This is a U.S. National Stage of Application No. PCT/IB2015/001369, filed on Jul. 13, 2015, the disclosure of which is incorporated herein by reference.
The subject matter disclosed herein generally relates to elevator car door opening systems and, more particularly, to opening elevator car doors when an elevator is not located at a landing.
Elevators may require maintenance to be performed from within an elevator shaft. Accordingly, access must be provided for a technician or other authorized person to gain access to the elevator shaft. Traditional access is provided at each landing of the elevator shaft through a landing door. That is, operation of the landing doors is performed such that the landing doors may be opened when an elevator is not at the particular landing, so that the technician or other authorized person may gain access to the elevator shaft and perform a desired operation. Another form of access to the elevator shaft is by a technician being located on top of an elevator car within the elevator shaft.
Because of safety hazards associated with an elevator shaft, access must be restricted to authorized personnel only. As a result, systems are put in place to prevent and control elevator shaft access, especially for non-authorized persons, in a robust and safe way.
Traditionally, elevator car door systems may be configured with an opening deterrent system or deterrent device that prevents the elevator car doors from opening when not at a landing or unlocking zone and only allows the elevator car doors to be opened at the unlocking zone of a landing. That is, the deterrent system is configured to enable the elevator car doors to open only when a landing door also opens. The space between each landing or unlocking zone is a traveling zone, where a landing door may not be present, and the elevator may move at speed between landing floors. As such, elevator car doors may not be allowed and are prevented from being opened when in the traveling zone. If any portion of an elevator car is outside of the landing or unlocking zone, the elevator car doors are prevented from being opened by the deterrent system.
According to one embodiment an elevator system is provided. The system includes an elevator car having at least one elevator car door, a deterrent system configured to prevent the at least one elevator car door from opening when the elevator car is not in an unlocking zone, and a disabling system configured to disable the deterrent system such that the at least one elevator car door may be opened outside of the unlocking zone.
In addition to one or more of the features described above, or as an alternative, further embodiments may include an elevator controller configured in communication with the deterrent system and the disabling system, wherein the disabling system is configured to communicate to the controller that the deterrent system is to be disabled and the controller then disables the deterrent system.
In addition to one or more of the features described above, or as an alternative, further embodiments may include at least one sensor configured determine the position of the elevator car within an elevator shaft.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the disabling system is one of mechanical and electronic.
According to another embodiment, a method of operating an elevator car is provided. The method includes closing at least one elevator car door of an elevator car, disabling a deterrent system, wherein the deterrent system is configured to prevent the at least one elevator car door from opening when the elevator car is outside of an unlocking zone, and opening the at least one elevator car door of the elevator car when the elevator car is outside of the unlocking zone.
In addition to one or more of the features described above, or as an alternative, further embodiments may include entering a maintenance mode prior to disabling the deterring system.
In addition to one or more of the features described above, or as an alternative, further embodiments may include moving the elevator car in an elevator shaft with the at least one elevator car door open.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that disabling the deterrent system comprises entering a sequence into an elevator car operating panel.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that disabling the deterrent system comprises inserting a key into a car operating panel.
In addition to one or more of the features described above, or as an alternative, further embodiments may include that the key is held captive when the deterrent system is disabled.
Technical effects of embodiments of the present disclosure include enabling opening of elevator car doors outside of an unlocking zone. Further technical effects include a modified deterrent system configured to be disabled when an authorized person desires to open an elevator car door without being in an unlocking zone, such that the authorized person may inspect features of an elevator shaft, including landing door components. Further technical effects include enabling maintenance of elevator shaft components from within an elevator car.
The subject matter is particularly pointed out and distinctly claimed at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
As shown and described herein, various features of the disclosure will be presented. Various embodiments may have the same or similar features and thus the same or similar features may be labeled with the same reference numeral, but preceded by a different first number indicating the figure to which the feature is shown. Thus, for example, element “a” that is shown in
During operation of an elevator car within an elevator shaft, the elevator car doors and the landing doors are configured to open simultaneously and coact with each other. For example, when an elevator car reaches a floor or landing, the operation of the elevator car door(s) acts upon the landing door(s), such that both sets of doors open and close together. This is achieved by one or more couplings, such as blades, vanes, etc. installed on the exterior or elevator shaft side of one or more elevator car doors. One or more landing door locks are disposed within the elevator shaft. The landing door locks may be configured as locks, rollers, etc. that are configured to coact with the car door coupling such that the doors operate (open/close) in tandem.
To ensure proper door operation, the coupling of the elevator car and the locks of the landing doors must be aligned, and other maintenance operations may be performed on the components within an elevator shaft. The alignment may be necessary so that the opening/closing components of the doors will operate together appropriately. That is, the elevator car doors will operate and open at an unlocking zone. The alignment is also important when an elevator car passes a landing door without stopping. That is, the car door coupling must be able to pass the landing door lock when the elevator car is moving within the elevator shaft without interference or contact between the coupling and the locks. This is merely an example of the features that interact between an elevator car and a landing door, and between an elevator car and other components within an elevator shaft. Those of skill in the art will appreciate that other maintenance operations within an elevator shaft may be necessary for maintaining a properly functioning elevator.
With reference to
Referring now to
As such, under prior processes, a technician 216 would be located on the top 214 of the elevator car 200, where the car door coupling 204 and the landing door lock 208 are located such that any adjustments may be made to the landing door lock 208 relative to the car door coupling 204. As shown, the technician 216 would be located within the elevator shaft and outside of the elevator car, i.e., on top of the elevator car. After an adjustment process, the technician 216 would then have to get off the top 214 of the elevator car 200 and then move the elevator car, and then get back on top of it.
The prior process was due, in part, because the elevator car door 202 could only be opened in an unlocking zone 218, shown in
However, as shown in
In accordance with embodiments disclosed herein, the deterrent system 220 or similar device is deactivated or disengaged to enable operation of the elevator doors outside of the unlocking zone 218. As shown in
However, as shown in
Turning now to
In accordance with embodiments described herein, a technician 316 may operate a device or control sequence that is configured to communicate with a controller 322. In some embodiments, the control sequence may be entered on the car operating panel. In other embodiments a key may be entered into a mechanism on a panel within the elevator car. In other embodiments, the controller 322 may be used to remotely disable the deterrent system 320. The controller 322 may be the controller or control system configured to control the elevator car 300 within an elevator shaft. The controller 322 may be configured in communication, wired or wirelessly, with the deterrent system 320.
In standard or normal operation, the deterrent system 320 is active and configured to prevent the doors of the elevator car 300 to be opened when the elevator car 300 is outside of an unlocking zone 318, as discussed above. However, a technician 316 may enable a mode of operation such that the deterrent system 320 is deactivated or disabled. As noted, the technician 316 may use a physical key in a locking/switch mechanism or may enter a specific code into a touch pad or using the elevator floor buttons to enable the deactivation or disabling of the deterrent system 320. A similar or reverse process may be used for re-activating or re-enabling the deterrent system 320.
In some embodiments, to disable the deterrent system 320, the technician 316 must operate the elevator car 300 such that it stops outside of an unlocking zone 318. In other embodiments, the deactivation or disabling of the deterrent system 320 may be performed within or at an unlocking zone 318. In some embodiments, the deterrent system 320, the elevator car 300, and/or the controller 322 may be configured with sensors or other detection means for determining when an elevator car is within an unlocking zone 318, i.e., position detection methods and mechanisms as known in the art may be employed.
In either case of position of the elevator car 300 for deactivation of the deterrent system 320, to open the elevator car doors to enable the inspection and maintenance of elements within the elevator shaft, the elevator car 300 must be moved outside of an unlocking zone 318. This is because when the elevator car 300 is in the unlocking zone 318, the car door coupling and the landing door lock are aligned and configured to have the landing doors open when the elevator car doors open. To be able to open the elevator car doors without opening the landing doors, the elevator car 300 must be positioned outside of the unlocking zone 318.
By performing the deactivation or disabling of the deterrent device 320, the deterrent device 320 may no longer prevent the car door opening when outside of an unlocking zone and the controller 322 may be switched automatically into an inspection mode. Further, in some embodiments, once the elevator car doors are opened in this mode of operation the elevator car 300 may be moved up and/or down within the elevator shaft such that a technician 316 may be able to perform inspection and/or maintenance operations on all available levels within an elevator shaft.
In some embodiments, if the deactivation operation is mechanical, a deactivation device (e.g., a key) may be kept captive or retained in the mechanism until the car door is returned to the closed position. That is, the mechanical deactivation device may not be removed from a deactivation position unless the elevator car doors are closed. In such embodiments, closing the car door and removing the key may reset the system to a normal operating state or mode.
In other embodiments, for example if the deactivation operation is electronic (e.g., a specific button sequence entered via the car operating panel), the return to the normal state or mode may be achieved when the elevator car doors are closed.
Turning now to
At step 402, the elevator doors are closed. This will place the elevator car doors in the closed position. This will generally occur at a landing and within an unlocking zone. With the elevator car doors closed, the system may enter a maintenance mode at step 404. The maintenance mode may be a mode of elevator operation that enables a technician to perform functions that may not be available during normal operation of the elevator.
With the elevator in maintenance mode, the deterrent system of the elevator may be disabled at step 406. Disabling of the deterrent system may involve entering a specific key sequence on a car operating panel, using a specific key, mechanically disabling the system, or other process. In some embodiments the deterrent system may be disabled remotely by commands sent from an elevator controller.
With the deterrent system disabled, the elevator car may be moved outside of the unlocking zone at step 408. When outside of the unlocking zone, the opening components of the elevator car and a landing door are not aligned. Thus, at step 410, the elevator car doors may be opened as the deterrent system is disabled. Because the elevator car is outside of an unlocking zone, when the elevator car doors are opened, there is no landing door to also open. The interior walls of the elevator shaft are thus made available. Maintenance operations, including inspections and repairs, may be performed safely from inside the elevator car.
In this state, in some embodiments, the elevator car may be moved between different locations within the elevator shaft, with the elevator car door open. When the maintenance is complete, the reverse process may be performed to re-enable the deterrent system. For example, the elevator car doors may be closed, the elevator car may be moved to an unlocking zone, the deterrent system may be re-enabled, and a normal operating mode may be activated.
Although a specific order of steps has been described above, those of skill in the art will appreciate that the order of steps may be altered and/or additional steps may be added or some steps omitted, without departing from the scope of the disclosure. For example, step 408 may be performed earlier in the process or an additional step of communicating with a controller may be employed, similar to that described above.
Advantageously, embodiments described herein provide the ability for a technician to perform maintenance that was traditionally performed from on top of an elevator car to be performed from within the elevator car. Further, advantageously, in accordance with some embodiments, the elevator car may be configured to move within the elevator shaft even with the elevator car door open when in the maintenance mode, without the deterrent system interfering with the movement of the elevator car or the opening of the elevator car doors.
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions, combinations, sub-combinations, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments.
Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/001369 | 7/13/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/009679 | 1/19/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4364454 | Glaser | Dec 1982 | A |
5655627 | Horne | Aug 1997 | A |
5707970 | McCarty et al. | Jan 1998 | A |
5819877 | Rivera | Oct 1998 | A |
6223861 | Sansevero | May 2001 | B1 |
6405834 | Chida | Jun 2002 | B1 |
20080047783 | Vogl | Feb 2008 | A1 |
20130327598 | Rebillard | Dec 2013 | A1 |
20140076667 | Henseler | Mar 2014 | A1 |
20150314991 | Trottman | Nov 2015 | A1 |
20170210600 | Fonteneau | Jul 2017 | A1 |
20170320704 | Studer | Nov 2017 | A1 |
20170341909 | Fonteneau | Nov 2017 | A1 |
20180186601 | Taudou | Jul 2018 | A1 |
20180201479 | Taudou | Jul 2018 | A1 |
20180327221 | Sudi | Nov 2018 | A1 |
20180370762 | Renard | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
0892756 | Jan 1999 | EP |
2623452 | Aug 2013 | EP |
2727875 | May 2014 | EP |
H0930747 | Feb 1997 | JP |
2000355471 | Dec 2000 | JP |
2004189365 | Jul 2004 | JP |
2005206346 | Aug 2005 | JP |
0044662 | Aug 2000 | WO |
2016012828 | Jan 2016 | WO |
Entry |
---|
European Office Action, European Application No. 15787662.4, dated Aug. 28, 2019, 5 Pages. |
International Search Report, International Application No. PCT/IB2015/001369, dated Apr. 8, 2016, European Intellectual Property Office; International Search Report 5 pages. |
International Written Opinion, International Application No. PCT/IB2015/001369, dated Apr. 8, 2016, European Intellectual Property Office; Written Opinon 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180201479 A1 | Jul 2018 | US |