The present application is related to, claims priority from and incorporates by reference Japanese Patent Application No. 2011-137509, filed on Jun. 21, 2011.
This application relates to a developer accommodation unit, a development device, an image forming apparatus using the development device, and developer supply container.
Conventionally, an image forming apparatus, such as a printer, a photocopy machine, a facsimile device, a multifunction peripheral that includes a printer part and a scanner part, and the like, forms an electrostatic latent image by uniformly and evenly charge a surface of a photosensitive body and by exposing the charged surface, and forms a toner image by attaching developer (toner) on the electrostatic latent image. Then, an image is formed by transferring and fixing the toner image onto a sheet.
In such conventional image forming apparatus, a remaining toner amount detection mechanism is provided that detects a remaining toner amount (or amount of toner remaining) in a development device. The remaining toner amount detection mechanism is a rotation body that falls by own weight (free-falls) to a surface of the toner from a predetermined height when the remaining toner amount is low. The image forming apparatus detects the remaining toner amount by a length of time in which the rotation body that is the remaining toner amount detection mechanism free-falls (see JP Laid-Open Patent Application No. 2006-23537 (paragraphs 0021-0024)).
However, when the toner does not move, the rotation body in the development device may unnecessarily rotate.
One of objects of the present invention is to prevent the rotation body inside the development device from unnecessarily rotating.
In order to achieve one or some of the objects, a developer accommodation unit of the present invention includes a developer accommodation part that accommodates a developer; an opening part that communicates with the developer accommodation part, and through which the developer is supplied to the developer accommodation part; a shutter member that is configured to be movable between an opened position and a closed position with respect to the opening part, wherein when the shutter member is located in the opened position, the developer is capable of moving to the developer accommodation part through the opening part, and when the shutter member is located in the closed position, the developer is blocked by the shutter member from moving into the accommodation part; a rotation body that is provided rotatable in the developer accommodation part; and a drive force transmission mechanism that transmits a drive force supplied from an outside the developer accommodation unit to the rotation body so that the rotation body rotates. The drive force transmission mechanism includes an engagement mechanism by which the drive force is transmitted to the rotation body when the shutter member is in the opened position.
In other views, a development device, an image forming unit and an image forming apparatus that the developer accommodation unit above are also disclosed in the application.
In another view, an image forming unit of the present invention includes a developer supply container that accommodates a developer; a development device that accommodates the developer supplied from the developer supply container; a communication part which is provided between the developer supply container and the development device and through which the developer passes from the developer supply container to the development device; and a shutter mechanism that opens and closes the communication part, wherein the development device includes: a rotation body that is provided rotatably, and a drive force transmission mechanism that transmits a drive force to the rotation body. Wherein the drive force transmission mechanism includes an engagement mechanism by which the drive force is transmitted to the rotation body when the shutter member opens the communication part.
In another view, a developer accommodation unit of the present invention includes a controller; a developer accommodation part that accommodates a developer; a shutter member that opens and closes the developer accommodation part; a rotation body provided rotatable in the developer accommodation part; and a drive force transmission mechanism that transmits a drive force to the rotation body when the developer accommodation part is open. Wherein the rotation body free-falls from a top of rotation to a surface of the developer after the drive force transmission mechanism causes the rotation body to rotate and reach the top of rotation, and the controller determines a remaining toner amount by calculating time of the drive force transmission mechanism from the top of rotation to the rotation body on the surface of the developer after the free-fall.
In another view, a developer supply container of the present invention for accommodating a developer and for supplying the developer to an image forming apparatus to which the developer supply container is configured to be installed so that the image forming apparatus forms a developer image using the developer supplied from the developer supply container, includes a circumference part that accommodates the developer; a developer supply opening that is disposed at a lower part of the circumference part so that the developer moves through the developer supply opening to an outside the circumference part; a shutter member that is arranged at the opening part and that is configured to be movable between an opened position and a closed position with respect to the developer supply opening, wherein when the developer supply container is installed, the shutter member is located in the opened position so that the developer is capable of moving through the developer supply opening, and when the developer supply container is not installed, the shutter member is located in the closed position and the developer is blocked by the shutter member from moving through the developer supply opening; a rotation body that is provided rotatable in the circumference part and in the vicinity of the developer supply opening; and a drive force transmission mechanism that transmits a drive force supplied from an outside the developer supply container to the rotation body so that the rotation body rotates. Wherein the drive force transmission mechanism includes an engagement mechanism by which the drive force is transmitted to the rotation body when the shutter member is in the opened position.
According to an embodiment of the present invention, the rotation body inside the development device is prevented from unnecessarily rotating.
Embodiments of the present application are described below in detail with reference to the drawings. Each drawing merely schematically illustrates the embodiments to allow sufficient understanding of the embodiments. Therefore, the embodiments are not limited to those shown in the drawings. In addition, dimensions of the members that configure the present application in the referenced figures may be enlarged to clarify the explanation. In addition, in each drawing, common and similar components are marked with the same symbols, and duplicative explanations are omitted. In the specification, unless specific definitions are present, up and upper mean a direction away from the ground along with the gravity direction. On the other hand, down and lower mean the opposite direction to the up direction, which is toward the ground along with the gravity.
A configuration of an image forming apparatus according to a first embodiment is explained below with reference to
The approximately S-shaped sheet carrying path 15 that includes the medium carrying rollers 16, 17, 18 and 19 is provided at the lower frame 28 of the image forming apparatus 100. The sheet supply cassette 20 that stores recording media and the stacker 21 is provided at ends of the sheet carrying path 15. The sheet feeding part 22 that feeds out a recording medium from the sheet supply cassette 20, the (sheet thickness) detection part 26 that detects a sheet thickness of the recording medium, the transfer belt unit 24 that adheres and carries the fed-out recording medium on the transfer belt 11 by an electrostatic effect, and the fuser 25 that fixes the toner on the recording medium are provided in the sheet carrying path 15. In addition, four development units 23 are arranged at positions to face the transfer belt unit 24 across the sheet carrying path 15.
The photosensitive body 1 of the image forming apparatus 100 is rotatable at a predetermined rotational speed. A photosensitive layer that stores a charge is formed on the surface of the photosensitive body 1. The charge on the surface is removed by exposure. A predetermined voltage can be applied on the surface of the photosensitive body 1. The charging member 2 contacts the surface of the photosensitive body 1 at a certain pressure. The LED head 3 as an exposure device for forming an electrostatic latent image on the surface of the photosensitive body 1 is provided above the photosensitive body 1. The cleaning blade 9 made of an elastic body is provided such that an edge part for scraping the toner 4 contacts the surface of the photosensitive body 1 at a certain pressure. A charge removal part 27 is provided for removing the charge on the surface of the photosensitive body.
Moreover, the toner supply roller 8 for supplying on the development roller 6 the toner 4 supplied from the toner cartridge 5 is provided to the development roller 6 to contact the development roller 6 at a certain pressure. The development blade 7 is provided to the development roller 6 to regulate the toner supplied to the development roller 6 from the toner supply roller 8 at a certain thickness. A predetermined bias voltage is applied to the photosensitive body 1 and the development roller 6, and the toner 4 is moved to the photosensitive body 1 due to the electrostatic force.
The toner cartridge 5 that accommodates the toner is provided above the development unit 23. The toner 4 is supplied from the inside of the toner cartridge 5. The toner cartridge 5 and the development unit 23 may be collectively referred to as an image forming unit. In addition, in the present embodiment, the development unit 23 is configured with a developer accommodation unit, development roller, toner supply roller and photosensitive body and so on. A frame 10 configures an outer frame of the development unit 23. The transfer belt 11 and the transfer roller 12 are positioned below the photosensitive body 1. A voltage is applied to the transfer belt 11 and the transfer roller 12 by a power source (not shown), and thereby the toner 14 is transferred onto the recording medium 13.
<Development Unit>
Next, a detailed configuration of the development unit 23 as the development device shown in
As shown in
(Frame)
The frame 10 as the accommodation part is formed to configure a certain internal space for accommodating the toner. An overall shape of the frame 10 of the development unit 23 is shown in
(First Shutter Member)
The first shutter member 57 is formed above a first toner supply opening 55 and is slidable in a longitudinal direction (direction perpendicular to the cross-section in
A first latch member 59 is formed on a side surface of the first shutter member 57. The first latch member 59 locks by engagement with a latch regulation part 61 formed on the frame 10 of the development unit 23 when the first shutter member 57 is closed. As a result, the slide operation of the first shutter member 57 is regulated. Although not shown in the figures, a movement amount regulation part that regulates the movement amount of the first shutter member 57 is provided on the frame 10. The opening and closing operation of the first shutter member 57 is linked to the remaining toner amount detection mechanism 31 (see
(Drive Force Transmission Mechanism)
As shown in
The deceleration gear 50 meshes with a drive gear 33 and the coupling gear 51. The coupling gear 51 meshes with the deceleration gear 50 and is slidable in the α1-α2 direction on the rotational shaft 52. The rotational shaft 52 is a rotational axis of the coupling gear 51 as the rotational shaft 52 axially supports the coupling gear 51. The first coupling part 53 and the second coupling part 54 configure a jaw clutch with approximately triangular jaw claws.
A detailed configuration of the spiral 97 and the coupling gear 51 is explained with reference to
In addition, the drive force transmission mechanism 98 is connected to the remaining toner amount detection mechanism 31 that detects the remaining toner amount in the development unit 23, the spiral 97 that includes the rotational shaft 52, a gear 85 that rotates the photosensitive body 1 (see
More specifically, the drive force of the motor 81 as a drive source is first transmitted to the gear 82 from a rotational shaft of the motor 81 and is then transmitted to the gear 83. The drive force is sequentially transmitted to the gear 84, the gear 85, the gear 86, the gear 87, the gear 88, a gear 89, a gear 90, and a gear 91. Then, the drive force is transmitted to the second coupling part 54 formed concentrically with the rotational shaft 52 of the spiral 97.
Next, transmission of the drive force of the motor 81 is determined by whether or not the second coupling part 54 and the first coupling part 53 that is slidable in the α1-α2 direction are in engagement with each other. Whether or not the second coupling part 54 and the first coupling part 53 that is slidable in the α1-α2 direction are in engagement with each other depends on the open/closed state of the first shutter member 57. Details are described later.
When the second coupling part 54 and the first coupling part 53 that is slidable in the α1-α2 direction are in engagement with each other, the drive force of the motor 81 is sequentially transmitted to the first coupling part 53, the coupling gear 51 that synchronizes with the first coupling part 53, the deceleration gear 50, and finally the drive gear 33 of the remaining toner amount detection mechanism 31. As a result, a agitation part 32 and a light blocking plate 34 of the remaining toner amount detection mechanism 31 are rotated by the drive force of the drive gear 33. When the second coupling part 54 and the first coupling part 53 that is slidable in the α1-α2 direction are not in engagement with each other, the drive force of the motor 81 is not transmitted to the coupling gear 51 and subsequent gears.
As described above, the motor 81 provided in the image forming apparatus 100 transmits the drive force via various gears and the drive force transmission mechanism 98 to provide the drive force (rotational force) to the remaining toner amount detection mechanism 31.
The remaining toner amount detection mechanism 31 detects the remaining toner amount in the development unit 23. In addition, the drive transmission to the remaining toner amount detection mechanism 31 links to the operation for the first shutter member 57 to slide in the α1 direction. Details of the remaining toner amount detection mechanism 31 are described later.
As shown in
Next, an interlock mechanism that causes the second coupling part 54 and the first coupling part 53 that is slidable in the α1-α2 direction to engage with each other by linkage with the open/closed state of the first shutter member 57, is described with reference to
The link holding part 63 is formed on the side surface at a part where the first shutter member 57 extends to an upper part of the drive force transmission mechanism 98. The link holding part 63 contacts a hook part 79 (engagement part) as a contacted part of the line member 64 as the first shutter member 57 slides in the α1 direction. Thereafter, the link holding part 63 pulls the link member 64 in the α1 direction.
The link member 64 is in an approximately L-shape. One end of the link member 64 is coupled to the coupling gear 51, and the other end includes the hook part 79. The link member 64 is attached to the first shutter member 57 that is slidable in the α1 direction. However, the slide in the α1 direction is restricted due to a compression coil spring 65 that generates a bias force in the α2 direction. Therefore, the link member 64 does not slide in the α1 direction unless a bias force greater than a certain level is applied in the α1 direction. One end of the compression spring 65 is held at a holding part 10a provided on the frame 10 of the development unit 23, and the other end extends and contracts by striking on a strike part 64b formed on the link part 64. As a result, when the link member 64 slides in the α1 direction, the link member 64 is biased in the α2 direction (a direction in which the first coupling part 53 of the coupling gear 51 and the second coupling part 54 formed on the rotation shaft 52 do not engage with each other). The link member 64 and the first shutter member 57 may be collectively referred to as a movement member.
When the first shutter member 57 slides in the α1 direction from a state where the first shutter member 57 is closed as shown in
When the first shutter member 57 further slides in the α1 direction from the state shown in
The link member 64 starts sliding after the first shutter member 57 slides by a certain distance such that the first coupling part 53 and the second coupling part 54 engage with each other when the first shutter member 57 is at a position where the first shutter member 57 is in the open state in which the toner can be stably supplied. Therefore, when the opening of the first shutter member 57 is not enough, the first coupling part 53 and the second coupling part 54 do not engage with each other. As a result, the drive force is not transmitted to the agitation part 32. Therefore, when the open state of the first shutter member 57 is incomplete (not in a fully open state), the later-discussed controller 99 does not determine that the first shutter member 57 is in the opens state (open). Details are explained at descriptions of the remaining toner amount detection mechanism 31 and the controller 99.
In addition, when a second shutter member 58 of the toner cartridge 5 is closed, the link member 64 is pressed in the α2 direction by the compression coil spring 65. Therefore, the first coupling part 53 of the coupling gear 51 and the second coupling part 54 of the rotational shaft 52 are maintained as being distant from each other.
(Remaining Toner Amount Detection Mechanism)
Configuration of the remaining toner amount detection mechanism 31 is explained with reference to
Configuration of the agitation part 32 is explained with reference to
Configuration of the light blocking plate 34 is explained with reference to
Here, the light blocking plate 34 is attached to the agitation part 32, such that the U-shape part 39, the crank part 44 of the agitation part 32, and the drive force receiving part 37 are at the same phase. That is, when the U-shape part 39 is positioned at the top of rotation with respect to the rotational center, the crank part 44 and the drive force receiving part 37 also position at the top of rotation with respect to the rotational center.
Configuration of the drive gear 33 is explained with reference to
As a result, the rotational body 32 is biased by, and rotates together with, the drive force transmission part 38 while the crank part 44 is positioned between the surface of the toner 4 to the top of rotation, and free-falls to the surface of the toner 4 at a rotational speed that is faster than the rotational speed of the drive force transmission part 38 due to the weight of the crank part 44, when the crank part 44 passes the top of rotation. On the other hand, the drive force transmission part 38 continues to rotate at the same rotational speed even after the top of rotation, and contacts the drive force receiving part 37 of the agitation part 32 that has free-fallen, at the surface of the toner 4. Then, the drive force transmission part 38 rotates together with the agitation part 32 again to the top of rotation. The U-shape part 39 of the light blocking plate 34 rotates in the same manner as the drive force receiving part 37 and the crank part 44 because the U-shape part 39 of the light blocking plate 34 is attached so as to be in the same phase as that of the drive force receiving part 37 and the crank part 44.
Configuration of the light guiding path 35 is explained with reference to
The light is transmitted to the light receiving element 49 only when the U-shape part 39 of the light blocking plate 34 is between the exit part 47 and the light receiving element 49. The light transmitted to the light receiving element 49 from the exit part 47 is blocked by the disc part 41 when the U-shape part 39 at other positions. Therefore, the light receiving element 49 reacts by repeating the guiding (passing or transmitting) or blocking of the light by the light blocking plate 34 that is linked to the operation of the agitation part 32 and outputs to the controller 99 a light reception signal that indicates that the light is being transmitted.
As shown in
Because the crank part of the agitation part 32 and the U-shape part 39 of the light blocking plate 34 are in the same phase, the U-shape part 39 of the light blocking plate 34 is at the lower part when the agitation part 32 free-falls and when the crank part 44 is at the lower part. Therefore, as shown in the time chart in
As such, the rotation operation of the agitation part 32 changes, and accordingly, the time for the U-shape part 39 of the light blocking plate 34 to transmit the light varies, depending on the amount of the toner 4 in the development unit 23. At the same time, the time for the disc part 41 to block the light varies. Therefore, the remaining toner amount detection mechanism 31 can determine the toner amount of the development unit 23 based on a difference between the light guide time and the light blocking time detected by the light receiving element 49.
<Controller>
The controller 99 shown in
(Determination of Remaining Toner Amount)
The controller 99 determines the remaining toner amount by using the light receiving signal that indicates that the light received from the light receiving element 49 has been transmitted. For example, the controller 99 determines that there is enough remaining amount of toner when a duty ratio (t2/T shown in
(Determination as to Whether or Not First Shutter Member 57 is Open)
The controller 99 determines whether or not the first shutter member 57 is open, by using the light receiving signal that indicates that the light received from the light receiving element 49 has been transmitted. For example, when the light receiving signal does not change, such as when the light receiving signal is continuously received during the rotation period T of the agitation part 32 (t2/T=1 shown in
<Toner Cartridge>
Configuration of the toner cartridge 5 as a supplement container is explained with reference to
The second shutter member 58 that surrounds a circumference part 66, that covers the second toner supply opening 56 (see
Furthermore, a second protrusion part 78 is provided on the bottom surface of the second shutter member 58. The second protrusion part 78 elastically deforms in the inward direction and depresses the first latch member 59 of the development unit 23 in the outward direction by contacting a guide part 66a (see
As shown in
<Other Structures Included in Development Device>
Other structures included in the development unit 23 as the development device are explained with reference to
Further, first protrusion parts 77 that depress the second latch members 60 provided on the bottom surface of the toner cartridge 5 are provided on the first shutter member 57 of the development unit 23. Furthermore, the first latch member 59 that is depressed by the second protrusion part 78 provided on the bottom surface of the toner cartridge 5 is provided on the first shutter member 57 of the development unit 23. When the toner cartridge 5 is installed on the development unit 23, the first protrusion parts 77 provided on the first shutter member 57 of the development unit 23 depresses the second latch members 60 of the toner cartridge 5 (see
In addition, the second protrusion part 78 provided on the toner cartridge 5 elastically deforms in the inward direction to a position at which the first latch member 59 releases engagement with the latch regulation part 61, by depressing the first latch member 59 of the development unit 23 (see
As shown in
Operation of the image forming apparatus according to the first embodiment is explained below with reference to the drawings used in the explanation of configurations as needed.
(Image Formation Operation)
An image formation operation performed by the image forming apparatus 100 is explained with reference to
Next, operation inside the development unit 23 during the image formation operation is explained. The toner 4 supplied from the toner cartridge 5 is supplied to the development roller 6 by the toner supply roller 7. The toner 4 supplied to the development roller 6 is restricted to a certain thickness by the development blade 8. The toner 4 is developed on the electrostatic latent image formed by the LED head 3 on the photosensitive body 1.
The developed toner 4 is electrostatically transferred to the recording medium 13 by the development roller 12. The toner 4 that was not transferred onto the recording medium 13 and remained on the surface of the photosensitive body 1 is scraped by the cleaning blade. The scraped toner 4 is carried to a waste toner collection part 29 by a waste toner carrying spiral (not shown). To make the electric difference between sections on the surface of the cleaned photosensitive body 1 used by the electrostatic latent image and other sections on the surface of the cleaned photosensitive body 1 even, charges on the entire surface of the photosensitive body 1 are removed by the light from the charge removal part 27, and the charging member 2 electrically charges the photosensitive body 1. This completes explanation of the image formation operation performed by the image forming apparatus 100.
(Installation and Removal Operation for Toner Cartridge)
Installation and removal operations for the toner cartridge 5 are explained with reference to
On the other hand, the ribs 76 (see
Moreover, at the same time as the above-described operation, the first protrusion parts 77 provided on the first shutter member 57 of the development unit 23 depresses the second latch parts 60 of the toner cartridge 5. As a result, the second latch members 60 are released from the latch regulation holes 67 (see
Movement of the first shutter member 57 is regulated by the movement amount regulation part (not shown) at a position at which the first shutter member 57 has slid by a certain distance. In accordance with the regulation, the movement of the second shutter member 58 of the toner cartridge 5 also stops. At the position at which the movement of the first shutter member 57 and the second shutter member 58 is regulated, both the first toner supply opening 55 (see
A frictional force is generated as the second shutter member 58 contacts the seal member 95 and seal member 96, as shown in
The operation to remove the toner cartridge 5 from the development unit 23 is performed by a reverse order of the above-described toner cartridge installation operation. This completes the explanation of the installation/removal operation of the toner cartridge 5.
(Operation to Transmit Drive Force to Detection Mechanism)
The drive force transmission operation to transmit the drive force to the remaining toner amount detection mechanism 31 as the detection mechanism, with reference to
As shown in
If the drive force is transmitted to the coupling gear 51 in a state where the drive force from the rotational shaft 52 can be transmitted to the coupling gear 51, the drive force is transmitted to the drive gear 33 via the deceleration gear 50, and the agitation part 32 (see
As shown in
The light receiving element 49 transmits, to the controller 99, the light receiving signal that indicates that the light has been transmitted. The controller 99 determines the remaining amount of toner using the light receiving signal that indicates that the light received from the light receiving element 49 has been transmitted.
On the other hand, depending on the slide position of the second shutter 58 of the toner cartridge 5, when the first shutter member 57 of the development unit 23 is at the position at which the first shutter member 57 has not completely slid as shown in
In this case, because the coupling gear 51 that slides in the α1 direction by linking with the link member 64 does not slide either, the first coupling part 53 is not coupled with the second coupling part 54 of the rotational shaft 52, and thereby the drive force is not transmitted to the drive gear 33. In addition, because the drive gear 33 does not rotate, the agitation part 32 and the light blocking plate 34 do not rotate together. Therefore, the light irradiated from the light emitting element 45 provided in the image forming apparatus 100 to the light receiving element 49 either continues to be blocked by the disc part 41 or to be guided by (passes through) the U-shape part 39.
If the operation of irradiation or blocking of the light to the light receiving element 49 continues and if the rotation period T of the agitation part 32 elapses, the controller 99 determines that the second shutter member 58 of the toner cartridge 5 is not accurately opened, stops the operation of the development unit 23 and displays an alarm. In addition, as shown in
As described above, the image forming apparatus 100 according to the first embodiment does not directly read the position of the first shutter member 57 by a sensor but uses the simple drive force transmission mechanism 98 and the remaining toner amount detection mechanism 31 for detecting the toner amount to determine the position of the first shutter member 57. As a result, the image forming apparatus 100 is produced at a lower cost than an image forming apparatus that directly reads the position of the first shutter member 57 by a sensor.
Moreover, the image forming apparatus 100 according to the first embodiment is prevented from performing the print operation in a state where the second shutter member 58 of the toner cartridge 5 has not slid and thus the toner 4 cannot be supplemented from the toner cartridge 5. Therefore, occurrence of thin print due to insufficient amount of toner is prevented.
Moreover, the image forming apparatus 100 according to the first embodiment is prevented from performing the print operation in a state where the toner 4 is not sufficiently supplemented from the toner cartridge 5 due to the sliding of the second shutter member 58 of the toner cartridge 5 not being enough. Therefore, occurrence of the thin print due to untimely supplementation of the toner during the print operation is prevented.
Furthermore, the image forming apparatus 100 needs to be idled immediately after the replacement of the toner cartridge until the toner is sufficiently filled up. In that case, in the conventional image forming apparatus that is incapable of reading the shutter position of the development unit, the toner is not filled in the development unit when the shutter is not open, causing the toner to be empty and an alarm for toner replacement to be displayed. However, the image forming apparatus 100 according to the first embodiment determines the position of the first shutter member 57. As a result, occurrence of similar phenomena is prevented. That is, the image forming apparatus 100 according to the first embodiment determines a case where the toner 4 cannot be supplemented in the development unit 23 because the amount of toner 4 in the toner cartridge 5 is low and a case where the toner 4 cannot be supplemented in the development unit 23 because the second shutter member 58 of the toner cartridge 5 is not accurately opened.
Of a configuration of an image forming apparatus 100a according to a second embodiment, those different from the image forming apparatus 100 according to the first embodiment are explained below with reference to
In the development unit 23a according to the second embodiment, when a width of the first toner supply opening 55 of the development unit 23a and a width of the second toner supply opening 56 of the toner cartridge 5 with respect to the movement direction of first shutter member 57 provided on the development unit 23a and the second shutter member 28 provided on the toner cartridge 5 are L1 and L2, respectively, as shown in
Of operations of the image forming apparatus according to the second embodiment, those different from the image forming apparatus according to the first embodiment are explained below with reference to
(Operation to Transmit Drive Force to Detection Mechanism)
As the toner cartridge 5 is installed, the second shutter member 58 of the toner cartridge 5 slides in the α1 direction, and the first shutter member 57 of the development unit 23a simultaneously slides in the α1 direction. When the first shutter member 57 slides by a certain length, the link holding part 63 of the first shutter member 57 contacts the hook part 79 of the link member 64, causing the link member 64 to start sliding as shown in
Here, in the development unit 23a according to the second embodiment, when a width of the first toner supply opening 55 of the development unit 23a and a width of the second toner supply opening 56 of the toner cartridge 5 with respect to the movement direction of first shutter member 57 and the second shutter member 28 are L1 and L2, respectively, as shown in
Next, when the first shutter member 57 of the development unit 23a is further slid in the α1 direction from the state shown in
Because the first toner supply opening 55 of the development unit 23a and the second toner supply opening 56 of the toner cartridge 5 are in the size relationship of L1−L2>L3, the first toner supply opening 55 and the second toner supply opening 56 reliably overlap with each other in a region where the first coupling member 53 and the second coupling member 54 engage with each other. This completes the operation to transmit the drive force to the remaining toner amount detection mechanism 31 as the detection mechanism.
As described above, with the development unit 23a included in the image forming apparatus 100a according to the second embodiment, the first toner supply opening 55 and the second toner supply opening 56 reliably overlap with each other in the slide direction of the first shutter member 57 and the second shutter member 58 when the transmission of the drive force to the remaining toner amount detection mechanism 31 starts, allowing the communication therebetween. As a result, a failure in supplying the toner from the toner cartridge 5 is prevented, allowing a secured print quality level by stable supply of toner.
The embodiments of the present application are described above. However, the present application is not limited to the embodiments but may be achieved without departing from its object. Below are exemplary modifications of the embodiments.
(Image Forming Apparatus)
In the first and second embodiments, the image forming apparatuses 100 and 100a are explained with an assumption of color printers. However, in addition to the color printers, the present embodiments may be applied in other printers, facsimile devices, photocopy machines and devices that include multiple functions.
(Remaining Toner Amount Detection Mechanism)
The remaining toner detection mechanism 31 according to the first and second embodiments is configured to include the light blocking plate 34 and the light guiding path 35. However, the remaining toner amount detection mechanism 31 may be configure to exclude the light guiding path 35 and to attach a reflection plate on the agitation part 32 instead of the light blocking plate 34, so that the reflection plate reflects the light from the light emitting element 45 to the light receiving element 49. In this case, the controller 99 can detect the toner amount in the development units 23 and 23a and the position of the first shutter member 57 based on the time during which the light receiving element 49 detects the light. Therefore, there are advantages similar to those achieved in the first and second embodiments.
(Drive Force Transmission Mechanism)
The first coupling part 53 and the second coupling part 54 of the drive force transmission mechanism 98 according to the first and second embodiments includes claw that have an approximately triangular shape and that are configured as a jaw clutch. However, the claws may be in other configurations. For example, the jaw clutch may be configured by rectangular claws, trapezoidal claws, spiral claws and the like. Alternatively, a friction clutch may be used.
In the above explanation of the first and second embodiments, the toner accommodation part P is formed in the development unit 23 or 23a (see
Number | Date | Country | Kind |
---|---|---|---|
2011-137509 | Jun 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7738817 | Sasae et al. | Jun 2010 | B2 |
20080124119 | Oda | May 2008 | A1 |
20120251186 | Arai | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
A-2006-023537 | Jan 2006 | JP |
2006-243763 | Sep 2006 | JP |
2008-164798 | Jul 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20120328307 A1 | Dec 2012 | US |