The present invention relates to a developer electric field transport apparatus, a developer supply apparatus, and an image forming apparatus.
Many mechanisms for transporting toner (developer) by means of traveling-wave electric fields (as disclosed in, for example, Japanese Patent Application Laid-Open (kokai) No. S63-13074, Japanese Patent Publication (kokoku) No. H5-31146, and Japanese Patent Application Laid-Open (kokai) Nos. 2002-351218, 2003-15417, 2004-157259, 2005-275127, etc.) are conventionally known for use in image forming apparatus. In such a mechanism, a large number of strip-shaped electrodes are juxtaposed in a row on an electrically insulative substrate.
In such a mechanism, polyphase AC voltages are sequentially applied to the plurality of strip-shaped electrodes, whereby traveling-wave electric fields are generated. By the action of the traveling-wave electric fields, the above-described toner in a charged state is transported in a predetermined direction.
In the above-described mechanism which can transport a charged developer by means of a traveling-wave electric field (hereinafter referred to as a “developer electric field transport apparatus”), an area in which the developer is not smoothly transported is formed on the above-described substrate in some cases. Such an area is mainly formed on portions of opposite ends of the substrate with respect to the direction along which the strip-shaped electrodes are arranged, in which portions the strip-shaped electrodes are not provided. In such an area, a traveling-wave electric field which can transport the developer well cannot be generated. Therefore, in that area, the developer cannot be transported well.
An object of the present invention is to provide a developer electric field transport apparatus which can smoothly transport a developer in a predetermined direction by means of a traveling-wave electric field, and a developer supply apparatus and an image forming apparatus which include the developer electric field transport apparatus.
(1) An image forming apparatus of the present invention comprises an electrostatic-latent-image carrying body and a developer supply apparatus.
The electrostatic-latent-image carrying body has a latent-image forming surface. The latent-image forming surface is formed in parallel with a predetermined main scanning direction, and configured such that an electrostatic latent image in the form of an electric potential distribution is formed thereon. The electrostatic-latent-image carrying body is configured such that the latent-image forming surface can move along a sub-scanning direction orthogonal to the main scanning direction.
The developer supply apparatus is disposed to face the electrostatic-latent-image carrying body. The developer supply apparatus is configured to supply a developer in the form of fine particles onto the latent-image forming surface in a state in which the developer is charged.
In the image forming apparatus of the present invention, the developer supply apparatus includes a developer containing casing, a plurality of transport electrodes, an insulating substrate, and a substrate support member.
The developer containing casing is a box-like member configured to be able to contain the developer therein. An opening portion is formed in the developer containing casing at a position facing the electrostatic-latent-image carrying body.
The transport electrodes are formed such that their longitudinal direction intersects with the sub-scanning direction. The plurality of transport electrodes are arranged along the sub-scanning directions. These transport electrodes are configured such that, when a traveling-wave voltage is applied to the transport electrodes, the transport electrodes can transport the developer in a predetermined developer transport direction.
The longitudinal direction may be set along the main scanning direction. For example, the longitudinal direction may be set in parallel with the main scanning direction. The developer transport direction may be set along the sub-scanning direction. For example, the developer transport direction may be set in parallel with the sub-scanning direction. Alternatively, the developer transport direction may be set such that the developer transport direction interests the sub-scanning direction with a small angle therebetween.
The insulating substrate is configured to have flexibility. The insulating substrate is accommodated within the developer containing casing such that a predetermined gap is formed between the insulating substrate and an inner wall surface of the developer containing casing. The transport electrodes are provided on the insulating substrate.
The substrate support member is accommodated within the developer containing casing. This substrate support member is configured to support the insulating substrate such that the insulating substrate is deformed in a tubular shape and the transport electrodes face the latent-image forming surface via the opening portion with a predetermined developing gap formed therebetween.
In the image forming apparatus of the present invention, the insulating substrate is supported by the substrate support member such that the transport electrodes face a developer transport path formed along the inner wall surface of the developer containing casing, and margin areas of the insulating substrate are separated from the developer transport path, wherein the margin areas are regions of end portions of the insulating substrate within respect to the sub-scanning direction (and the developer transport direction) in which regions the transport electrodes are not formed.
The image forming apparatus of the present invention having the above-described configuration operates as follows at the time of forming an image.
The electrostatic latent image in the form of an electric potential distribution is formed on the latent-image forming surface of the electrostatic-latent-image carrying body. The latent-image forming surface on which the electrostatic latent image is formed moves along the sub-scanning direction.
Meanwhile, a predetermined traveling-wave voltage is applied to the plurality of transport electrodes provided on the insulating substrate of the developer supply apparatus. Thus, a predetermined traveling-wave electric field is generated on the insulating substrate. By means of the traveling-wave electric field, the charged developer in the form of fine particles moves from an upstream end portion of the insulating substrate with respect to the developer transport direction to a downstream end portion of the insulating substrate with respect to the developer transport direction.
The insulating substrate is supported by the substrate support member in a state in which the insulating substrate is deformed in a tubular shape. Therefore, the upstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer starts) and the downstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer ends) face each other (generally in a state in which they are close to each other). Therefore, the developer is transported such that the developer moves around the insulating substrate and the substrate support member.
When the developer is supplied to the latent-image forming surface in the middle of transport of the developer, the developer adheres to the latent-image forming surface in accordance with the electrostatic latent image. That is, the electrostatic latent image is developed.
During such a developer transport operation, the above-described traveling-wave electric field is not generated in the margin areas. Therefore, the margin areas do not have a function of moving the developer along the developer transport direction.
In the image forming apparatus of the present invention, the margin areas are separated from the developer transport path. Thus, according to the image forming apparatus of the present invention, the margin areas are prevented, to a possible extent, from hindering transport of the developer along the developer transport path, which hindrance would otherwise occur because the margin areas face the developer transport path. Therefore, according to the image forming apparatus of the present invention, the developer can be smoothly transported in the developer transport direction by means of the traveling-wave electric field.
In this case, the insulating substrate may be supported by the substrate support member such that the distance between the margin areas and the counter electrodes becomes greater than that between the transport electrodes and the counter electrodes.
In such a configuration, a predetermined traveling-wave voltage is applied to the plurality of transport electrodes, and a predetermined traveling-wave voltage is applied to the plurality of counter electrodes. As a result, a predetermined traveling-wave electric field is generated in the vicinity of the transport electrodes on the insulating substrate, and a predetermined traveling-wave electric field is generated in the vicinity of the counter electrodes. By means of these electric fields, the charged developer in the form of fine particles is caused to move on the developer transport path along the developer transport direction.
In such a configuration, the counter electrodes are provided at positions facing the margin areas, and the margin areas are separated from the counter electrodes. According to such a configuration, the developer is transported well by means of the counter electrodes in portions of the developer transport path, the portions corresponding to the margin areas of the insulating substrate in which the transport electrodes are not provided. Therefore, such a configuration enables smooth transport of the developer in a circulating state.
By virtue of this configuration, supply of electricity to the plurality of transport electrodes provided on the insulating substrate and proper transport of the developer along the developer transport direction can be performed more reliably by a simple structure.
By virtue of this configuration, the insulating substrate is reliably supported by the substrate support member in a predetermined manner.
In this case, the image forming apparatus may comprise a fixing member and a pulling engagement member.
The fixing member is configured to fix a first margin area of the insulating substrate, which is one part of the margin area at one end of the insulating substrate with respect to the sub-scanning direction (and the developer transport direction), to the substrate support member. The pulling engagement member configured to engage a second margin area of the insulating substrate, which is the other part of the margin area at the other end of the insulating substrate with respect to the sub-scanning direction (and the developer transport direction), with the substrate support member such that the pulling engagement member urges the second margin area in a direction for imparting a tension to the insulating substrate.
The pulling engagement member may be configured to urge opposite end portions of the second margin areas with respect to the main scanning direction so as to separate the opposite end portions from each other to the outside with respect to the main scanning direction.
The image forming apparatus may further comprise reinforcement members. The reinforcement members are provided in the margin areas, and are formed of the same material as the transport electrodes.
In such a configuration, the first margin area of the insulating substrate, which is one end portion of the insulating substrate with respect to the sub-scanning direction (and the developer transport direction) is fixed to the substrate support member. Further, the second margin area of the insulating substrate, which is the other end portion of the insulating substrate with respect to the sub-scanning direction (and the developer transport direction) is urged by the pulling engagement member such that a predetermined tension is applied to the insulating substrate. The second margin area is engaged with the substrate support member via the pulling engagement member.
By virtue of such a configuration, a portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
The substrate support member may include a first support member configured to support the first margin area and a second support member configured to support the second margin area, wherein the tension imparting portion is configured to urge the first support member and/or the second support member so as to separate the first support member and the second support member from each other.
In such a configuration, a predetermined tension is imparted to the insulating substrate as a result of the insulating substrate being supported by the substrate support member. Thus, the portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
(2) A developer supply apparatus of the present invention is configured to supply to a developer-image carrying body a developer in the form of fine particles in a charged state while transferring the developer along a predetermined developer transport direction.
The developer carrying body has a developer-image carrying surface. This developer-image carrying surface is a surface which can carry an image formed by the developer and which is parallel with a predetermined main scanning direction. The developer-image carrying surface can move along a sub-scanning direction orthogonal to the main scanning direction.
Specifically, for example, an electrostatic-latent-image carrying body having a latent-image forming surface configured such that an electrostatic latent image in the form of an electric-potential distribution can be formed on the surface can be used as the developer-image carrying body.
Alternatively, for example, a recording medium (paper) transported along the sub-scanning direction can be used as the developer-image carrying body. Alternatively, for example, an intermediate transfer body configured and disposed such that the intermediate transfer body faces the recording medium and can transfer the developer onto the recording medium can be used as the developer-image carrying body.
The developer supply apparatus of the present invention comprises a developer containing casing, transfer electrodes, an insulating substrate, and a substrate support member.
The developer containing casing is a box-like member configured to be able to contain the developer therein. An opening portion is formed in the developer containing casing at a position facing the electrostatic-latent-image carrying body.
The transport electrodes are formed such that their longitudinal direction intersects with the sub-scanning direction. The plurality of transport electrodes are arranged along the sub-scanning directions. These transport electrodes are configured such that, when a traveling-wave voltage is applied to the transport electrodes, the transport electrodes can transport the developer in a predetermined developer transport direction.
The longitudinal direction may be set along the main scanning direction. For example, the longitudinal direction may be set in parallel with the main scanning direction. The developer transport direction may be set along the sub-scanning direction. For example, the developer transport direction may be set in parallel with the sub-scanning direction. Alternatively, the developer transport direction may be set such that the developer transport direction interests the sub-scanning direction with a small angle therebetween.
The insulating substrate is configured to have flexibility. The insulating substrate is accommodated within the developer containing casing such that a predetermined gap is formed between the insulating substrate and an inner wall surface of the developer containing casing. The transport electrodes are provided on the insulating substrate.
The substrate support member is accommodated within the developer containing casing. This substrate support member is configured to support the insulating substrate such that the insulating substrate is deformed in a tubular shape and the transport electrodes face the developer-image carrying surface via the opening portion with a predetermined developing gap formed therebetween.
In the developer supply apparatus of the present invention, the insulating substrate is supported by the substrate support member such that the transport electrodes face a developer transport path formed along the inner wall surface of the developer containing casing, and margin areas of the insulating substrate are separated from the developer transport path, wherein the margin areas are regions of end portions of the insulating substrate within respect to the sub-scanning direction in which regions the transport electrodes are not formed.
The developer supply apparatus of the present invention having the above-described configuration operates as follows at the time of forming an image.
A predetermined traveling-wave voltage is applied to the plurality of transport electrodes provided on the insulating substrate. Thus, a predetermined traveling-wave electric field is generated on the insulating substrate. By means of the traveling-wave electric field, the charged developer in the form of fine particles moves from an upstream end portion of the insulating substrate with respect to the developer transport direction to a downstream end portion of the insulating substrate with respect to the developer transport direction.
The insulating substrate is supported by the substrate support member in a state in which the insulating substrate is deformed in a tubular shape. Therefore, the upstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer starts) and the downstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer ends) face each other (generally in a state in which they are close to each other). Therefore, the developer is transported such that the developer moves around the insulating substrate and the substrate support member.
The developer is supplied to the developer-image carrying surface in the middle of transport of the developer. Thus, the developer adheres to the developer-image carrying surface, which is a surface of the developer-image carrying body, in a pattern corresponding to an image. That is, an image formed by the developer is carried on the developer-image carrying surface.
During such a developer transport operation, the above-described traveling-wave electric field is not generated in the margin areas. In the developer supply apparatus of the present invention, the margin areas are separated from the developer transport path.
Thus, according to the developer supply apparatus of the present invention, the margin areas are prevented, to a possible extent, from hindering transport of the developer along the developer transport path, which hindrance would otherwise occur because the margin areas face the developer transport path. Therefore, according to the developer supply apparatus of the present invention, the developer can be smoothly transported in the developer transport direction by means of the traveling-wave electric field.
The developer supply apparatus may further comprise a plurality of counter electrodes, and the insulating substrate may be supported by the substrate support member such that the margin areas are separated from the counter electrodes. The counter electrodes are supported on the inner wall surface of the developer containing casing. The counter electrodes are provided in parallel with the transport electrodes such that the counter electrodes face the transport electrodes with a predetermined gap formed therebetween.
In this case, the insulating substrate may be supported by the substrate support member such that the distance between the margin areas and the counter electrodes becomes greater than that between the transport electrodes and the counter electrodes.
In such a configuration, through application of predetermined voltages to the plurality of transport electrodes and to the plurality of counter electrodes, a predetermined traveling-wave electric field is generated in the vicinity of the transport electrodes on the insulating substrate, and a predetermined traveling-wave electric field is generated in the vicinity of the counter electrodes. By means of these electric fields, the charged developer in the form of fine particles is caused to move on the developer transport path along the developer transport direction.
In such a configuration, the counter electrodes are provided at positions facing the margin areas, and the margin areas are separated from the counter electrodes. According to such a configuration, the developer is transported well by means of the counter electrodes in portions of the developer transport path, the portions corresponding to the margin areas. Therefore, such a configuration enables smooth transport of the developer in a circulating state.
By virtue of this configuration, supply of electricity to the plurality of transport electrodes provided on the insulating substrate and proper transport of the developer along the developer transport direction can be performed more reliably by a simple structure.
In this case, the developer supply apparatus may comprise a fixing member and a pulling engagement member.
The fixing member is configured to fix a first margin area of the insulating substrate, which is one part of the margin area at one end of the insulating substrate with respect to the sub-scanning direction, to the substrate support member. The pulling engagement member configured to engage a second margin area of the insulating substrate, which is the other part of the margin area at the other end of the insulating substrate with respect to the sub-scanning direction, with the substrate support member such that the pulling engagement member urges the second margin area in a direction for imparting a tension to the insulating substrate.
The pulling engagement member may be configured to urge opposite end portions of the second margin areas with respect to the main scanning direction so as to separate the opposite end portions from each other to the outside with respect to the main scanning direction.
The developer supply apparatus may further comprise reinforcement members. The reinforcement members are provided in the margin areas, and are formed of the same material as the transport electrodes.
In such a configuration, the first margin area, which is one end portion of the insulating substrate, is fixed to the substrate support member. Further, the second margin area, which is the other end portion of the insulating substrate, is urged by the pulling engagement member such that a predetermined tension is applied to the insulating substrate. The second margin area is engaged with the substrate support member via the pulling engagement member.
By virtue of such a configuration, the portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
The substrate support member may include a first support member configured to support the first margin area and a second support member configured to support the second margin area, wherein the tension imparting portion is configured to urge the first support member and/or the second support member so as to separate the first support member and the second support member from each other.
In such a configuration, a predetermined tension is imparted to the insulating substrate as a result of the insulating substrate being supported by the substrate support member. Thus, the portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
(3) A developer electric field transport apparatus of the present invention is configured to transport a charged developer in the form of fine particles along a predetermined developer transport direction by means of an electric field. This developer electric field transport apparatus is disposed to face a developer carrying body. The developer carrying body has a developer carrying surface. This developer carrying surface is a surface which can carry a thin layer of the developer and which is formed in parallel with a predetermined main scanning direction. The developer carrying surface can be moved along a predetermined moving direction. For example, the moving direction may be set to be parallel with a sub-scanning direction orthogonal to the main scanning direction.
Specifically, for example, an electrostatic-latent-image carrying body having a latent-image forming surface configured such that an electrostatic latent image in the form of an electric-potential distribution can be formed on the surface can be used as the developer carrying body. Alternatively, for example, a recording medium (paper) transported along the sub-scanning direction can be used as the developer-carrying body. Alternatively, for example, a roller, a sleeve, or a belt-like member (a developing roller, a developing sleeve, or the like) configured and disposed such that it faces the recording medium or the electrostatic-latent-image carrying body and can transfer the developer onto the recording medium or the electrostatic-latent-image carrying body can be used as the developer-image carrying body.
The developer electric field transport apparatus of the present invention comprises transfer electrodes, an insulating substrate, and a substrate support member.
The transport electrodes are formed such that their longitudinal direction intersects with the moving direction of the developer carrying surface. The plurality of transport electrodes are arranged along the moving direction. These transport electrodes are configured such that, when a traveling-wave voltage is applied to the transport electrodes, the transport electrodes can transport the developer in a predetermined developer transport direction.
The longitudinal direction may be set along the main scanning direction. For example, the longitudinal direction may be set in parallel with the main scanning direction. The developer transport direction may be set along the sub-scanning direction. For example, the developer transport direction may be set in parallel with the sub-scanning direction. Alternatively, the developer transport direction may be set such that the developer transport direction interests the sub-scanning direction with a small angle therebetween.
The insulating substrate is configured to have flexibility. The transport electrodes are provided on the insulating substrate.
The substrate support member is configured to support the insulating substrate such that the insulating substrate is deformed in a tubular shape.
In the developer electric field transport apparatus of the present invention, the margin areas of the insulating substrate, which are regions of end portions of the insulating substrate within respect to the moving direction in which regions the transport electrodes are not formed, are engaged with the substrate support member. Thus, the insulating substrate is supported by the substrate support member such that the margin areas are separated from a developer transport path formed along an area of the insulating substrate in which the transport electrodes are formed.
The developer electric field transport apparatus of the present invention having the above-described configuration operates as follows.
A predetermined voltage is applied to the plurality of transport electrodes provided on the insulating substrate. Thus, a predetermined traveling-wave electric field is generated on the insulating substrate. By means of the traveling-wave electric field, the charged developer in the form of fine particles moves from an upstream end portion of the insulating substrate with respect to the developer transport direction to a downstream end portion of the insulating substrate with respect to the developer transport direction.
The insulating substrate is supported by the substrate support member in a state in which the insulating substrate is deformed in a tubular shape. Therefore, the upstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer starts) and the downstream end portion of the insulating substrate with respect to the developer transport direction (at which transport of the developer ends) face each other (generally in a state in which they are close to each other). Therefore, the developer is transported such that the developer moves around the insulating substrate and the substrate support member.
The developer is supplied to the developer-image carrying surface in the middle of transport of the developer. That is, an image formed by the developer is carried on the developer-image carrying surface.
In the developer electric field transport apparatus of the present invention, the margin areas in which the above-described traveling-wave electric filed is not generated are separated from the developer transport path.
Thus, according to the developer electric field transport apparatus of the present invention, the margin areas are prevented, to a possible extent, from hindering transport of the developer along the developer transport path, which hindrance would otherwise occur because the margin areas face the developer transport path. Therefore, according to the developer electric field transport apparatus of the present invention, the developer can be smoothly transported in the developer transport direction by means of the traveling-wave electric field.
The fixing member is configured to fix a first margin area of the insulating substrate, which is one part of the margin area at one end of the insulating substrate with respect to the moving direction, to the substrate support member. The pulling engagement member configured to engage a second margin area of the insulating substrate, which is the other part of the margin area at the other end of the insulating substrate with respect to the moving direction, with the substrate support member such that the pulling engagement member urges the second margin area in a direction for imparting a tension to the insulating substrate.
The pulling engagement member may be configured to urge opposite end portions of the second margin areas with respect to the main scanning direction so as to separate the opposite end portions from each other to the outside with respect to the main scanning direction.
The developer electric field transport apparatus may further comprise reinforcement members. The reinforcement members are provided in the margin areas, and are formed of the same material as the transport electrodes.
In such a configuration, the first margin area, which is one end portion of the insulating substrate is fixed to the substrate support member. Further, the second margin area, which is the other end portion of the insulating substrate is urged by the pulling engagement member such that a predetermined tension is applied to the insulating substrate. The second margin area is engaged with the substrate support member via the pulling engagement member.
By virtue of such a configuration, the portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
The substrate support member may include a first support member configured to support the first margin area and a second support member configured to support the second margin area, wherein the tension imparting portion is configured to urge the first support member and/or the second support member so as to separate the first support member and the second support member from each other.
In such a configuration, a predetermined tension is imparted to the insulating substrate as a result of the insulating substrate being supported by the substrate support member. Thus, the portion of the insulating substrate where the transport electrodes are formed can be supported in a state in which that portion does not form a wrinkle and is smooth. Therefore, proper transport of the developer on the insulating substrate along the developer transport direction can be performed more reliably by a simple structure.
By virtue of this configuration, supply of electricity to the plurality of transport electrodes provided on the insulating substrate and proper transport of the developer along the developer transport direction can be performed more reliably by a simple structure.
Embodiments of the present invention (embodiments which the applicant contemplated as the best at the time of filing the present application) will next be described with reference to the drawings.
<Overall Configuration of Laser Printer>
In
<<Body Section>>
The laser printer 100, which corresponds to the image forming apparatus of the present invention, includes a body casing 112. The body casing 112 is an outer cover of the laser printer 100 and is integrally formed from a synthetic resin plate. The body casing 112 has a paper ejection port 112a in the form of a slit-like through-hole located at an upper front portion thereof.
A catch tray 114 is attached to an upper front portion of the body casing 112 at a position corresponding to the paper ejection port 112a. The catch tray 114 is configured to receive the paper P which is ejected through the paper ejection port 112a and on which an image has been formed.
<<Electrostatic-Latent-Image Forming Section>>
The body casing 112 houses an electrostatic-latent-image forming section 120. The electrostatic-latent-image forming section 120 includes a photoconductor drum 121, which corresponds to the electrostatic-latent-image carrying body, the developer-image carrying body, and the developer carrying body of the present invention.
The photoconductor drum 121 is a generally cylindrical member and is composed of a drum body 121a and a photoconductor layer 121b. The photoconductor drum 121 is disposed such that its center axis of rotation is in parallel with the paper width direction. The photoconductor drum 121 is configured to be able to be rotatably driven clockwise in
The drum body 121a is a metal tube of an aluminum alloy or the like. The photoconductor layer 121b is a positively chargeable photoconductive layer and is formed on the outer circumference of the drum body 121a.
The photoconductor layer 121b has an image carrying surface 121b1 formed on the circumferential surface thereof. The image carrying surface 121b1 corresponds to the latent-image forming surface, the developer-image carrying surface and the developer-carrying surface of the present invention. The image carrying surface 121b1 is configured such that an electrostatic latent image can be formed by electric-potential distribution (charge distribution). The image carrying surface 121b1 is formed in parallel with the center axis of rotation of the drum body 121a and a main scanning direction, which will be described later.
The electrostatic-latent-image forming section 120 includes a scanner unit 122 and a charger 123.
The scanner unit 122 is configured and disposed such that the image carrying surface 121b1 can be irradiated at a predetermined scanning position SP with a laser beam LB which has a predetermined wavelength, is modulated on the basis of image information, and is scanned along the main scanning direction (z-axis direction in
The electrostatic-latent-image forming section 120 is configured such that the scanner unit 122 irradiates, with the laser beam LB, the image carrying surface 121b1 which is uniformly, positively charged by the charger 123, whereby an electrostatic latent image by electric-potential distribution can be formed on the image carrying surface 121b1. The electrostatic-latent-image forming section 120 is configured to be able to move the image carrying surface 121b1 on which an electrostatic latent image is formed, along the sub-scanning direction.
The “sub-scanning direction” is an arbitrary direction orthogonal to the main scanning direction. Usually, the sub-scanning direction is a direction which intersects with a vertical line. The sub-scanning direction is typically a direction along the front-rear direction (x-axis direction in
<<Developing Device>>
The body casing 112 houses a developing device 130, which corresponds to the developer feed device of the present invention.
Referring to
The developing device 130 is configured as described below so as to store a toner T, which is a developer in the form of fine particles, and supply the toner T in a charged state to the image carrying surface 121b1 on which an electrostatic latent image is formed.
<<<Developing Casing>>>
Referring to
A developing-section counter plate 131a1 is a rear portion of a casing top cover 131a, which serves as the ceiling of the developing casing 131. The developing-section counter plate 131a1 has a developing opening portion 131a2, which corresponds to the opening portion of the present invention. The developing opening portion 131a2 is provided in the developing-section counter plate 131a1 at a position facing the image carrying surface 121b1.
A casing bottom plate 131b, which serves as the bottom plate of the developing casing 131, and the developing-section counter plate 131a1 are formed integrally with each other in such a manner as to have a cross-sectional shape resembling the letter U at the rear end portion of the developing casing 131. A pair of casing side plates 131c are closingly attached to the opposite ends, with respect to the paper width direction, of the casing top cover 131a and to those of the casing bottom plate 131b. Also, a casing front blind plate 131d is closingly attached to the front end of the casing top cover 131a, to that of the casing bottom plate 131b, and to those of the paired casing side plates 131c.
<<<Developer Electric Field Transport Body>>>
Referring to
The toner electric field transport body 132 is disposed in the inner space of the developing casing 131 at a rearward position, in such a manner as to face the image carrying surface 121b1 with the developing opening portion 131a2 therebetween. The opposite ends of the toner electric field transport body 132 are engaged with the paired casing side plates 131c as describe below. Thus, the toner electric field transport body 132 is supported at a position located above the casing bottom plate 131b while facing the developing-section counter plate 131a1 with a predetermined gap therebetween.
<<<<Transport Wiring Substrate>>>>
The toner electric field transport body 132 includes a transport wiring substrate 133. The transport wiring substrate 133 is disposed in such a manner as to face the image carrying surface 121b1 with the developing opening portion 131a2 therebetween.
Referring to
Specifically, the transport wiring substrate 133 includes a transport-electrode support substrate 133a, transport electrodes 133b, and a transport-electrode coating layer 133c.
The transport-electrode support substrate 133a, which constitutes the insulating substrate of the present invention, is a flexible film formed of an insulating synthetic resin such as polyimide resin. The transport electrodes 133b are provided on the surface of the transport-electrode support substrate 133a.
The transport electrodes 133b are formed of copper film having a thickness of several tens of micrometers. The transport electrodes 133b are formed in a strip-like wiring pattern such that the longitudinal direction of the transport electrodes 133b is parallel with the above-mentioned main scanning direction (the z-axis direction in the drawings); i.e., perpendicular to the above-mentioned sub-scanning direction (the x-axis direction in the drawings). The transport electrodes 133b are disposed in parallel with each other and arranged along the sub-scanning direction. Each of the transport electrodes 133b is provided to face a toner transport path to be described later.
The transport electrodes 133b arrayed along the sub-scanning direction (in the x-axis direction in the drawings) are connected to power supply circuits such that every fourth transport electrode 133b is connected to the same power supply circuit. That is, the transport electrode 133bA connected to a power supply circuit VA, the transport electrode 133bB connected to a power supply circuit VB, the transport electrode 133bC connected to a power supply circuit VC, the transport electrode 133bD connected to a power supply circuit VD, the transport electrode 133bA connected to the power supply circuit VA, the transport electrode 133bB connected to the power supply circuit VB, . . . , are sequentially arrayed along the sub-scanning direction (the transport electrode 133bA refers to the transport electrode 133b connected to the power supply circuit VA. Similarly, the transport electrode 133bB refers to the transport electrode 133b connected to the power supply circuit VB. This rule applies to the transport electrode 133bC and the transport electrode 133bD as well).
As shown in
Referring to
The transport-electrode coating layer 133c is provided on a surface of the transport-electrode support substrate 133a on which the transport electrodes 133b are formed.
The transport-electrode coating layer 133c covers the transport-electrode support substrate 133a and the transport electrodes 133b to thereby make the toner transport surface 133d smooth. The toner transport surface 133d is a surface of the transport wiring substrate 133 which surface faces the image carrying surface 121b1 and is parallel with the main scanning direction. The transport electrodes 133b are provided along the toner transport surface 133d.
In the present embodiment, the positional relation between the toner electric field transport body 132 and the photoconductive drum 121 is set such that the developing position DP is located at an approximate center of the developing opening portion 131a2 with respect to the sub-scanning direction. The toner electric field transport body 132 is disposed such that the toner transport surface 133d faces the image carrying surface 121b1 of the photoconductive drum 121 via the developing opening portion 131a2 with the minimum gap formed therebetween at the developing position DP.
Referring to
A first electricity feed terminal 133f1, a second electricity feed terminal 133f2, a third electricity feed terminal 133f3, and a fourth electricity feed terminal 133f4 are provided in an upstream portion of the second margin area 133e2 with respect to the toner transport direction TTD. The first electricity feed terminal 133f1, the second electricity feed terminal 133f2, the third electricity feed terminal 133f3, and the fourth electricity feed terminal 133f4 are electrically connected to the power supply circuit VA, the power supply circuit VB, the power supply circuit VC, and the power supply circuit VD shown in
Again referring to
A plurality of transport electrodes 133bB are connected to a second electricity feed wiring portion 133k via through holes 133h and an unillustrated inter-through-hole connection wining pattern formed on the back surface of the transport-electrode support substrate 133a. The second electricity feed terminal 133f2 is formed integrally with the second electricity feed wiring portion 133k such that the second electricity feed terminal 133f2 is connected to an end portion of the second electricity feed wiring portion 133k opposite the end portion thereof at which the through hole 133h is formed. Electricity is fed to the plurality of transport electrodes 133bB via the second electricity feed terminal 133f2, the second electricity feed wiring portion 133k, and the through holes 133h.
Similarly, a plurality of transport electrodes 133bC are connected to a third electricity feed wiring portion 133n via through holes 133m and an unillustrated inter-through-hole connection wining pattern formed on the back surface of the transport-electrode support substrate 133a. The third electricity feed terminal 133f3 is formed integrally with the third electricity feed wiring portion 133n such that the third electricity feed terminal 133f3 is connected to an end portion of the third electricity feed wiring portion 133n opposite the end portion thereof at which the through hole 133m is formed. Electricity is fed to the plurality of transport electrodes 133bC via the third electricity feed terminal 133f3, the third electricity feed wiring portion 133n, and the through holes 133m.
Further, the fourth electricity feed terminal 133f4 is connected to end portions (left-hand end portions in
In the first margin area 133e1, a first reinforcement member 133r1 formed of copper foil having a thickness of several tens of micrometers (which is identical with the transport electrodes 133b in terms of material and thickness) is provided on both sides of the transport wiring substrate 133. In the second margin area 133e2, a second reinforcement member 133r2 formed of copper foil having a thickness of several tens of microns is provided on both sides of the transport wiring substrate 133. The first and second reinforcement members 133r1 and 133r2 reinforce opposite end portions of the transport wiring substrate 133 with respect to the sub-scanning direction.
<<<<Transport Substrate Support Member>>>>
Referring to
The transport-substrate support member 134 is composed of an upstream support portion 134a, a downstream support portion 134b, and a connection portion 134c. The transport-substrate support member 134 is integrally formed of a synthetic resin.
The upstream support portion 134a, which corresponds to the first support member of the present invention, is a generally cylindrical member having a center axis parallel with the main scanning direction. The upstream support portion 134a is provided to face the photoconductive drum 121 at such a position that its center axis is located on the upstream side (left side in
The downstream support portion 134b, which corresponds to the second support member of the present invention, is a generally cylindrical member having a center axis parallel with the main scanning direction. The downstream support portion 134b is provided on the downstream side (right side in
An upper end portion of the upstream support portion 134a and an upper end portion of the downstream support portion 134b are connected integrally and smoothly by the connection portion 134c, which is a generally flat member. The transport-substrate support member 134 is configured such that, as viewed in a side sectional view, a smooth surface is formed along a generally oval shape, the surface starting from a lower end portion of the upstream support portion 134a, passing through an upstream-side (left side in
The transport wiring substrate 133 is supported by the transport-substrate support member 134 such that the transport wiring substrate 133 deforms in a tubular shape and covers the outer circumference of the transport-substrate support member 134. Further, the transport-substrate support member 134 is configured and disposed such that the transport wiring substrate 133 faces the image carrying surface 121b1 of the photoconductive drum 121 via a predetermined developing gap (a region of the space within the developing opening portion 131a2 in the vicinity of the developing position DP).
As shown in
A recess is formed below the connection portion 134c of the transport-substrate support member 134. The surfaces of the upstream support portion 134a and the downstream support portion 134b which surfaces face the recess are separated from the toner transport path.
Screw holes 134d are formed in an upper end portion of the surface of the upstream support portion 134a facing the recess. Further, engagement pieces 134e are provided on a lower portion of the connection portion 134c at a position near the downstream support portion 134b such that the engagement pieces 134e project downward in
A one end portion (the first margin area 133e1 shown in
That is, referring to
As shown in
Referring to
Through holes 137a are formed in opposite longitudinal end portions of the engagement portion 137. First ends of pulling engagement members 138, each formed of a coil spring, are engaged with the through holes 137a. Second ends of the pulling engagement members 138 are engaged with the engagement pieces 134e.
As shown in
Referring to
That is, as shown in
Further, the transport-substrate support member 134 supports the transport wiring substrate 133 such that the distance between the first margin area 133e1 and the second margin area 133e2 and the counter wiring substrate 139 becomes greater than that between the transport wiring substrate 133 and the counter wiring substrate 139.
<<<<Counter Wiring Substrate>>>>
Referring to
The counter wiring substrate 139 has a configuration similar to that of the above-described transport wiring substrate 133. That is, referring to
Specifically, similar to the transport electrodes 133b, the counter electrodes 139a have their longitudinal direction along the main scanning direction orthogonal to the sub-scanning direction. The plurality of counter electrodes 139a are disposed in parallel with one another. Furthermore, the plurality of counter electrodes 139a are arrayed along the sub-scanning direction. That is, the counter electrodes 139a are provided in parallel with the transport electrodes 133b such that the counter electrodes 139a face the transport electrodes 133b via a predetermined gap (the above-described toner transport path).
As in the case of the above-described transport wiring substrate 133, the counter wiring substrate 139 is configured to be able to transport the toner T as follows. Predetermined voltages are applied to the plurality of counter electrodes 139a, thereby generating traveling-wave electric fields along the toner transport direction TTD parallel with the sub-scanning direction. By this procedure, the positively charged toner T can be transported along the toner transport direction TTD.
<<Transfer Section>>
Referring again to
The transfer section 140 includes a rotary center shaft 141, which is a roller-like member and is made of metal, and a conductive rubber layer 142, which is circumferentially provided on the rotary center shaft 141. The rotary center shaft 141 is disposed in parallel with the main scanning direction. A high-voltage power supply is connected to the rotary center shaft 141. The conductive rubber layer 142 is formed of a synthetic rubber containing conductive particles, such as carbon black, kneadingly mixed thereinto, so that the conductive rubber layer 142 becomes electrically conductive or semiconductive.
The transfer section 140 is configured to be able to transfer the toner T from the image carrying surface 121b1 to the paper P by means of being rotatably driven counterclockwise while a predetermined transfer voltage is applied between the transfer section 140 and the drum body 121a of the photoconductor drum 121.
<<Paper Feed Cassette>>
A paper feed cassette 150 is disposed under the developing device 130. A paper feed cassette case 151 is a box-like member used to form the casing of the paper feed cassette 150 and opens upward. The paper feed cassette case 151 is configured to be able to contain a large number of sheets of the paper P of up to size A4 (210 mm width×297 mm length) in a stacked state.
A paper-pressing plate 153 is disposed within the paper feed cassette case 151. The paper-pressing plate 153 is supported by the paper feed cassette case 151 in such a manner as to pivotally move on a pivot at its front end portion, so that its rear end can move vertically in
<<Paper Transport Section>>
A paper transport section 160 is housed within the body casing 112. The paper transport section 160 is configured to be able to feed the paper P to a paper transfer position TP where the transfer section 140 and the image carrying surface 121b1 face each other with a smallest gap therebetween. The paper transport section 160 includes a paper feed roller 161, a paper guide 163, and paper transport guide rollers 165.
The paper feed roller 161 includes a rotary center shaft parallel with the main scanning direction and a rubber layer, which is circumferentially provided on the rotary center shaft. The paper feed roller 161 is disposed in such a manner as to face a leading end portion, with respect to the paper transport direction, of the paper P stacked on the paper-pressing plate 153 housed within the paper feed cassette case 151. The paper guide 163 and the paper transport guide rollers 165 are configured to be able to guide to the transfer position TP the paper P which has been delivered by the paper feed roller 161.
<<Fixing Section>>
A fixing section 170 is housed within the body casing 112. The fixing section 170 is disposed downstream of the transfer position TP with respect to the paper transport direction. The fixing section 170 is configured to apply pressure and heat to the paper P which has passed the transfer position TP and bears an image in the toner T, thereby fixing the image in the toner T on the paper P. The fixing section 170 includes a heating roller 172 and a pressure roller 173.
The heating roller 172 includes a cylinder which is made of metal and whose surface is exfoliation-treated, and a halogen lamp which is housed within the cylinder. The pressure roller 173 includes a rotary center shaft which is made of metal, and a silicone rubber layer which is circumferentially provided on the rotary center shaft. The heating roller 172 and the pressure roller 173 are disposed in such a manner as to press against each other under a predetermined pressure.
The heating roller 172 and the pressure roller 173 are configured and disposed so as to be able to deliver the paper P toward the paper ejection port 112a while applying pressure and heat to the paper P.
<Outline of Image Forming Operation of Laser Printer>
The outline of an image forming operation of the laser printer 100 having the above-described configuration will next be described with reference to the drawings.
<<Paper Feed Operation>>
Referring to
<<Formation of Toner Image on Image Carrying Surface>>
While the paper P is being transported to the transfer position TP as described above, an image in the toner T is formed as described below on the image carrying surface 121b1, which is the circumferential surface of the photoconductor drum 121.
<<<Formation of Electrostatic Latent Image>>>
First, the charger 123 uniformly charges a portion of the image carrying surface 121b1 of the photoconductor drum 121 to positive polarity.
Referring to
As a result of the clockwise rotation of the photoconductor drum 121 in
<<<Transport of Charged Toner>>>
Referring to
The toner T residing between the transport wiring substrate 133 and the counter wiring substrate 139 is transported toward the developing position DP by the effect of traveling-wave electric fields generated on the transport wiring substrate 133 and on the counter wiring substrate 139.
A toner-T-transporting motion effected by the counter wiring substrate 139 is similar to that effected by the transport wiring substrate 133. Thus, the toner-T-transporting motion effected by the transport wiring substrate 133 will be described below in detail.
Referring to
That is, at time t1, the positively charged toner T in the sections AB is subjected to electrostatic force directed opposite the toner transport direction TTD. The positively charged toner T in the sections BC and DA is hardly subjected to electrostatic force directed along the toner transport direction TTD. The positively charged toner T in the CD sections is subjected to electrostatic force directed in the toner transport direction TTD. Thus, at time t1, the positively charged toner T is collected in the DA sections.
Similarly, at time t2, the positively charged toner T is collected in the sections AB. When time t3 is reached, the positively charged toner T is collected in the sections BC. In this manner, areas where the toner T is collected move with time in the toner transport direction TTD along the toner transport surface 133d.
As described above, as result of application of voltages as shown
Referring to
At a portion of the toner transport path corresponding to the developing opening portion 131a2, the
counter wiring substrate 139 is not formed. Therefore, at that portion, the toner T is supplied (transported) to the developing position DP by means of the traveling-wave electric field generated on the transport wiring substrate 133.
A portion of the toner T, which portion was supplied to the developing position DP but not used for development of an electrostatic latent image, is transported from the developing position DP to a position along the toner transport path corresponding to the upper end portion of the downstream support portion 134b. A portion of the toner T having passed through a position along the toner transport path corresponding to the front side (right side in
The toner T is transported, by the traveling-wave electric field generated on the counter wiring substrate 139, from a position along the toner transport path corresponding to the lower end portion of the downstream support portion 134b to a position along the toner transport path corresponding to the lower end portion of the upstream support portion 134a.
In this manner, the toner T is transported while being circulated along the generally oval toner transport path.
<<<Development of Electrostatic Latent Image>>>
Referring to
<<Transfer of Toner Image from Image Carrying Surface to Paper>>
Referring to
<<Fixing and Ejection of Paper>>
The paper P onto which an image in the toner T has been transferred at the transfer position TP is sent to the fixing section 170 along the paper path PP. The paper P is nipped between the heating roller 172 and the pressure roller 173, thereby being subjected to pressure and heat. By this procedure, the image in the toner T is fixed on the paper P. Subsequently, the paper P is sent to the paper ejection port 112a and is then ejected onto the catch tray 114 through the paper ejection port 112a.
<Actions and Effects Achieved by the Structure of the Embodiment>
In the present embodiment, the transport-substrate support member 134 supports the transport wiring substrate 133 such that the transport electrodes 133b face the above-described toner transport path formed along the inner wall surface of the developing casing 131, and the first and second margin areas 133e1 and 133e2, which are regions of the opposite end portions of the transport wiring substrate 133 with respect to the sub-scanning direction (and the toner transport direction) and in which the transport electrodes 133b are not formed, are separated from the toner transport path.
Further, the counter wiring substrate 139 having the plurality of counter electrodes 139a is supported on the inner wall surface of the developing casing 131 such that the counter wiring substrate 139 faces the transport wiring substrate 133 with a predetermined gap therebetween. The transport-substrate support member 134 supports the transport wiring substrate 133 such that the first and second margin areas 133e1 and 133e2 are separated from the counter wiring substrate 139. Moreover, the distance between the first and second margin areas 133e1 and 133e2 and the counter electrodes 139a is set to be greater than that between the transport electrodes 133b and the counter electrodes 139a.
By virtue of these configurations, the first and second margin areas 133e1 and 133e2, in which no traveling-wave electric field is generated, are separated from the toner transport path. Therefore, the first and second margin areas 133e1 and 133e2 are prevented, to a possible extent, from hindering transport of the toner T along the toner transport path, which hindrance would otherwise occur because the first and second margin areas 133e1 and 133e2 face the toner transport path. Accordingly, the toner T can be smoothly transported in the toner transport direction by means of the traveling-wave electric field.
Further, in portions of the toner transport path corresponding to the first and second margin areas 133e1 and 133e2, the toner T is transported satisfactorily by means of the counter electrodes 139a. The transport of the toner T in a circulating state is smoothly performed.
In the present embodiment, the first through fourth electricity feed terminals 133f1 to 133f4 are provided in the second margin area 133e2 of the transport wiring substrate 133.
By virtue of this configuration, toner guide members G (see
In the present embodiment, the transport wiring substrate 133 is engaged with the transport-substrate support member 134 in the first and second margin areas 133e1 and 133e2. Further, the first and second reinforcement members 133r1 and 133r2, formed of the same material as the transport electrodes 133b, are provided in the first and second margin areas 133e1 and 133e2.
By virtue of this configuration, the transport wiring substrate 133 is reliably supported on the transport-substrate support member 134 in a predetermined manner.
In the present embodiment, the pulling engagement members 138 are configured such that the pulling engagement members 138 urge the opposite end portions of the second margin area 133e2 with respect to the main scanning direction to separate from each other toward the outside with respect to the main scanning direction.
By virtue of this configuration, the portion of the transport wiring substrate 133 where the transport electrodes 133b are formed can be supported in a state in which that that portion does not form a wrinkle and is smooth. Therefore, proper transport of the toner T on the transport wiring substrate 133 along the toner transport direction can be performed more reliably by a simple structure.
In the present embodiment, the counter wiring substrate 139 having the plurality of counter electrodes 139a arranged along the sub-scanning direction is provided to face the toner electric field transport body 132. By virtue of this configuration, the toner T can be smoothly transported along the gap between the toner electric field transport body 132 and the counter wiring substrate 139.
In the present embodiment, the counter wiring substrate 139 is provided over the substantially entirety of the casing bottom plate 131b with respect to the above-described front-rear direction (the sub-scanning direction). By virtue of this configuration, the toner T within the developing casing 131 can be more efficiently transported to a region where the toner electric field transport body 132 and the counter wiring substrate 139 face each other.
<Modifications>
As mentioned previously, the above-described embodiment is a mere example of a typical embodiment of the present invention which the applicant contemplated as the best at the time of filing the present application. The present invention is not limited to the above-described embodiment. Various modifications to the above-described embodiment are possible, so long as the invention is not modified in essence.
Typical modifications will next be exemplified. In the following description of the modifications, members similar in structure and function to those used in the above-described embodiment are denoted by the same reference numerals as those of the above-described embodiment. As for the description of these members, an associated description appearing in the description of the above embodiment can be cited, so long as no technical inconsistencies are involved.
Needless to say, modifications are not limited to those exemplified below. Also, a plurality of the modifications can be combined as appropriate, so long as no technical inconsistencies are involved.
The above-described embodiment and the following modifications should not be construed as limiting the present invention (particularly, those components which partially constitute the means for solving the problems to be solved by the invention and are described operationally and functionally). Such limiting construal unfairly impairs the interests of an applicant (who is motivated to file as quickly as possible under the first-to-file system) while unfairly benefiting imitators, is contrary to the purpose of the patent law which promotes protection and utilization of inventions, and is thus impermissible.
(1) Application of the present invention is not limited to a monochromatic laser printer. For example, the present invention can be preferably applied to so-called electrophotographic image forming apparatus, such as color laser printers and monochromatic and color copying machines.
Also, the present invention can be preferably applied to image forming apparatus of other than the above-mentioned electrophotographic system (for example, toner jet image forming apparatus and ion flow image forming apparatus).
(2) No particular limitation is imposed on the configurations of the electric-field-effected toner transport body 132, the transport wiring substrate 133, and the counter wiring substrate 139 in the above-described embodiment.
For example, the transport electrodes 133b can be embedded in the transport-electrode support substrate 133a so as not to project from the surface of the transport-electrode support substrate 133a. The transport-electrode coating layer 133c can be omitted. The transport electrodes 133b can be formed directly on the transport-substrate support member 134.
The counter electrodes 139a can also be, for example, embedded in the counter-electrode support substrate 139b so as not to project from the surface of the counter-electrode support substrate 139b. The counter-electrode coating layer 139c can be omitted. The counter electrodes 139a can be formed directly on the inner wall surface of the developing casing 131.
The longitudinal direction of the transport electrodes 133b and the counter electrodes 139a is not required to perpendicularly intersect the sub-scanning direction. That is, the longitudinal direction is not required to be parallel with the main scanning direction. Further, the toner transport direction is not required to be parallel with the sub-scanning direction.
(3) The counter wiring substrate 139 may be omitted partially or entirely.
(4)
As shown in
(5)
As shown in
By virtue of this configuration, the transport-substrate support member 134 itself can be configured such that it imparts a tension to the transport wiring substrate 133. Therefore, the structure which can impart a proper tension to the transport wiring substrate 133 can be realized simply.
Notably, in this case, the structure which can impart a proper tension to the transport wiring substrate 133 without generating a wrinkle in the transport wiring substrate 133, can be realized simply by means of changing the elasticity (rubber hardness, sponge hardness, or the like) of the tension imparting portion 134f such that an elasticity distribution is produced along the main scanning direction.
(6) The entirety of the transport-substrate support member 134 may be formed of an elastic material such as rubber, sponge, or the like.
(7) As shown in
(8)
As shown in
In this case, the downstream end portion of the transport wiring substrate 133 with respect to the toner transport direction is fixed by means of screw holes 134d formed in a free end portion of the plate spring portion 134b1 and fixing bolts 136. That is, the opposite end portions of the transport wiring substrate 133 with respect to the toner transport direction are fixed by use of the fixing bolts 136.
By virtue of this configuration, the transport-substrate support member 134 (the downstream support portion 134b) itself can be configured such that it imparts a tension to the transport wiring substrate 133. Therefore, the structure which can impart a proper tension to the transport wiring substrate 133 can be realized simply.
(9)
As shown in
Notably, as shown in
(10) The shapes of the outer circumferential surfaces of the upstream support portion 134a and the downstream support portion 134b are not limited to a cylindrical shape. For example, the outer circumferential surfaces may assume a so-called crown shape such that each outer circumferential surface has a convex portion at the center thereof with respect to the main scanning direction.
(11) Grease may be charged into the space between the transport wiring substrate 133 and the transport-substrate support member 134. The grease prevents the transport wiring substrate 133 from lifting from the transport-substrate support member 134.
(12) Those component elements which partially constitute the means for solving the problems to be solved by the invention and are described operationally and functionally include not only the specific structures disclosed in the above-described embodiment and modifications but also any other structures that can implement the operations and functions of the elements.
Number | Date | Country | Kind |
---|---|---|---|
2006-212856 | Aug 2006 | JP | national |
This application is a bypass continuation of International Application No. PCT/JP2007/065567 filed Aug. 2, 2007, which was published Under PCT Article 21(2), which claims priority to Japanese Application No. JP2006-212856, filed Aug. 4, 2006, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4598991 | Hosoya et al. | Jul 1986 | A |
5323214 | Kai | Jun 1994 | A |
5850244 | Leonard et al. | Dec 1998 | A |
6934496 | Sakuma et al. | Aug 2005 | B2 |
20040037593 | Sakuma et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
63-013074 | Jan 1988 | JP |
63-013078 | Jan 1988 | JP |
05-061336 | Mar 1993 | JP |
05-031146 | May 1993 | JP |
06-059568 | Mar 1994 | JP |
2001-122436 | May 2001 | JP |
2002-099143 | Apr 2002 | JP |
2002-351218 | Dec 2002 | JP |
2002-372850 | Dec 2002 | JP |
2003-015417 | Jan 2003 | JP |
2003-076137 | Mar 2003 | JP |
2004-086040 | Mar 2004 | JP |
2004-157259 | Jun 2004 | JP |
2005-275127 | Oct 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20090136269 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2007/065567 | Aug 2007 | US |
Child | 12365680 | US |