This application is related to co-owned, co-pending U.S. application Ser. No. 10/248,535, filed 27 Jan. 2003. It is also related to co-owned, co-pending U.S. application Ser. No. 10/237,394, filed 9 Sep. 2002, and to co-owned, co-pending U.S. application Ser. No. 10/434,923, filed 9 May 2003, that is a continuation-in-part of U.S. application Ser. No. 10/237,394. These previously filed applications are incorporated herein by reference.
The present invention relates generally to the field of oil and gas exploration. More particularly, the invention relates to methods for determining at least one property of an earth formation surrounding a borehole using a formation tester.
The term “wireline formation tester” is the generic name in the petroleum industry for a wireline logging tool used for determining formation fluid pressure and other parameters in a reservoir. A prior art wireline formation tester typically includes a formation pressure tester tool having a probe with a pretest chamber and a hydraulically-driven pretest piston. A pressure sensor is coupled to measure tool pressure.
Measurement of formation fluid pressure by a formation tester may be repeated once or twice without changing the position of the probe. Proper placement of the formation tester requires lowering the formation tester into the well and pressing the probe of the pressure tester tool against the borehole wall. The measurement procedure includes a “draw-down” procedure followed by a “build-up” procedure.
Before drawdown, the probe is pressed against the mud cake on the borehole wall. During drawdown, a small amount of formation fluid (typically 10 cc) is extracted from the reservoir. The prior art draw-down procedure includes establishing hydraulic communication between tool fluid and formation fluid (by retracting the pretest piston in the pretest chamber to reduce the tool pressure and break the mud cake seal), verifying good hydraulic communication between tool fluid and formation fluid using the pressure sensor, and verifying good hydraulic isolation between tool fluid and borehole fluid using the pressure sensor.
Immediately following drawdown, the pretest piston is stationary in the retracted position and fluid in the pretest chamber is at a pressure below the pressure of formation fluid.
Build-up includes allowing a build-up period to establish pressure equilibrium between tool fluid and formation fluid. During build-up, the pretest piston remains stationary in the retracted position. Formation fluid flows from the formation into the tool because formation fluid pressure is higher than tool pressure. Continued inflow allows tool pressure to build up until equilibrium is established. When equilibrium is established, tool pressure equals reservoir pressure. The changing pressure in the tool is monitored by the pressure sensor. The build-up procedure includes waiting for equilibrium to be established; and setting pressure of formation fluid equal to the measured tool pressure.
When using wireline formation testers for determining formation fluid pressure, especially in low permeability formations, it is most desirable that equilibrium be established within a short time. If the formation tester is set at a particular location for too long a time, it could stick in the borehole and become difficult to remove. Fear of the tool sticking in the borehole is a major concern and is frequently cited as the main reason for not using wireline formation testers more often. For this reason, the tester is usually allowed to remain on the borehole wall for no more than a limited period of time. The limited period of time varies widely depending on the nature of the formation and the downhole borehole pressure, temperature, etc. Because wireline formation testers often fail to reach equilibrium within the time allowed, several data processing extrapolation techniques have been developed for estimating reservoir pressure from a time-series of pressure measurements. These techniques, to the extent they provide accurate estimates, avoid the need to wait for equilibrium to be established. However, these techniques are not generally viewed as reliable predictors of actual formation fluid pressure.
The invention provides a method and apparatus for determining formation fluid pressure in earth formation surrounding a borehole, using a downhole probe coupled to a pretest piston pump, the pump having a pretest chamber and a pretest piston, the chamber and piston defining a variable-volume pretest cavity.
In operation, the method requires pressing the probe into contact with formation at the borehole wall. The preferred embodiment includes expanding the volume of the cavity during a first period of time to establish fluid communication between tool fluid and formation fluid by breaking a mud cake seal. Pressure equilibrium is established during a second period of time by allowing formation fluid to flow into the tool. When pressure equilibrium is established, formation fluid pressure is set equal to tool pressure.
Expanding the volume of the cavity during a first period of time to establish fluid communication includes expanding the volume of the cavity to draw only the necessary volume of formation fluid into the tool to establish and validate fluid communication, thereby minimizing pressure overshoot.
A preferred embodiment of the method for determining formation fluid pressure in earth formation surrounding a borehole, the borehole defining a borehole wall, includes pressing a probe into contact with mud cake and formation at the borehole wall; expanding a variable-volume cavity in fluid communication with the probe during a draw-down period to break a mud cake seal at the probe; terminating expanding the volume of the cavity on detecting a break in the mud cake seal; allowing fluid flow during a build-up period to establish pressure equilibrium between tool fluid and formation fluid; measuring tool pressure; and setting formation fluid pressure equal to tool pressure.
Expanding the volume of the cavity includes expanding the volume of the cavity during the draw-down period at a selected constant rate in the range of 3–160 cc/minute. A preferred rate is 5 cc/minute.
Preferably, detecting a break in the mud cake seal includes measuring tool pressure and detecting an abrupt change in tool pressure, and detecting an abrupt change in tool pressure includes using a finite moving average (FMA) algorithm on the measured tool pressure and its first and second time derivatives.
Alternatively, using a formation pressure tester tool in fluid communication with a formation, detecting a break in the mud cake seal includes detecting a difference between a measured tool pressure and a corresponding tool pressure from a reference tool pressure profile, wherein the reference tool pressure profile is measured in a previous drawdown with the tool isolated from the formation.
The invention further provides a formation pressure tester tool for determining formation fluid pressure in earth formation surrounding a borehole. The preferred embodiment includes an elongated body adapted for downhole operation, and a probe, extending from the elongated body, adapted to accept formation fluid from the borehole wall. A pretest piston pump, the pump having a pretest chamber and a pretest piston, the chamber and piston defining a variable-volume pretest cavity moveable pretest piston, defines a variable-volume cavity. The variable-volume cavity is fluid-coupled to the probe via a flexible conduit. Pressure measuring means is fluid-coupled to the variable-volume cavity for measuring tool pressure. Control means for controlling expanding the variable-volume cavity and terminating expanding the volume of the cavity on detecting a break in the mud cake seal is electrically coupled to the piston pump.
The formation pressure tester tool preferably includes an elongated body adapted for downhole operation; a probe, extendable from the elongated body, the probe defining a formation fluid inflow aperture; an electromechanical assembly defining a variable-volume cavity; a pretest flow line coupling the formation fluid inflow aperture to the cavity; pressure measuring means, pressure-coupled to the cavity for measuring tool pressure; and control means for actively controlling the rate of change of volume of the cavity.
Preferably, the tool includes an electromechanical assembly with a pretest chamber and an electrically driven pretest piston; a control means with an electric motor, a gearbox, and an electromechanically driven roller screw planetary system; a dedicated probe; a flexible conduit; downhole programmable control electronics; and a constant-volume flow line has a volume in the range 20–30 cc.
General
The invention provides a method and tool for determining the pressure of formation fluid in earth formation surrounding a borehole more quickly and potentially more accurately than methods used in existing wireline formation testers. By determining the pressure more quickly, the invention reduces the risk of the tool sticking in the borehole.
In particular, the method in a preferred embodiment includes actively terminating the expansion of the volume of the cavity of a pretest chamber during the “draw-down” period of a method similar to the prior art method described above.
Actively terminating the expansion of the volume of the cavity upon detection of an abrupt change in pressure prevents excessive pressure overshoot. See “overshoot” in
Minimizing overshoot creates the benefit of minimizing the time it takes the pressure in the formation pressure tester tool (herein below referred to as the “tool pressure”) to equilibrate to the formation fluid pressure (herein below referred to as the “formation pressure”). Preferably, a low-volume flow line is used.
Minimizing the volume of fluid withdrawn from the formation, and using a low-volume flow line are also believed to provide a more accurate measurement of formation pressure.
Apparatus of the Invention
In the first preferred embodiment, the volume of the pretest flow line is in the range 20–120 cc.
Pretest piston 31 is used to vary the tool pressure Pt. Pressure Pt exists in probe 21, in conduits 27 and 28, and in cavity 33 as measured by pressure sensor 36. It can be seen from
The use of downhole programmable control electronics to control sequencing and timing in the present invention avoids the sampling rate limitations incurred when using surface electronics. The use of surface electronics imposes severe sampling rate limitations because of the inherently narrow bandwidth of the logging cable.
The use of flexible conduit, rather than the more elaborate structure of the typical prior art probe, serves to avoid volume changes during probe-setting.
The pretest flow line has a volume in the range 20–120 cc. Under benign conditions, the lower end of this range is preferable.
The combination of dedicated probe and flexible conduit makes a constant-volume flow line. A constant-volume flow line is beneficial because it eliminates a significant source of disturbance caused by tool movement during pretest.
Alternative Embodiments
For applications in which a lower pretest flow line volume is beneficial, the lower volume is provided by locating probe 21 between pressure sensor 36 and variable-volume cavity 33.
First and second alternative embodiments are shown in
Although originally configured for wireline application, the formation pressure tester tool of the invention may also be incorporated into a logging while drilling (LWD) tool.
The Method, Draw-down Phase
In the preferred embodiment, drawdown is accomplished by actively expanding cavity volume Vc to establish fluid communication between tool fluid and formation fluid. In the preferred embodiment, the volume of the cavity is expanded at a controlled predetermined constant rate. Alternatively, a control algorithm may be used based on the first time-derivative of tool pressure.
A first preferred embodiment of the method for detecting a break in the mud cake seal includes detecting an abrupt change in tool pressure Pt.
With reference to
In contrast, a typical prior art drawdown involves expanding the enclosed volume at a constant rate (specified by the operator) and in amount usually between 5 cc to 20 cc. This practice always reduces Pt significantly below Pf, thus necessitating a time-consuming build-up phase.
A second preferred embodiment, illustrated in
Number | Name | Date | Kind |
---|---|---|---|
3934468 | Brieger | Jan 1976 | A |
4513612 | Shalek | Apr 1985 | A |
4597290 | Bourdet et al. | Jul 1986 | A |
4745802 | Purfurst | May 1988 | A |
4860581 | Zimmerman et al. | Aug 1989 | A |
4893505 | Marsden et al. | Jan 1990 | A |
4936139 | Zimmerman et al. | Jun 1990 | A |
4949575 | Rasmus | Aug 1990 | A |
5095745 | Desbrandes | Mar 1992 | A |
5144589 | Hardage | Sep 1992 | A |
5233866 | Desbrandes | Aug 1993 | A |
5279153 | Dussan, V. et al. | Jan 1994 | A |
5303582 | Miska | Apr 1994 | A |
5353637 | Plumb et al. | Oct 1994 | A |
5517854 | Plumb et al. | May 1996 | A |
5555945 | Schultz et al. | Sep 1996 | A |
5602334 | Proett et al. | Feb 1997 | A |
5615115 | Shilling | Mar 1997 | A |
5622223 | Vasaquez | Apr 1997 | A |
5644076 | Proett et al. | Jul 1997 | A |
5703286 | Proett et al. | Dec 1997 | A |
5708204 | Kasap | Jan 1998 | A |
5741962 | Birchak et al. | Apr 1998 | A |
5770798 | Georgi et al. | Jun 1998 | A |
5799733 | Ringgenberg et al. | Sep 1998 | A |
5803186 | Berger et al. | Sep 1998 | A |
5934374 | Hrametz et al. | Aug 1999 | A |
6006834 | Skinner | Dec 1999 | A |
6026915 | Smith et al. | Feb 2000 | A |
6047239 | Berger et al. | Apr 2000 | A |
6058773 | Zimmerman et al. | May 2000 | A |
6147437 | Matsumoto et al. | Nov 2000 | A |
6157032 | Into | Dec 2000 | A |
6157893 | Berger et al. | Dec 2000 | A |
6164126 | Ciglenec et al. | Dec 2000 | A |
6178815 | Felling et al. | Jan 2001 | B1 |
6230557 | Ciglenec et al. | May 2001 | B1 |
6236620 | Schultz et al. | May 2001 | B1 |
6301959 | Hrametz | Oct 2001 | B1 |
6325146 | Ringgenberg et al. | Dec 2001 | B1 |
6340062 | Skinner | Jan 2002 | B1 |
6343507 | Felling et al. | Feb 2002 | B1 |
6343650 | Ringgenberg et al. | Feb 2002 | B1 |
6427530 | Krueger et al. | Aug 2002 | B1 |
20020185313 | Jones et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0 125 164 | Nov 1984 | EP |
WO 0133044 | May 2001 | WO |
WO 0208570 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050039527 A1 | Feb 2005 | US |