The disclosure of Japanese Patent Application No. 2007-278967 filed on Oct. 26, 2007 including specification, drawings and claims is incorporated herein by reference in its entirety.
1. Technical Field
The present invention relates to a developer apparatus which comprises a toner carrier roller which carries toner on a surface thereof, an image forming apparatus and a developing method of developing an electrostatic latent image with toner using this roller.
2. Related Art
Techniques for developing an electrostatic latent image with toner include an apparatus which causes a surface of a toner carrier roller to carry toner, the toner carrier roller being shaped approximately like a cylinder. For the purpose of improving the characteristics of toner carried on the surface of such a toner carrier roller, the applicant of the present application has earlier disclosed a structure of a toner carrier roller having a cylindrical shape that the surface of the roller includes convex sections which are regularly arranged and a concave section which surrounds the convex sections (JP-A-2007-127800). Since the concavo-convex patterns in the surface are regulated and uniform, such a structure is advantageous in that it permits easy control of the thickness of a toner layer which is carried on the surface of the roller, the charge level and the like.
However, in the case where a toner carrier roller having the structure above is used, owing to the evenness of the convexoconcave, scattering of toner from the surface of the toner carrier roller, fog and the like will be a problem unless a toner layer thickness on the toner carrier roller is strictly controlled. According to research by the inventors of the invention, one of the primary causes of these phenomena appears to be that when old toner whose characteristics have degraded in accordance with use is present together with new toner having excellent characteristics, the old toner tends to be carried particularly in a far layer from the surface of the toner carrier roller. In a toner layer far from the surface of the toner carrier roller, adhesion of toner to the toner carrier roller is weak. Hence, it is considered that leakage and scattering of toner and fog are easy to occur.
An advantage of some aspects of the invention is to provide technology for reducing leakage and scattering of toner from a toner carrier roller, fog and the like in a developer apparatus, an image forming apparatus and a developing method which use a toner carrier roller whose surface is provided with convexoconcave.
According to a first aspect of the invention, there is provided a developer apparatus, comprising: a container which houses toner; a toner carrier roller which is provided, on a surface thereof, with a plurality of convex sections which are regularly arranged and a concave section which surrounds the convex sections, is shaped approximately like a cylinder, and rotates while carrying a toner layer of charged toner supplied from the container on the surface thereof; and a restriction member which abuts on the toner layer on the surface of the toner carrier roller to restrict a thickness of the toner layer, and restricts the toner layer carried by the convex sections within the surface of the toner carrier roller to one layer or less.
According to a second aspect of the invention, there is provided an image forming apparatus, comprising: an image carrier which carries an electrostatic latent image; and a developer which develops the electrostatic latent image carried by the image carrier with toner and includes a toner carrier roller which is provided, on a surface thereof, with a plurality of convex sections which are regularly arranged and a concave section which surrounds the convex sections, is shaped approximately like a cylinder, and carries a toner layer of charged toner on the surface thereof, wherein the toner layer carried by the convex sections within the surface of the toner carrier roller is comprised of one layer or less.
According to a third aspect of the invention, there is provided a developing method, comprising: arranging an approximately cylindrical toner carrier roller, which carries a toner layer of charged toner on a surface thereof, opposed to an image carrier which carries an electrostatic latent image, the toner carrier roller being provided, on the surface thereof, with a plurality of convex sections which are regularly arranged and a concave section which surrounds the convex sections; developing the electrostatic latent image carried by the image carrier with toner; and restricting the toner layer carried by the convex sections within the surface of the toner carrier roller to one layer or less.
The findings of the inventors of the invention based on various experiments, although will be described in detail later, will now be described briefly. Of toner carried by the surface of a toner carrier roller, new toner having excellent characteristics (hereinafter referred to as “new toner”) gathers near the surface of the toner carrier roller, whereas toner whose characteristics have degraded with long use (hereinafter referred to as “old toner”) is contained in concentrated amounts in toner which is on top of the new toner and which is carried as it is separated from the surface of the toner carrier roller. In other words, a toner layer made mainly of new toner is formed first on the surface of the toner carrier roller, and another toner layer containing a big amount of old toner is formed on the surface of the previous toner layer. Such old toner, owing to its reduced contact with the toner carrier roller, is not charged sufficiently, and hence, may leak, scatter or cause fog.
Noting this, according to the invention, a toner layer carried by convex sections in a surface of a toner carrier roller is restricted to one layer or less using a restriction member. This will ensure that toner carried on the surface of the toner carrier roller has favorable characteristics. Hence, it is possible to suppress scattering of toner, fog, and the like.
The above and further objects and novel features of the invention will more fully appear from the following detailed description when the same is read in connection with the accompanying drawing. It is to be expressly understood, however, that the drawing is for purpose of illustration only and is not intended as a definition of the limits of the invention.
In the engine part EG, a photosensitive member 22 is disposed so that the photosensitive member 22 can freely rotate in an arrow direction D1 shown in
An exposure unit 6 emits a light beam L toward the outer circumferential surface of the photosensitive member 22 charged by the charger unit 23. This exposure unit 6 exposes the photosensitive member 22 by the light beam L in accordance with the image signal given from the external apparatus to form an electrostatic latent image corresponding to the image signal.
The developer unit 4 develops thus formed electrostatic latent image with toner. Specifically, the developer unit 4 includes a support frame 40 which is provided rotatable about a rotation shaft orthogonal to a plane of
The space inside the housing 41 is divided by a partition wall 41a into a first chamber 411 and a second chamber 412. The feed roller 43 and the developing roller 44 are both provided in the second chamber 412. With a rotation of these rollers, toner within the second chamber 412 flows and is fed to the surface of the developing roller 44 while getting agitated. Meanwhile toner stored inside the first chamber 411 would not be moved by the rotation since it is isolated from the feed roller 43 and the developing roller 44. This toner is mixed with toner stored in the second chamber 412 and is agitated by the rotation of the developer unit 4 while holding the developer.
As described above, in this developer, the inside of the housing is separated into the two chambers, and the side walls of the housing 41 and the partition wall 41a surround the feed roller 43 and the developing roller 44, and accordingly, the second chamber 412 of relatively small volume is provided. Therefore, even when a remaining toner amount is small, toner is supplied efficiently to near the developing roller 44. Further, supply of toner from the first chamber 411 to the second chamber 412 and agitation of the whole toner are performed by the rotation of the developer unit 4. Hence, an auger-less structure is realized that an agitator member (auger) for agitating toner is not provided inside the developer.
Further, in the developer 4K, a restriction blade 46 is disposed which restricts the thickness of the toner layer formed on the surface of the developing roller 44 into the predetermined thickness. The restriction blade 46 includes a plate-like member 461 made of elastic material such as stainless steel, phosphor bronze or the like and an elastic member 462 which is attached to a front edge of the plate-like member 461 and is made of a resin member such as silicone rubber and a urethane rubber. A rear edge of the plate-like member 461 is fixed to the housing 41. The elastic member 462 attached to the front edge of the plate-like member 461 is positioned on the upstream side to the rear edge of the plate-like member 461 in a rotation direction of the developing roller 44 shown by an arrow in
The toner layer thus formed on the surface of the developing roller 44 is gradually transported, by the rotation of the developing roller 44, to an opposed position facing the photosensitive member 22 on a surface of which the electrostatic latent image has been formed. When a developing bias from a bias power source not shown is applied upon the developing roller 44, the toner carried on the developing roller 44 partially adheres to respective portions within the surface of the photosensitive member 22 in accordance with a surface potential thereof. The electrostatic latent image on the photosensitive member 22 is visualized as a toner image in this toner color in this manner.
The housing 41 further includes a seal member 47 which is pressed against the surface of the developing roller 44 on the downstream side to the opposed position facing the photosensitive member 22 in the rotation direction of the developing roller 44. The seal member 47 guides toner which remains on the surface of the developing roller 44 after moving past the opposed position facing the photosensitive member 22 to inside the housing 41 and prevents toner inside the housing from leaking to outside.
Each one of the convex sections 441 projects forward from the plane of
The length L1 of a side of the top surface of each convex section 441 and a distance L2 between the respective convex sections may be but are not limited to 10 through 100 μm approximately for instance. The shape, the arrangement and the like of the convex sections 441 are not limited to those described here. A difference in height between the convex sections 441 and the concave section 442 will be described later.
Referring back to
At this time, for the purpose of correctly transferring the image on the intermediate transfer belt 71 onto the sheet S at a predetermined position, the timing of feeding the sheet S into the secondary transfer region TR2 is controlled. To be more specific, there is a gate roller 81 disposed in front of the secondary transfer region TR2 on the transportation path F. The gate roller 81 starts to rotate in accordance with the timing of rotation of the intermediate transfer belt 71, and accordingly, the sheet S is fed into the secondary transfer region TR2 at a predetermined timing.
Further, the sheet S on which the color image is thus formed is transported to a discharge tray 89 which is disposed at a top surface of the apparatus main body via a pre-discharge roller 82 and a discharge roller 83 after the toner image is fixed to the sheet S by a fixing unit 9. Meanwhile, when images are to be formed on the both surfaces of the sheet S, the discharge roller 83 starts rotating in the reverse direction upon arrival of the rear end of the sheet S, which carries the image on its one surface as described above, at a reversing position PR located behind the pre-discharge roller 82, thereby transporting the sheet S in the arrow direction D3 along a reverse transportation path FR. The sheet S is returned back to the transportation path F again before arriving at the gate roller 81. At this time, the surface of the sheet S which abuts on the intermediate transfer belt 71 in the secondary transfer region TR2 and is to receive a transferred image is opposite to the surface which already carries the image. In this fashion, it is possible to form images on the both surfaces of the sheet S.
Further, as shown in
Further, as shown in
In
Further, there is a cleaner 76 in the vicinity of the roller 75. The cleaner 76 moves nearer to and away from the roller 75 driven by an electromagnetic clutch not shown. In a condition that the cleaner 76 is moved nearer to the roller 75, a blade of the cleaner 76 abuts on the surface of the intermediate transfer belt 71 mounted on the roller 75 and scrapes off the toner remaining on and adhering to the outer circumferential surface of the intermediate transfer belt 71 after the secondary transfer.
Furthermore, a density sensor 60 is disposed in the vicinity of the roller 75. The density sensor 60 confronts a surface of the intermediate transfer belt 71 and measures, as needed, the density of the toner image formed on the outer circumferential surface of the intermediate transfer belt 71. Based on the measurement results, the apparatus adjusts the operating conditions of the individual parts thereof that affects the image quality such as a developing bias applied to each developer, the intensity of the exposure beam L, and tone-correction characteristics of the apparatus, for example.
The density sensor 60 is structured to output a signal corresponding to a contrasting density of a region of a predetermined area defined on the intermediate transfer belt 71 using a reflective optical sensor, for example. The CPU 101 is adapted to detect image densities of individual parts of the toner image on the intermediate transfer belt 71 by periodically sampling the output signals from the density sensor 60 while moving the intermediate transfer belt 71 in rotation.
A detailed description will now be given on restriction of toner layers on the developing roller 44 in the developer 4K, . . . of the image forming apparatus having the structure described above. In the developer 4K, . . . of this image forming apparatus, the feed roller 43 abuts on the surface of the developing roller 44 inside the housing 41 which contains toner T as described earlier. Further, the restriction blade 46 abuts on a toner layer which is on the developing roller at the downstream side with respect to a feed roller abutting position in the rotation direction of the developing roller, and accordingly, the thickness of the toner layer which is carried on the surface of the developing roller 44 is regulated. When the thickness is not appropriate, the image forming operation will be influenced. Specifically, when the toner layer is too thin, the amount of toner transported to the opposed position facing the photosensitive member 22 will be a little and a sufficient image density will not be obtained. On the other hand, when the toner layer is too thick, toner may fall off from the surface of the developing roller 44 and leak inside the apparatus, may scatter around from the developing roller as a cloud, and may adhere onto the photosensitive member 22 to cause fog. These phenomena will hereinafter be referred to as “toner scattering and the like”.
First, the principle of toner layer restriction in this embodiment will be described. In a condition that a relatively thick toner layer (that is, the thickness being approximately a several times as large as the volume average particle diameter of toner) was formed, the inventors of the invention conducted various experiments upon the causal correlation between the condition of the surface of the developing roller 44 on which the toner layer is formed and toner scattering and the like. As a result, it has become clear that the model below would explain the mechanism of toner scattering and the like.
Out of these, new toner Tn, having high fluidity and a high charge level, is attracted toward the surface of the developing roller 44 due to electrostatic force Ft. On the other hand, old toner is inferior to new toner in terms of fluidity and charging characteristics because of burying, separation or the like of an additive, and hence, the power and the speed attracted to the developing roller 44 of old toner are weaker and slower than those of new toner. As a result, toner directly contacting the developing roller 44 is mostly new toner Tn as shown in
On the other hand, in a layer deposited upon the first layer thus formed, new toner Tn and old toner To are mixed together as shown in
Meanwhile, depending upon the electrostatic force of the developing roller 44 and the charging characteristics of toner itself, two or more layers of new toner may be formed on the surface of the developing roller 44 as shown in
As described above, of toner layers formed on the surface of the developing roller 44, in an outer layer far from the developing roller 44, the rate of old toner To is higher. Old toner To only weakly adheres to the surface of the developing roller 44 or to a toner layer on this surface since it has a low charge level. As a result, old toner To falls off from the surface of the developing roller 44 and scatters inside the apparatus while being transported by the rotation of the developing roller 44. Further, toner charged to the polarity opposite to the intended polarity adheres to a region of an electrostatic latent image on the photosensitive member 22 to which toner is not supposed to adhere, and causes fog.
This model can explain the following experimental fact. For example, when a developer containing only a little remaining toner after being used over a long period of time was filled with new toner, the occurrence of toner scattering, fog and the like temporarily increases but gradually decreases thereafter. The reason of this appears to be that mixing of a great amount of new toner with degraded toner inside the developer resulted in dominant presence of new toner near the surface of the developing roller 44 and a large amount of old toner in the outer-most surface of a toner layer. It appears that during continued use, new toner would be selectively used, which would reduce a difference of the characteristics of new toner from those of old toner, relieve the layer separation phenomenon and eventually decrease the degree of toner scattering and the like.
This is backed by an experiment of replenishing toner of a different color from an original toner color. The surface of the developing roller 44 was observed after replenishing yellow toner in the cyan developer 4C inside of which a remaining toner amount was small, for instance. As a result, a toner layer of a greenish color resulted from mixing of cyan toner and yellow toner was formed on the surface of the developing roller. However, when the surface toner was removed with blown air, through brushing off or by otherwise appropriate method, the color of the surface of the developing roller 44 changed to yellow gradually. To be noted in particular, toner in the first layer directly contacting the surface of the developing roller 44 had a yellow color which was almost the same as the original color of the yellow toner. On the other hand, when the image forming operation was executed using this developer, it was primarily cyan toner that was scattered around the developer or caused fog on the photosensitive member 22.
From these results, it turns out that layer separation phenomenon occurs in which a layer near the surface of the developing roller 44 is dominated by new toner, whereas a layer far from the surface contains a large amount of old toner, and that it is principally old toner that causes toner scattering and the like.
Meanwhile, the terms “new toner” and “old toner” used herein express a concept regarding relative differences in terms of characteristics among toner particles inside the developer, and therefore, are not necessarily relevant to whether toner itself is fresh or not. For example, even fresh toner may contain some amount of toner whose characteristics are inadequate like old toner described above, in which case such toner would act like “old toner”. Further, even toner which is not fresh toner can be considered to be “new toner” if relative differences in terms of characteristics among toner particles are small.
A similar phenomenon could occur even when the developers do not have slots for replenishing toner, not to mention when the developers have such slots. In the case where the developer is partitioned into two or more chambers and toner is fed from one chamber to other chamber at a certain timing as in the embodiment for example, new toner gets mixed with old toner at a timing of feeding of toner from one chamber to other chamber. Although no auger is provided inside the developers in this embodiment, when the developer 4K, . . . rotates in accordance with rotation of the rotary developer unit 4, new toner stored in the first chamber 411 flows into the second chamber 412 which contains old toner at an increased ratio and gets mixed with the old toner. This remains unchanged in a structure where a toner transportation mechanism such as an auger is disposed inside a developer, and a structure where toner is replenished regularly from a toner tank which is disposed separately from a developer.
One can see from the above that prevention of layer separation phenomenon in a toner layer carried by the developing roller 44 is effective in reducing toner scattering and the like. It is ideal to form a uniform toner layer of new toner all over the surface of the developing roller 44 as shown in
In this embodiment, a distance G1 between an upstream-most edge 462a of the elastic member 462 of the restriction blade 46 in the rotation direction of the developing roller and the surface of the developing roller 44 which is the closest to the upstream-most edge 462a, more particularly the convex sections 441, is managed, to thereby restrict toner layers carried by the convex sections 441 which are in the surface of the developing roller 44 to one layer or less. Describing this in detail, the distance G1 is set so that the relationship below is satisfied:
G1<2·Dave (Formula 1)
where Dave denotes the volume average particle diameter of toner T. The distance is adjusted by moving a position at which the restriction blade 46 is attached to the housing 41 in an adjustment direction shown in
Toner layer restriction in such an instance will now be described with reference to
In a region labeled as “BEFORE RESTRICTION” in
New toner and old toner are mixed in the toner scraped off in this manner. New toner Tn of this is under strong electrostatic force which attracts the new toner Tn toward the developing roller 44 since the new toner Tn has a high charge level. Meanwhile, old toner having a low charge level as well is present at an upstream side of the abutting position with the restriction blade 46 in the moving direction of the developing roller 44 (that is, at the left-hand side in
On the convex sections 441 in particular, almost all toner is new toner since the toner layer is restricted to one layer or less. On the other hand, in the concave section 442, toner layer of two or more layers can be formed to the extent allowed by the gap between the concave section 442 and the restriction blade 46. However, since old toner is expelled also from these layers as described above, the rate of the old toner to the total toner carried in the concave section 442 can be made sufficiently low.
In contrast, in the case where the distance G1 is double the volume average particle diameter Dave of toner or larger, toner in two or more layers reaches the abutting position with the restriction blade 46 while staying adhered to the convex sections 441. The toner forming the second and farther toner layers contains old toner at a high rate, and such old toner is pressed against the surface of the developing roller 44 by the abutting pressure exerted by the restriction blade 46. This makes the convex sections 441 within the surface of the developing roller 44 exposed to outside the developer carry a great amount of old toner, which leads to scattering of toner, fog, and the like.
In the above embodiment, the distance G1 between the convex sections 441 in the surface of the developing roller 44 and the restriction blade 46 is smaller than double the volume average particle diameter Dave of toner. However, the difference in height between the convex sections 441 and the concave section 442 is not expressly specified. Hence, when the difference in height sufficiently exceeds a toner particle diameter for instance, the concave section 442 carries several toner layers. This is preferable for the purpose of increasing the amount of transported toner. However, this can not be the best from a standpoint of suppressing toner scattering, fog and the like since it is difficult to completely remove old toner contained in these toner layers. Consequently, the following may be exercised in an attempt to further reduce the degree of toner scattering, fog, and the like.
In this embodiment, the developing roller 44b is structured such that the difference in height G2 between convex sections 4410 and concave section 4420 formed in the surface of the developing roller 44b is smaller than the volume average particle diameter Dave of toner. Meanwhile, the distance between the convex sections 4410 of the developing roller 44b and the restriction blade 46 is a value G1 which is smaller than double the volume average particle diameter Dave of toner, as in the above embodiment. This makes a distance G3 between the concave section 4420 and the restriction blade 46 smaller than triple the volume average particle diameter Dave of toner. Hence, toner layers carried in the concave section 4420 are restricted to less than two layers. Only toner in the layer close to the surface of the developing roller 44b is left in this manner. Therefore, the amount of old toner carried on the surface of the developing roller 44b, particularly on the concave section 4420, can be further reduced, and hence, it is possible to further reduce the degree of toner scattering, fog, and the like.
Further, the distance G3 between the concave section 4420 of the developing roller 44b and the restriction blade 46 may be smaller than double the volume average particle diameter Dave of toner while keeping that the difference in height G2 between the convex sections 4410 and the concave section 4420 is smaller than the volume average particle diameter Dave of toner. Specifically, the distance G1 and the difference in height G2 may be set so as to satisfy the formulae below:
G2<Dave,G3=G1+G2<2Dave (Formula 2)
This makes the concave section 4420 carry only one toner layer or less. Further, since the first layer contains almost no old toner, it is possible to form a toner layer which is close to the ideal layer shown in
Next, a description will now be given on a method of determining whether the convex sections 441 of the developing roller 44 carry less than two toner layers. In the above embodiment, the distance between the tip end of the restriction blade 46 and the developing roller 44 is regulated so as to restrict toner layers in the convex sections 441 to one layer or less. However, other approach may be chosen as long as it can ensure that only one toner layer or less covers the convex sections 441. Whether the convex sections 441 carry less than two toner layers may be determined in the following fashion for instance.
(1) an instance like the convex section 441a, that is, toner lumps TC partially adhere to the convex section 441a so that the surfaces of the convex section 441a is partially exposed;
(2) an instance like the convex section 441b, that is, the convex section 441b is completely covered with toner; and
(3) an instance like the convex section 441c, that is, almost no toner adheres to the convex section 441c so that the convex section 441c is entirely exposed.
In general, toner tends to adhere to an exposed surface of a developing roller than to a toner layer. Hence, superimposition of toner despite exposure of the surface of the developing roller seems unlikely. Therefore, each toner lump TC is considered to be made of one layer of toner in the instance (1). On the contrary, in the instance (2) that the convex section is completely covered with toner, it is highly possible that two or more layers of toner adhere to the convex section. Hence, ideal states are the instances (1) and (3) and the most ideal state is the instance (1).
At this stage, the rate of the area covered with toner to the area of the top surface of each convex section is called a “convex-section coverage” hereinafter. Consequently, it can be said that a preferable state is where “the convex-section coverage is less than 100%”. It should not matter even though the convex-section coverage is 100% as long as there is just one toner layer. However, such is an extremely critical. That is, one should consider that two or more toner layers are carried in the event that the convex sections are completely covered with toner. Hence, the most preferable state in the invention is where the convex-section coverage is less than 100%, that is, the convex sections are not completely covered with toner but the surfaces of the convex sections are at least partially exposed.
A first method for determining this state is a method of visually judging a microscopic image IM as shown in
As a second method, the image IM may be binarized through image processing and the state may be determined based on the binary value. For example, reflected light from the respective portions of the surface of the developing roller may be grouped into reflected light from toner and reflected light from the surface of the developing roller based on the levels of the reflected light, and whether the surface of the developing roller is exposed or not may be determined from the grouping result.
A third method may be utilization of a cross section profile of the surface of the developing roller.
From a standpoint of determining whether the top surfaces of the convex sections are partially exposed, instead of the convex-section coverage which is indicative of the rate of the area of toner adhering portions to the area of the top surfaces of the convex sections, evaluation may be made using the rate of the area of exposed portions to the area of the entire surface of the developing roller. This is because the almost entire surface of the developing roller is covered with toner except for the convex sections, and hence, the exposed portions are nearly limited to the convex sections as shown in
As described above, in the above embodiments, the developer 4K, . . . corresponds to the “developer apparatus” of the invention, and the housing 41, the developing roller 44 and the restriction blade 46 respectively function as the “container”, the “toner carrier roller” and the “restriction member” of the invention. Further, the first chamber 411 and the second chamber 412 inside the developer 4K, . . . correspond to the “toner storage chambers” of the invention. The rotary developer unit 4 which rotates the entire developer and sends toner held in the first chamber into the second chamber functions as the “toner transportation mechanism” of the invention. In the image forming apparatus of the above embodiments, the developer 4K, . . . and the photosensitive member 22 respectively function as the “developer” and the “image carrier” of the invention.
Thus, in the above embodiments, toner layers carried by the convex sections 441 provided within the surface of the developing roller 44 are restricted to one layer or less. This makes it possible to reduce the amount of old toner carried on the convex sections 441. In addition, the distance G1 between the convex sections 441 in the surface of the developing roller 44 and the restriction blade 46 is smaller than double the volume average particle diameter Dave of toner. Hence, old toner contained in toner layers is replaced with new toner which is scraped off by the restriction blade 46, thereby reducing the amount of old toner carried on the concave section 442 as well. This makes it possible to reduce the amount of old toner which is transported to outside the developer with the rotation of the developing roller 44. As a result, according to the above embodiments, it is possible to greatly reduce scattering of toner to outside the developer, fog, and the like.
To realize such toner layer restriction, the distance between the upstream-side edge of the restriction member in the rotation direction of the toner carrier roller and the convex sections within the surface of the toner carrier roller is set to be smaller than double the volume average particle diameter of toner for instance. According to such a structure, of toner adhering to the convex sections within the surface of the toner carrier roller, the restriction member scrapes off toner in the second and farther layers but not the first layer which has directly adhered to the surface of the toner carrier roller. Thus scraped toner contains new toner which has a high charge level, and this highly charged toner replaces old toner which is present near the surface of the toner carrier roller and has a low charge level. Old toner is removed in this manner from near the surface of the toner carrier roller, which makes it possible to reduce old toner adhering to the toner carrier roller. Hence, it is possible to suppress toner scattering from the toner carrier roller, the occurrence of fog, and the like.
Further, the difference in height between the convex sections and the concave section within the surface of the toner carrier may be set to be smaller than the volume average particle diameter of toner. Degraded toner easily enters the concave section when the difference in height between the convex sections and the concave section within the surface of the toner carrier is large. In particular, when the difference in height is equal to or larger than the volume average particle diameter of toner, old toner is likely to adhere to new toner which has directly adhered to the concave section. On the contrary, when the difference in height between the convex sections and the concave section is smaller than the volume average particle diameter of toner, old toner adhering to the concave section gets exposed to the surface of the toner carrier roller and is likely to be scraped off by the restriction member. This reduces the amount of old toner remaining on the surface of the toner carrier roller, and hence, it is possible to suppress the scattering of toner, the occurrence of fog, and the like.
Further, the distance between the upstream-side edge of the restriction member in the rotation direction of the toner carrier roller and the concave section within the surface of the toner carrier roller may be set to be smaller than double the volume average particle diameter of toner. This regulates the toner layer thicknesses in both the convex sections and the concave section of the toner carrier roller to less than two layers. Hence, it is possible to reduce the amount of old toner adhering to the surface of the toner carrier roller.
Further, the surface of the toner carrier roller may be made of a conductive material. According to experiments performed by the inventors of the invention, the layer separation phenomenon above, namely, the phenomenon that a layer mainly containing new toner and a layer mainly containing old toner are layered one atop the other on the surface of the toner carrier roller is particularly obvious when the surface of the toner carrier roller is made of a conductive material. Application of the concept of the invention to a developer apparatus having such a structure would be more effective.
The effect of the invention is also remarkable when the container includes a slot for replenishing toner from outside. A developer apparatus having such a structure could give rise to a phenomenon that a great amount of new toner is introduced through the slot upon old toner which has been used for long time and is stored inside the container. The above layer separation phenomenon would easily occur in such an instance, thereby causing toner scattering, fog, and the like. Application of the concept of the invention to a developer apparatus having such a structure would suppress toner scattering, fog and the like.
This remains unchanged in a structure which comprises a toner transportation mechanism, wherein the container includes a plurality of toner storage chambers which store toner, the surface of the toner carrier roller is at least partially exposed inside one of the toner storage chambers, and the toner transportation mechanism transports toner housed in other toner storage chamber to the one toner storage chamber. This is because new toner is fed onto old toner which is present near the toner carrier roller from other toner storage chamber in this structure as well.
Further, in the event that the volume average particle diameter of toner is 5 μm or larger, the van der Waals attraction acting among toner is weak and toner therefore rolls well, which would lead to layer separation phenomenon. In addition, since the van der Waals attraction is weak, leakage and scattering of toner increase when the layer separation phenomenon occurs. The effect of the invention is therefore particularly significant in the case where such toner is used.
It should be noted that the invention is not limited to the embodiments above, but may be modified in various manners in addition to the embodiments above, to the extent not deviating from the object of the invention. For example, although the convex sections 441 of the developing roller 44 are lozenge-shaped in the above embodiments, this is not limiting. The convex sections may be shaped differently such as circles and triangles for instance.
Although the developing roller 44 is metallic cylinder in the above embodiments, the invention is also applicable to an apparatus comprising a developing roller made of other material. However, experiments performed by the inventors of the invention have identified that layer separation phenomenon described above would be remarkable when a developing roller whose surface is made of a conductive material such as a metallic developing roller and a developing roller made of non-metal with metal-plating thereon is used. Hence, the invention would be very effective when applied to an apparatus comprising a developing roller which has such a conductive surface. In this respect, the invention is also effective to an apparatus comprising a developing roller which is made conductive by dispersing a conductive material such as carbon black and metallic fine powder in a cylinder made of rubber, resin or the like for instance.
Further, although the restriction blade 46 is prepared by attaching the elastic member 462 made of resin to a plate-like member 461 made of metal in the embodiment above, this structure is not limiting. The restriction blade may be a plate of metal alone or a metal plate coated with resin, for example. In addition, an appropriate bias potential may be applied to the restriction blade.
While toner for use in the above embodiments is not specifically limited, the effect of the invention is particularly significant when monocomponent toner whose change in charging characteristics with time is relatively great is used. Further, toner whose particle diameter is 5 μm or larger and which exhibits weak van der Waals attraction, or toner in which the coverage of an additive over core particles of toner is 100% or more in particular has a high flowability, and hence, toner separation phenomenon easily occurs, and leakage and scattering of toner are increased. When applied to an apparatus which uses such toner, the invention is exceptionally effective.
The image forming apparatus in the above embodiment is a color image forming apparatus in which the developers 4K, . . . are attached to the rotary developer unit 4 and toner inside the developers is mixed when the developers 4K, . . . rotate. However, the application of the invention is not limited to this as mentioned earlier. The invention is also applicable to a monochromatic image forming apparatus which includes only one developer and forms a monochromatic image for example. Further, the invention is favorably applied to an image forming apparatus which uses a developer having the following structure as well.
Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiment, as well as other embodiments of the invention, will become apparent to persons skilled in the art upon reference to the description of the invention. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2007-278967 | Oct 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6094554 | Ichikawa et al. | Jul 2000 | A |
6151474 | Ichikawa et al. | Nov 2000 | A |
6163674 | Ichikawa et al. | Dec 2000 | A |
6192209 | Ichikawa et al. | Feb 2001 | B1 |
6198893 | Ichikawa et al. | Mar 2001 | B1 |
6226484 | Ichikawa et al. | May 2001 | B1 |
6295433 | Ichikawa et al. | Sep 2001 | B1 |
6336022 | Ichikawa et al. | Jan 2002 | B2 |
7149440 | Arai | Dec 2006 | B2 |
7211361 | Arai | May 2007 | B2 |
20060171737 | Nishimura et al. | Aug 2006 | A1 |
20070110484 | Yamada et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
06-138774 | May 1994 | JP |
10-239895 | Sep 1998 | JP |
2003-057940 | Feb 2003 | JP |
2004-126094 | Apr 2004 | JP |
2007-121948 | May 2007 | JP |
2007-121950 | May 2007 | JP |
2007-127800 | May 2007 | JP |
2007121949 | May 2007 | JP |
2007-140080 | Jun 2007 | JP |
2007-199423 | Aug 2007 | JP |
2007199424 | Aug 2007 | JP |
2007-271951 | Oct 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090110442 A1 | Apr 2009 | US |