An electro-photographic image forming apparatus forms a visible toner image on a photoconductor by supplying a toner to an electrostatic latent image formed on the photoconductor, transfers the toner image onto a print medium directly or via an intermediate transfer medium, and then fuses the transferred toner image on the print medium.
A developer is accommodated in a replaceable developer cartridge. The developer cartridge is replaced when the developer accommodated therein runs out. The time when a developer cartridge is replaced may be determined by detecting a developer level in the developer cartridge. The developer level in the developer cartridge may be predicted by calculating developer consumption. The developer consumption may be predicted through the number of printed pixels, a driving time of a motor for supplying a developer to the body of a printer, or the like.
An electro-photographic image forming apparatus is provided with a replaceable developer cartridge that accommodates a developer. To determine when a developer cartridge is to be replaced, a level of a developer remaining in the developer cartridge may be detected. The developer level may be detected in an indirect method in that an amount of developer consumption may be predicted and the developer level may be detected based on the predicted amount of developer consumption. In such a method, if the predicted amount of developer consumption differs from an actual amount of developer consumption, an error may occur in determining when to replace the developer cartridge. The developer cartridge may be locked into a body according to a locking structure when mounted on the body. When the developer in the developer cartridge runs out, information such as “developer empty” may be displayed through a user interface or host of the image forming apparatus. The developer cartridge may be unlocked at the same time as the display of the information such as “developer empty”, or by a user's operation such that the developer cartridge may be replaced. If the developer level is not correctly detected, the developer cartridge may be replaced although a significant amount of developer is still present in the developer cartridge, or the developer cartridge may not be replaced in time although the developer has run out. In that case, print quality may be poor.
The developer level of the developer cartridge may be directly detected by using a developer level sensor. The developer level sensor may be located on the body of the image forming apparatus to directly detect the developer level of the developer cartridge when the developer cartridge is mounted on the body of the image forming apparatus. The developer cartridge according to the present example has a structure in which the developer level sensor provided on the body of the image forming apparatus may closely approach the developer cartridge to increase the reliability of a detected developer level. Accordingly, it is possible to determine precisely when to replace the developer cartridge. As a result, it is possible to prevent poor printing quality due to the fact that the developer cartridge is not replaced although the developer has run out, and also to prevent wasting costs due to premature replacement of the developer cartridge. In addition, since the developer cartridge may be replaced when the developer has run out, the amount of developer to be discarded may be reduced, which may benefit the environment. The developer cartridge according to the present example may have a structure capable of preventing interference between the developer level sensor and the developer cartridge when the developer cartridge is mounted on the body of the image forming apparatus. Hereinafter, examples of the developer cartridge will be described in detail with reference to the accompanying drawings.
The developing device may include a photosensitive drum, a charging roller that charges a surface of the photosensitive drum at a uniform electric potential, and a developing roller that supplies a developer onto the surface of the photosensitive drum to form a visible toner image. The optical scanner forms an electrostatic latent image by irradiating light modulated according to image information on the surface of the photosensitive drum charged with a uniform electric potential. The electrostatic latent image is developed into a visible toner image by a toner supplied by the developing roller. The transfer unit transfers the toner image from the surface of the photosensitive drum onto the print medium P. The print medium P onto which the toner image is transferred is subjected to heat and pressure while passing through the fuser. The toner image is fused onto the print medium P by the heat and pressure.
The developer cartridge 10 may be mounted on or separated from the body 1. When the developer accommodated in the developer cartridge 10 runs out, the developer cartridge 10 may be replaced with a new developer cartridge 10. The body 1 may be provided with a mounting portion 2 on which the developer cartridge 10 is mounted. A door 3 opens or closes a portion of the body 1 such that the developer cartridge 10 is mounted on, or separated from, the body 1. The mounting portion 2 is provided with a developer inlet 4 and a developer level sensor 5.
The housing 100 extends in a lengthwise direction L. A transport member 120 is installed inside the housing 100 to transport the developer to the developer outlet 101. The transport member 120 transports the developer in the lengthwise direction L toward the developer outlet 101. The transport member 120 according to the present example includes a spiral coil. The spiral coil may be referred to as a spring auger. A power transmission member 130 is installed at one end portion of the housing 100 in the lengthwise direction L. One end portion 121 of the transport member 120 is connected to the power transmission member 130. The power transmission member 130 may include, for example, a gear, a coupler, or the like. When the developer cartridge 10 is mounted on the mounting portion 2, the power transmission member 130 may be connected to a developer supply motor (not shown) provided on the body 1.
The housing 100 includes a front end portion 11, and a rear end portion 12 which is an end portion opposite to the front end portion 11, in the lengthwise direction L. The developer cartridge 10 is inserted into the mounting portion 2 from the rear end portion 12. A front cover 110 on which a handle that a user may hold is provided may be coupled to the front end portion 11. The housing 100 includes the lower wall 103, an upper wall 104, and a side wall 105 that connects the lower wall 103 to the upper wall 104. The developer is loaded from the lower wall 103 toward the upper wall 104 inside the housing 100. The transport member 120 rotates around a rotation axis extending in the lengthwise direction L, Therefore, a cross-sectional shape orthogonal to the lengthwise direction L of the lower wall 103 may be a round shape. For example, the cross-sectional shape orthogonal to the lengthwise direction L of the lower wall 103 may be a partial arc shape centered on a rotation axis of the transport member 120.
The developer outlet 101 is formed on the lower wall 103. The developer outlet 101 is located adjacent to any one of both end portions in the lengthwise direction L of the housing 100. According to the present example, the developer outlet 101 is located adjacent to the front end portion 11. Although not shown, the developer cartridge 10 may include a shutter for opening and closing the developer outlet 101. With the developer cartridge 10 removed from the body 1, the shutter is located at a position blocking the developer outlet 101, The shutter may be moved to a position to open the developer outlet 101 in conjunction with a mounting operation of the developer cartridge 10 on the mounting portion 2. When the developer cartridge 10 is mounted on the mounting portion 2, the developer outlet 101 faces the developer inlet 4 provided at the mounting portion 2. The developer transported in the lengthwise direction L by the transport member 120 falls to the developer inlet 4 by gravity.
The sensing portion 102 forms a sensing area for detecting a developer level. The sensing portion 102 is recessed into the lower wall 103. That is, the sensing portion 102 is a portion recessed into an outer surface 103-1 of the lower wall 103 accordingly having a reduced thickness as compared to the remaining portion of the lower wall 103. That is, the thickness of the sensing portion 102 is less than a thickness of the remaining portion of the lower wall 103. The sensing portion 102 may be flat. That is, the sensing portion 102 may have a flat surface. When the developer cartridge 10 is mounted on the mounting portion 2, the developer level sensor 5 faces the sensing portion 102. A sensing surface 51 of the developer level sensor 5 may be in contact with the sensing portion 102, or may be spaced slightly apart from the sensing portion 102. The sensing surface 51 of the developer level sensor 5 may be in contact with the sensing portion 102 beyond the outer surface 103-1 of the lower wall 103, and may be spaced slightly apart from the sensing portion 102. The sensing surface 51 of the developer level sensor 5 may be located adjacent to the sensing portion 102 without exceeding the outer surface 103-1 of the lower wall 103.
The sensing portion 102 may be aligned with the developer outlet 101 in the lengthwise direction L. The sensing portion 102 is located adjacent to the developer outlet 101 in the lengthwise direction L. The sensing portion 102 is located at a position at which the sensing portion 102 is able to correctly detect whether or not the developer inside the housing 100 is running out. The sensing portion 102 is located on an upstream side of the developer outlet 101, based on a direction in which the developer is transported by the transport member 120.
A distance from one end portion adjacent to the developer outlet 101 of the housing 100, that is, the front end portion 11 according to the present example to the sensing portion 102 may not exceed ½ of a length of a housing 100 in the lengthwise direction L. As an example, a distance from the front end portion 12 to the sensing portion 102 may be less than or equal to ⅓ of the length of the housing 100 in the lengthwise direction L. As an example, the distance from the front end portion 12 to the sensing portion 102 may be less than or equal to ¼ of the length of the housing 100 in the lengthwise direction L. The location of the sensing portion 102 may be precisely determined to be able to detect whether or not the developer inside the housing 100b is running out when the developer inside the housing 100b has almost run out.
As shown in
The developer level may be detected by various methods: The developer level may be detected through the amount of developer consumption based on the number of printed pixels, based on the driving time of a developer supply motor, and based on the number of revolutions of a gear driving a transport member, for example. In the above-described methods, the amount of developer consumption is not actually measured, but the amount of developer consumption is predicted in an indirect method, and the developer level is detected based on the predicted amount of developer consumption. A predicted amount of developer consumption may differ from an actual amount of developer consumption due to factors such as print conditions related to the density of a printed image and the like, and mechanical and control defects related to the supply of the developer. If the predicted amount of developer consumption and the actual amount of developer consumption significantly differ from each other, an error may occur in determining whether to replace a developer cartridge as an error in detecting the developer level increases. For example, if the actual amount of developer consumption is greater than an average amount of developer consumption although the predicted amount of developer consumption is less than the average amount of developer consumption, it may be estimated that an adequate amount of developer is still present even although the developer has already run out. In that case, print errors may occur, or printout may not come out at the right time due to a failure in preparing a new developer cartridge. On the contrary, if the actual amount of developer consumption is less than an average amount of developer consumption although the predicted amount of developer consumption is greater than the average amount of developer consumption, the developer cartridge may be replaced even though an adequate amount of developer is still present.
According to the present example, when the developer cartridge 10 is mounted on the mounting portion 2 of the body 1, the developer level sensor 5 approaches the sensing portion 102 to directly detect the level of the developer in the developer cartridge 10. If the developer level sensor 5 is installed in the developer cartridge 10, a cost of the developer level sensor 5 and a cost incurred in an electrical connection structure for transmitting a detection signal of the developer level sensor 5 to the body 1 of an image forming apparatus are added. Therefore, the developer cartridge 10, which is expendable, may become expensive. According to the present example, the developer level of the developer cartridge 10 may be accurately detected to determine precisely when to replace the developer cartridge 10, and the cost of the developer cartridge 10, which is expendable, may be saved.
The developer level sensor 5 may be of any structure. The developer level sensor 5 may include a circuit for detecting variation in an inductance according to the developer level. For example, the developer level sensor 5 may include an LC circuit. When a conductor approaches a coil of the L-C circuit, an inductance of the LC circuit varies. Since a carrier included in the developer contains an iron component, the inductance of the L-C circuit varies according to the amount of the developer near the developer level sensor 5. Thus, the developer level may be detected by using the variation in the inductance. The closer the sensing surface 51 of the developer level sensor 5 is to the carrier, the more accurately the developer level is detected as sensing sensitivity of the developer level sensor 5 is increased. According to the present example, since the sensing portion 102 is recessed into the lower wall 103, the sensing surface 51 of the developer level sensor 5 may be located close to the developer inside the housing 100.
The greater a thickness of the sensing portion 102, the lower the sensing sensitivity of the developer level sensor 5. Thus, an error may increase in detecting the level of the developer in the developer cartridge 10, Within the developer cartridge 10 according to the present example, the sensing portion 102 is recessed into a portion of the outer surface 103-1 of the lower wall 103 accordingly having a reduced thickness as compared to the remaining portion of the lower wall 103, Therefore, the sensing sensitivity of the developer level sensor 5 may be prevented from being lowered, and the reliability of the detection of the level of the developer in the developer cartridge 10 may be increased.
Since the sensing portion 102 is flat, the sensing surface 51 of the developer level sensor 5 may uniformly approach or contact the sensing portion 102, thus increasing the reliability of the detection of the developer level. In the case where the sensing surface 51 of the developer level sensor 5 uniformly approaches the flat sensing portion 102, the reliability of the detection of the developer level may be increased more than before. For example, a cross-sectional shape orthogonal to the lengthwise direction L of the lower wall 103 may be a round shape, and the sensing portion 102 may be a flat shape recessed into the outer surface 103-1 of the lower wall 103. An inner surface of the sensing portion 102 has the same round shape as an inner surface of the lower wall 103. In that case, a minimum value of the thickness of the sensing portion 102 may be less than or equal to 1.5 mm.
If the developer level sensor 5 interferes with the developer cartridge 10, for example, the housing 100 when the developer cartridge 10 is mounted on the mounting portion 2, damage to the sensing surface 51 of the developer level sensor 5, damage to a structure supporting the developer level sensor 5, or the like may be caused. The developer level sensor 5 may be mounted on the mounting portion 2 to be moved to a separation position for not interfering with the housing 100 of the developer cartridge 10, and to a sensing position close to the sensing portion 102, The sensing position may be a position at which the sensing surface 51 of the developer level sensor 5 is in contact with the sensing portion 102. The sensing position may be a position at which the sensing surface 51 of the developer level sensor 5 is spaced slightly apart from the sensing portion 102. The sensing position may be a position at which the sensing surface 51 of the developer level sensor 5 is spaced slightly apart from the sensing portion 102 while exceeding the outer surface 103-1 of the lower wall 103. The sensing position may be a position at which the sensing surface 51 of the developer level sensor 5 is adjacent to the sensing portion 102 without exceeding the outer surface 103-1 of the lower wall 103. The developer level sensor 5 may be moved to the sensing position and the separation position in conjunction with mounting and separating operations of the developer cartridge 10. The developer cartridge 10 is provided with a structure for preventing interference with the developer level sensor 5 in the process of being mounted on or separated from the mounting portion 2. Hereinafter, an example of a structure for preventing interference between the housing 100 of the developer cartridge 10 and the developer level sensor 5 will be described,
Referring to
Referring to
The developer level sensor 5 is mounted on a sensor holder 23 such that the sensing surface 51 faces the sensing portion 102. The sensor holder 23 is mounted on the mounting portion 2 to be able to be moved to the sensing position and the separation position. The sensor holder 23 may be installed on the mounting frame 21 to be able to approach or be separated from the developer cartridge 10. An elastic member 24 applies an elastic force to the sensor holder 23 in a direction to move to the sensing position. The elastic member 24 may be implemented with, for example, a spring such as a compression coil spring supported between the sensor holder 23 and the mounting frame 21, or the like.
The sensor holder 23 is provided with an interferer 25. The interferer 25 may be located on an outer side of the developer level sensor 5, and may be in a rib shape extending in the lengthwise direction L. In the case where the developer cartridge 10 is mounted on the mounting portion 2, the interferer 25 may interfere with the rib 140 protruding from the lower wall 103 of the housing 100 to be pressed in a direction opposite the elastic force of the elastic member 24. When the mounting of the developer cartridge 10 is completed, the interferer 25 may face the stepped portion 150, and the sensor holder 23 may be returned to the sensing position by the elastic force of the elastic member 24. In the case where the developer cartridge 10 is removed from the mounting portion 2, the interferer 25 may interfere with the end portion 151 of the stepped portion 150, and may be pressed in a direction opposite the elastic force of the elastic member 24 by the rib 140. Accordingly, the sensor holder 23 is moved from the sensing position to the separation position. Since the end portion 141 of the rib 140 toward the rear end portion 12 has a chamfered or round shape, when the developer cartridge 10 is mounted on the mounting portion 2, the rib 140 and the interferer 25 may interfere smoothly with each other. In addition, since the end portion 151 of the stepped portion 150 toward the rear end portion 12 has a chamfered or round shape, the sensor holder 23 may be smoothly moved from the separation position to the sensing position or vice versa.
In order to separate the developer cartridge 10, if the developer cartridge 10 is pulled in the lengthwise direction L in a state as illustrated in
Referring to
The sensing portion 102 is located on one side of the developer outlet 101 in the lateral direction W and an upstream side of the developer outlet 101 based on a direction in which the developer is transferred by the transport member 120b. A distance from the rear end portion 12 to the sensing portion 102 does not exceed ½ of a length of the housing 100b in the lengthwise direction L. As an example, the distance from the rear end portion 12 to the sensing portion 102 may be less than or equal to ⅓ of the length of the housing 100b in the lengthwise direction L. As an example, the distance from the rear end portion 12 to the sensing portion 102 may be less than or equal to ¼ of the length of the housing 100b in the lengthwise direction L. A location of the sensing portion 102 may be appropriately determined to be able to detect whether or not the developer inside the housing 100b is running out when the developer inside the housing 100b has almost run out. The sensing portion 102 is located in the second region 192. A lower wall 103b of the housing 100b may include a lower wall 103b-1 of the first region 191 and a lower wall 103b-2 of the second region 192. The sensing portion 102 is recessed into the lower wall 103b-2. Both the lower wall 103b-1 and the lower wall 103b-2 may be in a round shape. For example, the lower wall 103b-1 may have an arc shape centered on the rotation axis of the transport member 120b. The lower wall 103b-2 may have an arc shape centered on the rotation axis of the second transport member 122. The sensing portion 102 may have a flat surface recessed into the lower wall 103b-2.
The developer cartridge 10b is inserted into the mounting portion 2 from the rear end portion 12. As a structure to prevent interference between the developer cartridge 10b and the developer level sensor 5 provided on the mounting portion 2, the developer cartridge 10b may include a recessed portion 160 that extends from the sensing portion 102 to the rear end portion 12 and is recessed into the lower wall 103b. A recession depth of the recessed portion 160 may be greater than or equal to a recession depth of the sensing portion 102. According to such a configuration, interference between the developer cartridge 10b and the developer level sensor 5 may be prevented in the process of mounting the developer cartridge 10b on the mounting portion 2.
Referring to
The sensing portion 102 is located on one side of the developer outlet 101 in the lateral direction W and an upstream side of the developer outlet 101 based on a direction in which the developer is transferred by the transport member 120c. A location of the sensing portion 102 may be properly determined to be able to detect whether or not the developer inside the housing 100c is running out when the developer inside the housing 100c has almost run out. The sensing portion 102 is located in the second region 192. A lower wall 103c of the housing 100c may include a lower wall 103c-1 of the first region 191, a lower wall 103c-2 of the second region 192, and a lower wall 103c-3 of the third region 193. The sensing portion 102 is recessed into the lower wall 103c-2 of the second region 102. The lower walls 103c-1, 103c-2, and 103c-3 may all have a round shape. For example, the lower walls 103c-1, 103c-2, and 103c-3 may be in an arc shape centered on the rotation axes of the transport member 120c, the second transport member 122, and the third transport member 123, respectively. The sensing portion 102 may have a flat surface recessed into the lower wall 103c-2.
The developer cartridge 10c is inserted into the mounting portion 2 from the rear end portion 12. The rib structure illustrated in
Although not shown, the rib 104c according to the present example may have the structure illustrated in
It should be understood that examples described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example should typically be considered as available for other similar features or aspects in other examples. While one or more examples have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0080436 | Jun 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/061576 | 11/20/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/005508 | 1/6/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6151472 | Nakajima | Nov 2000 | A |
8989611 | Leemhuis | Mar 2015 | B2 |
9298134 | Okubo et al. | Mar 2016 | B2 |
20020057924 | Ueno et al. | May 2002 | A1 |
20080025735 | Odani | Jan 2008 | A1 |
20090074468 | Iwata et al. | Mar 2009 | A1 |
20150086229 | Naruse et al. | Mar 2015 | A1 |
20160231664 | Kubo | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
0 952 496 | Nov 2006 | EP |
2000-275944 | Oct 2000 | JP |
2018185447 | Nov 2018 | JP |
10-0612216 | Aug 2006 | KR |
WO-2019203394 | Oct 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20230039181 A1 | Feb 2023 | US |