.
Number | Date | Country | Kind |
---|---|---|---|
05109215.3 | Oct 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/053578 | 10/2/2006 | WO | 00 | 4/3/2008 |