A linear shaped charge can be detonated for example by using a detonator inserted into the explosive layer of the charge. However, a standard detonator is not always suitable for a particular cutting task to be performed by the linear shaped charge.
It is desirable to improve detonation of linear shaped charges.
A common detonator, for example a so-called L2A2 detonator (available from Chemring Energetics UK, Troon House, Ardeer Site, Stevenson, Ayrshire KA20 3LN, Scotland, UK) or a so-called TE-Instantaneous Electric Detonator (available from Orica, 1 Nicholson Street, East Melbourne, Victoria 3002, Australia), can output, upon detonation, a detonation wavefront with a pre-determined form. This detonation wavefront is determined by the construction of the detonator itself. However, owing to the longitudinal shape of a linear shaped charge which fires a longitudinal cutting jet at a target, rather than so-called point shaped charges which fire at a non-longitudinal point on a target, it has been realised that the firing behaviour of a linear shaped charge may be tuned for a given task by controlling a form of a detonation wavefront.
One option to give more control over the form of the wavefront is to provide different detonators which output differently shaped detonation wavefronts. However, this is not practical in situations where a linear shaped charge is commonly used. For example, in remote locations, it may be simpler to keep a stock of the same detonator with the same detonation performance, to ensure that errors in choosing the correct detonator do not occur, which might otherwise cause a compromised or unpredictable firing of the linear shaped charge.
The insight of examples herein lies in controlling a detonation wavefront which has been output by a detonator, so that a desired detonation wavefront may be selected, or more closely obtained, for a desired firing behaviour of a linear shaped charge. In this way, using the detonation wavefront controller of examples described herein, a user may control the form of a detonation wavefront input to the explosive of a linear shaped charge, to optimise the performance of the linear shaped charge for a given cutting task. For example, as explained below, a proportion of explosive energy directed towards the target (for example directed in a plane coincident with a longitudinal axis of the linear shaped charge and which includes an apex of the liner (described below) and which intersects a surface of the linear shaped charge for contact with the target), compared with a proportion directed along the length of the linear shaped charge, may be controlled.
A detonator is a device used to trigger an explosive material, such as of a linear shaped charge, to explode or detonate. Often, detonation is triggered using an electrical signal which detonates, for example initiates combustion of, a primary explosive material, which in turn outputs sufficient energy from the detonator to cause detonation of the explosive material of the linear shaped charge. The explosive material of the linear shaped charge may therefore be referred to as a second explosive.
Energy output from detonation of a detonator may be considered to have the form of a detonation wave or a shock wave. A wavefront of such a wave has a shape or form which depends on factors such as: the rate of energy release by the explosive material upon detonation, and how uniformly in space the energy is released by the explosive material upon detonation. Another factor is whether the wavefront, as it propagates, encounters any structures which may modify the shape or form of the wavefront. One of more such structures may for example absorb, reflect, re-direct or diffract at least part of the wavefront. In this way, a curvature of a wavefront, a spacing between consecutive wavefronts, and/or a rate of propagation of a wavefront may be determined.
Examples will now described of a detonation wavefront controller. Such a controller is configurable between different configurations which respectively cause a detonation wavefront with a different waveform to be output, despite using the same type of detonator. This gives a user flexibility to select, or “dial-in”, a desired detonation wavefront for detonating a linear shaped charge. In examples, the detonation wavefront controller may be provided separately to a linear shaped charge, for insertion into an explosive material of the linear shaped charge. In other examples, it is envisaged that the linear shaped charge may be manufactured with the detonation wavefront controller already provided, for example as an integral part of the linear shaped charge. In alternative examples, the detonation wavefront controller may be provided with a detonator; for example the detonator may be integrally formed as part of the detonation wavefront controller.
Examples are described herein with a first aperture of a first part.
The first part is now described in further detail using
The first part is a hollow element, for example a tube or tubular structure, which may be circular in cross-section (taken perpendicular the longitudinal axis LA) and therefore be cylindrical in shape. It is to be appreciated that other cross-sectional shapes are feasible though. The first part comprises a detonator holder configured to hold a detonator. Although the detonator may be configured to hold one particular type of common detonator, in other examples such as those illustrated, the detonator holder is configured so as to be able to hold different types of detonator, for example those with different widths. As shown in
At a second end 20 of the first part, there is an aperture 22 (elsewhere referred to herein as the first aperture) which is an opening for outputting a detonation wavefront emitted from a detonator. A width W1 (elsewhere referred to herein as the first width) of the first aperture is determined for example by a thickness T of at least part of a wall 24 of the first part which surrounds the hollow of the first part. In examples shown, a portion 26 of the wall 24 has a constant thickness, within acceptable manufacturing tolerances, between the second end 20 and the detonator holder. In other examples, the thickness of the portion 26 of the wall may change along the length (corresponding to a longitudinal axis LA) of the DWC. The first aperture is for example circular, with the width W1 a first diameter. Hence, a shape of an inner surface of the portion 26 of the wall 24 may be cylindrical in some examples, but in other examples may be differently shaped, for example conical or frustoconical (with the cone for example widening towards the first aperture) to help modify a detonation wavefront output by the detonator and before being output through the first aperture 22.
The first part is configured for engagement with the second part such that the first part and the second part may be moved relative to each other to change a configuration of the DWC. An outer surface of the first part may be configured to at least partly engage with, and enable such movement relative to, an inner surface of the second part, and also to provide sufficient friction or other contact or resistive force against the second part to hold the DWC in a particular configuration once the first and second parts have been moved into position for that configuration. For example, an outer surface of the first part comprises one or a plurality of protrusions, for engagement with a corresponding structure such as one or a plurality of recesses of an inner surface of the second part. Such one or a plurality of protrusions may be distributed longitudinally along the first part, in a direction parallel the longitudinal axis LA and may be circumferential ridges 27 which each at least partly surround a perimeter of the first part in a respective plane taken perpendicular to the longitudinal axis LA.
The end 18 of the first part opposite to that the end the first aperture may be configured to assist a user to grip the first part and move it relative to the second part. For example, a portion 28 of the first part may be enlarged, for example wider, for example with a larger diameter, compared with a different portion narrower than the wider portion. The wider portion may be gripped by a user to push or pull the first part into or out of the second part, with the different, narrower portion, sized to be received within a hollow of the second part. An outer surface of the wider portion 28 may be contoured or otherwise configured to enhance grip for a user, for example with circumferential grooves or recesses.
Where the first part widens between the narrower different portion and the wider portion 28, there may be a surface joining the outer surface of the two portions. This surface is for example referred to herein as a second part contact surface 30, and is for example an annular surface, which is located to stop movement of the second part, relative to the first part, beyond the second part contact surface. In this way, the position of the first part relative to the second part for the first configuration is determined by the position of the second part contact surface 30, as the second part when in contact with the surface 30 cannot be moved to collapse the DWC further.
The second part will now be described with reference to
The second part comprises a hollow element, for example a tube or tubular structure, which may be circular in cross section (taken perpendicular the longitudinal axis LA) and therefore be cylindrical in shape. Other cross-sectional shaped are envisaged though, corresponding to a cross-sectional shape of the first part. The second part is configured to at least partly receive the first part within a hollow or cavity within the second part. Thus, a cross-sectional diameter of an inner surface of the second part is larger than a cross-sectional diameter of an outer surface of the portion of the first part for receipt within second part. Hence, the first part can at least partly be inserted within the second part, until in appropriate examples the second part contacts the second part contact surface 30.
The first part is insertable into the second part through an aperture 32 at one end 34 of the second part. A shape of this aperture corresponds with a cross-sectional shape of an inner surface of the portion of the first part insertable within the second part. Hence, this aperture may be circular. An inner surface of a portion of the second part, for example located at the end 34 with the aperture 32 which receives the first part, may be configured to enable movement relative to the outer surface of the first part received within the second part, and also to provide sufficient friction or other contact or resistive force against the first part to hold the DWC in a particular configuration. For example, the inner surface of this portion of the second part may comprise one or a plurality of recesses for engagement with a corresponding structure such as the one or a plurality of protrusions of the first part described above. Such one or a plurality of recesses may be distributed longitudinally along the portion of the second part in a direction parallel the longitudinal axis LA and may be circumferential recesses 36 which each at least partly correspond with a perimeter of the inner surface of the portion of the second part, taken perpendicular to the longitudinal axis LA.
The second part comprises an aperture 38 (elsewhere referred to herein as a second aperture), for example at an opposite end 40 of the second part from the end 34. A width W2 (elsewhere referred to as a second width) of the second aperture 38 is larger than the first width W1 described above. The second aperture, like the first aperture, may be circular with the second width W2 being a second diameter.
As shown in
In the second configuration, the second distance D2 is larger than the first distance D1. So, in the first configuration, the first distance D1 is smaller than the second distance D2. In some examples, such as those illustrated, in the first configuration the first part may be positioned such that the first aperture 22 and the second aperture 38 each lie in substantially (for example within +/−1 millimetres) the same plane (taken perpendicular the longitudinal axis LA). In the second configuration, the first aperture 22 is nearer to the second aperture 38 than the detonator holder.
In some examples, the second part is configured for attachment to a linear shaped charge. For example, the second part may comprise one or more prongs 42, which may be considered as spikes, pointed elements or similar, which extend from the second part, away from the second aperture and the first aperture, for insertion into the explosive material of a linear shaped charge. The prongs may for example extend from a wall of the second part and may be circumferentially spaced around the second aperture. With the prongs inserted into an explosive material of the linear shaped charge, the DWC may be held firmly in place for detonation to occur. In other examples, the second part may comprise one or a plurality of tabs 44, which may each be considered a flap or other element extending outwards from the second part. At least one tab may be hingeable 45 relative to the hollow element of the second part. Further, at least one tab may be foldable along one or more creases or thinned parts 46 of the tab. Such hinging and folding capability increases the options for attaching the DWC to a linear shaped charge. For example, the tabs can be hinged upwards or downwards to accommodate the DWC in a narrow space, and folding the tabs can shorten their length or enable them to be attached to surfaces with different orientations. With an adhesive, such as an adhesive tape, the tabs can be attached to the linear shaped charge to hold the DWC in position for detonation. Further, any of the prongs or tabs may be removable, for example by cutting them from the second part by snapping or using an appropriate tool, in case they are not compatible for a given situation of attaching the DWC to a linear shaped charge. For example, when the DWC is used with the third part described later, the prongs may be removed so they do not interfere with the detonation wavefront output from the second aperture.
In
In contrast, in the second configuration, the second distance D2 shows the separation of the first and second apertures. With the second distance D2 greater than the first distance D1, and the second width of the second aperture, the detonation wavefront output from the detonator may be modified by the second part. An outline of a cross-section of the volume that the detonation wavefront propagates through within the DWC is illustrated with dashed lines 62; the volume is for example conical or frustoconical in shape. At least the second diameter and the second distance determine the dimensions of this conical or frustoconical shape. With this modification of the detonation wavefront by the DWC in the second configuration, the detonation wavefront input to the explosive material of the linear shaped charge has a larger radius than for the first configuration. Hence, as can be seen in
As a result, in the first configuration, energy from the detonation of the explosive material may be more concentrated in a region directly between the DWC and the target, rather than in regions peripheral to that region. This firing behaviour of the linear shaped charge may be desired in applications where the energy from detonation of the explosive material is required to be transferred at a rapid rate to the liner and in turn to the target, but over a smaller area, for a more sudden cutting action on the target. The form of the wavefront with the smaller radius can lead to part of a wavefront which propagates laterally (perpendicular a longitudinal axis of the linear shaped charge), and thus can be emitted 64 from ends of the explosive material. This effect may be referred to as run-on and can be used to initiate explosive material of a separate charge placed in contact with the initially detonated linear shaped charge, or to cut a portion of the target extending beyond an end of the linear shaped charge.
In contrast, in the second configuration, energy from the detonation of the explosive material is more spread along the liner, and in turn the target, such that the energy from detonation of the explosive material may be transferred at a less rapid rate and over a larger area than for the first configuration. This may be considered a more progressive or continuous delivery of energy to the target than in the first configuration, which may be more suited for certain target materials than others, where a slower rate of energy transfer is required over a longer period of time to the target. This can be contrasted with the higher energy transfer over a shorter time period and a smaller area in the first configuration. With the second configuration, it may be desirable to detonate the linear shaped charge at more than one point along a length of the linear shaped charge, using for example multiple DWCs in the second configuration. This may be referred to as an array set up, and each detonation may be initiated by a separate detonator, or may as explained later be initiated by one detonator linked to other DWCs with detonation cord. A similar approach may be used for the third configuration described below. As noted above, the wavefront lines 60 are illustrated schematically and therefore their curvatures and spacing between wavefront lines should not be taken as limiting. Indeed, it is noted that the specific explosive material used may influence the velocity that the wavefront propagates through the explosive material, and in turn for example the spacing between wavefront lines (for example the wavelength), the curvature of a wavefront in the plane of
First and second configurations have been described which have, designed into the DWC, predetermined first and second distances D1, D2 and first and second widths W1, W2, for controlling the detonation wavefront between two desired forms. In such examples, the second width may be at least three times larger than the first width, and the thickness of the portion of wall of the first part may be set accordingly.
It is to be appreciated that the first and second distances and the first and second widths or diameters may be selected to determine the design of a particular DWC implementation to provide a linear shaped charge with two desired firing behaviours. For example, these configurations may be set for use with the same type of linear shaped charge, or may be set so that the DWC enables a standard type of detonator to be used across a more varied range of linear shape charge types.
Further, the DWC may be set in more than the first and second configurations. For example, by moving the first and second parts to a position relative to each other between the positions for the first and second configurations, at least one intermediate configuration may be obtainable by a user. Thus a so-called dial in functionality may be provided for a user, so they can dial in, or in other words, tune the DWC to output a desired detonation wavefront from a number of options between the first and second configurations.
Moreover, in further examples, the DWC may be engaged with, or may comprise, at least one additional part. Such a part may for example be the third part described previously. The third part may be part of the casing of a linear shaped charge, to which the second part is engaged, or in other examples may be a separate part of the DWC which can be engaged when needed, or may instead be a moveable part of the DWC which can be moved relative to the first and second parts, for example with a telescopic action as described above. With the third part engaged with the second part, the DWC is in a third configuration illustrated for example by
The third part comprises for example a hollow element for example a tube or tubular structure which may be circular in cross section (taken perpendicular the longitudinal axis LA) and therefore cylindrical in shape. Other cross-sectional shaped are envisaged though, corresponding to a cross-sectional shape of the second part. The third part is configured to at least partly receive the second part within a hollow or cavity within the third part. Thus, a cross-sectional diameter of an inner surface of the third part is larger than a cross-sectional diameter of an outer surface of a portion of the second part for receipt within the third part. Hence, the second part can at least partly be inserted within the third part and engaged at a predetermined position relative to the second part, to locate the third aperture at the third distance from the first aperture.
In examples described, the third part 66 has at one end an aperture 68 or opening shaped and sized to accommodate the second part, and which aperture may be circular. The third part at another end has an aperture (referred to herein as the third aperture 70) through which the detonation wavefront is output. The third aperture has a third width W3, for example a third diameter where the aperture is circular. As shown in
In the third configuration, a detonation wavefront output by the DWC may have an even larger radius than for the second configuration, which delivers energy over a larger area than in the second configuration, and hence gives a more progressive or continuous energy delivery to the target. than for the second configuration. This can be seen by the wavefronts 60 shown in
The third part may be engaged with the second part appropriately. For example an outer surface of the second part may have at least one protrusion or recess for engaging with a corresponding recess or protrusion, respectively of an inner surface of the third part. Such protrusions and/or recesses may be located at a predetermined point relative to the longitudinal axis LA to set the third distance when the second and third parts are engaged for the third configuration.
It is envisaged that fourth or further parts, which may be similar to the third part, but with larger apertures from which a detonation wavefront is output, may be provided to give a user even more flexibility to select different firing behaviours of the linear shaped charge. Moreover, a size and scale of the first, second, third and/or possibly further parts may be selected on the basis of a size and/or explosive loading of a given or common linear shaped charge, to set the DWC with configurations which give pre-determined firing behaviours for a given linear shaped charge, or give a range of firing behaviours across different types of linear shaped charge.
In examples described above, with the detonator held by the detonator holder, there may be a space between the detonator and the second aperture. This may be the case in the second configuration, and also in the third configuration with a space also between the second and third apertures. Any such space may be filled by a pellet or volume of explosive material, as an intermediate stage for a chain of detonation from the detonator to the explosive material of the linear shaped charge. Such a pellet 70 is shown in various figures with diagonal shading, such as in
Detonation cord is well known to the skilled person and is for example a length of a plastic tube filled with an explosive material. It can be cut to a desired length for use, and when initiated can emit energy radially, in a direction perpendicular a longitudinal axis of the cord. An example of detonation cord is so-called L5A Detonating Cord (available from Chemring Energetics UK) or so-called Primacord® (available from Dyno Nobel Inc., 2795 East Cottonwood, Parkway, Suite 500, Salt Lake City, Utah 84121, U.S.A.).
Shock tube is also well known to the skilled person and is for example a length of a plastic tube with its inner surface coated with an explosive material. In contrast to detonation cord, usually its length cannot be cut as desired, as the effectiveness of the percussive wave transmitted along the tube when initiated would be compromised. Also, shock tube does not emit energy radially as the percussive wave passes along the tube.
In examples, a wall of the second part of the DWC may for example comprise a plurality of wall apertures 76 or openings. Such openings may be shaped and sized to accommodate one cross-section of detonation cord, or more if stacked in a direction parallel the longitudinal axis LA. Hence, each wall aperture may be wider at an end further from the second aperture, for insertion of the detonation cord, then may narrow in a direction towards the second aperture, such that the detonation cord can be slid towards the second aperture and held by the narrower portion of the wall aperture.
In examples such as those illustrated in
Shock tube may be used instead of a detonator, with or without detonation cord inserted through the wall apertures. Hence, the detonator holder may be configured to hold shock tube instead of a detonator, by passing the shock tube through the first part such that its end contacts the detonation cord or a pellet 70. Alternatively, shock tube may be used instead of detonation cord in examples described above. In other examples, a combination of detonation cord and shock tube may be used; for example referring to
Examples of the DWC described herein provide a user with various options for controlling and selecting different firing behaviours of a linear shaped charge. This gives the user more options when needing to successfully achieve a given cutting task with a linear shaped charge. The DWC may for example be manufactured of nylon plastic or so-called Grilon® TSS/4 (available from EMS-Chemie AG, Via Innovativa 1, 7013 Domat/Ems, Switzerland).
The above examples are to be understood as illustrative examples. Further examples are envisaged.
In examples above, various apertures are described as being circular, such as the first aperture, the second aperture and the third aperture. The circular shape of any such aperture may be taken in a plane perpendicular the longitudinal axis LA of the DWC and have a centre of the circular shape coincident with the longitudinal axis LA, such that the circular shape is of constant radius about the longitudinal axis LA. In this way, an influence that the shape of any such aperture has on the detonation wavefront may be applied uniformly about the longitudinal axis LA, for example radially uniformly. In further examples, any such aperture may not be perfectly circular, but may be substantially circular, for example circular within acceptable manufacturing tolerances (and thus accounting for any imperfections or minor irregularities in shape due to an imperfect manufacture process). In other examples, the shape of one or more of the first, second or third apertures may for example be a cyclic polygon. A cyclic polygon may be considered a polygon which is cyclic, with all vertices of the polygon lying on a common circle. In other words, a single circle can be drawn on which all vertices of a cyclic polygon are located. Such a single circle may be considered a circumscribed circle. Various shapes of such apertures are envisaged which are each a cyclic polygon, including regular and irregular polygons; specific examples include a triangle, square, hexagon, octagon, decagon, or dodecagon. In alternative examples, any such aperture may be considered an approximation of a circle in shape, for example an ellipse. Such a cyclic polygon may be substantially a cyclic polygon or such an ellipse may be substantially an ellipse, to account for any acceptable manufacturing tolerances.
In examples therefore, an aperture (which may correspond to a respective edge of an inner surface of the wall of the first part, the second part and/or the third part), or an inner surface of the wall of the first, second or third part, may be free from protrusions or other inwardly extending structures which might interfere with the detonation wavefront as it propagates through the DWC, and which might in some examples detract from the generally radially uniform nature of the detonation wavefront.
In examples described above, the DWC is inserted in a longitudinal surface of the explosive material of the linear shaped charge. It is envisaged that in further examples the DWC may instead be inserted in an end of the explosive material of the linear shaped charge. In this way, when detonated, a detonation wavefront may propagate along a length of the linear shaped charge, parallel to a longitudinal axis. Such detonation may maximise a so-called run-on, with the cutting jet extending from the opposite end of the linear shaped charge. This gives the user yet more options for selecting a desired firing behaviour of a linear shaped charge.
In examples described above, any of the first part, the second part, the third part, and possibly further such parts, of the DWC may be provided separately to each other, for example as part of a kit where a user may select appropriate parts to assemble a desired DWC. Alternatively, any of such parts may already be engaged with each other such that the DWC is ready to be set to the desired first, second, third, or possibly intermediate configuration, for use.
It is to be understood that any feature described in relation to any one example may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the examples, or any combination of any other of the examples. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
1812780.3 | Aug 2018 | GB | national |
This application is a continuation of International Application No. PCT/GB2019/052204, filed Aug. 6, 2019 which claims priority to UK Application No. GB 1812780.3, filed Aug. 6, 2018, under 35 U.S.C. § 119(a). Each of the above-referenced patent applications is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB2019/052204 | Aug 2019 | US |
Child | 17167656 | US |