Electro-photography (EP) printing devices may form images on print media by selectively charging or discharging a photoconductive member, such as a photoconductive drum, based on an image to be printed. The selective charging or discharging may form a latent electrostatic image on the photoconductor. Colorants, or other printing fluids, may be developed onto the latent image of the photoconductor, and the colorant or printing fluid may be transferred to the media to form the image on the media. In dry EP (DEP) printing devices, powdered toner may be used as the colorant, and the toner may be received by the media as the media passes below the photoconductor. The toner may be fixed in place as it passes through heated pressure rollers. In some liquid EP (LEP) printing devices, printing fluid may be used as the colorant instead of toner. In some LEP devices, printing fluid may be developed in a developer unit and then selectively transferred to the photoconductor (a “zero transfer”). For example, the printing fluid may have a charge that causes it to be electrostatically attracted to the latent image on the photoconductor. The photoconductor may transfer the printing fluid to an intermediate transfer member (ITM), which may include a transfer blanket, (a “first transfer”), where it may be heated until a liquid carrier evaporates, or substantially evaporates, and resinous colorants melt. The ITM may transfer the resinous colorants to the surface of the print media (a “second transfer”), which may be supported on a rotating impression member (e.g., a rotating impression drum).
The developer unit may receive printing fluid from a reservoir and provide the printing fluid to a developer member, such as a developer roller. The printing fluid may be developed on the developer roller, and the developer roller may transfer the developed printing fluid to the photoconductor. The developer unit may include a set of electrodes that form a cavity (e.g., a main electrode, a back electrode, etc.). Printing fluid may be delivered to the cavity by a conduit (e.g., a pipe, a hose, a channel, or the like). The pressure of the printing fluid from the conduit may force the printing fluid through a channel to the developer roller.
The conduit may deliver the printing fluid to a first end of the cavity. The printing fluid may exit the conduit as a jet. The pressure/velocity of the printing fluid as it exits may cause the printing fluid to travel to a second end of the cavity opposite the first end. The printing fluid may be at high pressure at the second end of the cavity due to the incoming jet. The jet may pull printing fluid from the first end, and little printing fluid may flow to the first end. As a result, the printing fluid may be at a low pressure at the first end of the cavity.
The low pressure at the first end may result in poor print quality. If the pressure is too low, the printing fluid may not flow over the back electrode. The lack of flow may prevent development of the printing fluid from occurring at the back electrode. As a result, the optical density of the printing fluid may be reduced, and flow streaks may appear in the printing fluid on the developer roller. These defects may transfer to the print media. In extreme cases, there may even be a complete starvation of printing fluid. The high pressure at the second end may increase the amount and velocity of printing fluid flowing through the channel towards the developer roller. A splashguard may be unable to contain the increased flow of printing fluid, and the printing fluid may leak over the splashguard. Accordingly, there is a need for a device to cause printing fluid to be output to a developer roller at a uniform pressure and velocity.
An inlet 130 may deliver the printing fluid to the cavity 120. For example, the inlet 130 may be coupled to a printing fluid reservoir (not shown) by a conduit (not shown). The size of the inlet 130 may be maximized. For example, the inlet 130 may not include anything that might restrict the flow of printing fluid to a single narrow passage and cause it to enter the cavity 120 as a narrow jet. In an example, the inlet diameter may be at least as large as the diameter of the conduit. In such an example, there may be no locations along the inlet 130 at which the diameter is less than that of the conduit. The pressure and velocity of printing fluid entering through a large inlet may be lower than the pressure and velocity of printing fluid entering an inlet narrower than the conduit. Accordingly, the pressure at the second end may not be as high as with a narrow inlet. In addition, the widening may cause more printing fluid to be directed to the first end, and the pressure at the first end may be higher than it would be with a narrow inlet.
In an example, the inlet 130 may include a tapered portion 134. The tapered portion 134 may taper outward from the endcap 132 to the size of the cavity 120. As used herein, the term “taper outward” refers to a continuous and constant increase in cross-sectional area between a first location and a second location. For example, the tapered portion 134 may taper outward at a constant slope. As used herein, the term “slope” refers to a change in the lateral distance from the inlet axis to a line coplanar with the inlet axis (e.g., a line on the inner surface of the inlet) between first and second locations on the line divided by the longitudinal distance along the inlet axis between the first and second locations, or the term “slope” refers to an arctangent of the quotient so computed. In some examples, the slope may be the same for all lines on the inside surface of the tapered portion 134 that are coplanar with the inlet axis. Alternatively, or in addition, there may be differently sloped lines based on variations in the shape of the cavity 120. In some examples, the inlet 130 may taper out at slopes no greater than a threshold, such as 15, 20, 30, 45, 60, etc. degrees (i.e., all lines on the inside surface of the tapered portion 134 that are coplanar with the inlet axis may have a slope no greater than the threshold). Some lines may have a slope near zero and remain a constant distance from the inlet axis while others widen more quickly. In the illustrated example, one side widens at a constant slope while another side does not widen and has a slope near zero.
In other examples, the inlet 130 may widen without tapering. In an example, the widening of the inlet 130 may not be constant, and the inner surface of the inlet 130 may form a curve of varying slope that is coplanar with the inlet axis. The curve may be, for example, polynomial, exponential, or the like. In an example, the widening of the inlet 130 may not be continuous. The inlet 130 may widen in a plurality of steps with no change in cross-sectional area between the steps. The slopes between steps may be constant or varying. The widening of the inlet 130 may further reduce the pressure and velocity of incoming printing fluid. The printing fluid may spread as it encounters the widening cross-section, which may result in the reduction in pressure and velocity. As a result, the pressure at the second end 124 may be reduced relative to an inlet without widening, and the pressure at the first end 122 may be higher.
The developer unit 200 may include an insert 270. As used herein, the term “insert” refers to an object in a fixed location that modifies the flow of printing fluid in the cavity 220. The insert may be made of a polymer, a metal, a carbon based compound, or the like. The insert 270 may be located in the inlet 230 or the cavity 220. The insert 270 may redirect the flow of the printing fluid in the inlet 230 or cavity 220 irrespective of the insert's location. The insert 270 may be in a path of the printing fluid. For example, the insert 270 may be located where the printing fluid enters the inlet 230, at a location after the printing fluid enters the inlet 230, or the like. In an example, the insert 270 may be located or centered along the inlet axis. The insert 270 may redirect the printing fluid towards the faces and edges of the cavity 220 and away from a center of the cavity 220. As used herein, the term “face” refers to an approximately flat portion of the surface that encloses the cavity 220 (i.e., a flat portion of the surfaces of the set of electrodes 210 that define the cavity 220), and the term “edge” refers to an area on the surface joining two faces. For example, an edge may be a rounded portion of the surfaces of the set of electrodes 210 that is between two faces. In an example, the insert 270 may force arriving printing fluid to flow laterally towards the faces and edges before the printing fluid can continue flowing longitudinally.
The insert 270 may also, or instead, disrupt the flow of the printing fluid. The pressure and velocity of the printing fluid may be less after it has been redirected or disrupted by the insert 270. The redirection and disruption may reduce the pressure of printing fluid exiting the channel 240 at a second end relative to an example without an insert. The flow of printing fluid to a first end of the cavity 220 may be increased by the redirection and disruption of the printing fluid flow by the insert 270. The redirection or disruption of printing fluid by the insert 270 at the first end of the cavity 220 may increase the pressure of printing fluid exiting the channel 240 at the first end relative to an example without an insert. Thus, the redirection and disruption by the insert 270 may cause printing fluid to be delivered to the developer roller 250 at a more uniform pressure.
In some examples, the inlet 230 may be restricted, so the printing fluid may enter the cavity 220 in a narrow jet. The narrow jet may impact the insert 270 and may travel around the insert 270, which may change the pressure and velocity of the incoming printing fluid. The insert 270 absorb some of the pressure/velocity of the printing fluid and may redirect some of the pressure/velocity to portions of the cavity 220 that would otherwise be at a lower pressure. In some examples, the inlet 230 may be unrestricted and have a large cross-sectional area. The insert 270 and the large cross-sectional area may cooperate to cause the printing fluid to exit the channel 240 and arrive at the developer roller 250 at a more uniform pressure than with either element alone.
In an example, the inlet 230 may widen, and the insert 270 may direct printing fluid into the widened portion of the inlet 230. Without the insert 270, the widening may reduce the pressure of the incoming printing fluid, but printing fluid at the widened portion and at the first end may remain at a lower pressure than printing fluid at the second end. The printing fluid at the second end may still be affected by the pressure and velocity of the printing fluid entering at the inlet 230. The insert 270 may direct printing fluid towards the widened portion, which may increase the printing fluid pressure at the first end. The insert 270 may also obstruct the incoming printing fluid, which may prevent the velocity of the incoming printing fluid from affecting the pressure of the printing fluid at the second end. As a result, the printing fluid delivered to the developer roller may have a more uniform pressure when the insert 270 is included in combination with the widening compared to only widening the inlet 230 or only including the insert 270.
The developer unit 300 may include an insert 370. The insert 370 may be located in the inlet 330 or the cavity 320 and may modify the flow of printing fluid in the inlet or the cavity 320. In the illustrated example, the insert 370 may include a hole 372 in the center when viewing a lateral cross-section and a solid ring 374 surrounding the hole 372. The hole 372 may permit printing fluid to travel through the insert 370 towards a center of the cavity 320. In an example, an insert 370 without a hole may cause the pressure of the printing fluid at the first end to increase too much and the pressure of the printing fluid at the second end or in the middle between the two ends to decrease too much. For example, there may be a spike in pressure or velocity at the first end.
The size of the ring 374 (e.g., the diameter) and the size of the hole 372 (e.g., the diameter) may be selected to moderate the printing fluid pressure at the second end while preventing a low-pressure shadow from forming behind the insert 370. The positioning and number of holes 372 may also be adjusted to control the pressure of printing fluid being delivered to the developer roller 350 at various locations between the first and second ends. In the illustrated example, the hole 372 is coaxial with the ring 374, but in other examples, the hole 372 may not be coaxial with the ring 374. The hole 372 or ring 374 may also form cross-sectional shapes other than circles, such as squares, triangles (e.g., with corners oriented towards edges of the cavity 320, with corners oriented towards faces of the cavity 320, etc.), or the like.
The insert 370 may include a plurality of ribs 376. The plurality of ribs 376 may support the ring 374 and hold it in a fixed location. The plurality of ribs 376 may connect the ring 374 to the inlet 330 or the cavity 320. The plurality of ribs 376 may also redirect printing fluid. In the illustrated example, the plurality of ribs 376 are approximately aligned with the faces of the surface, and the gaps between the plurality of ribs 376 are approximately aligned with edges of the surface. The plurality of ribs 376 may direct incoming printing fluid towards the edges to diffuse the flow of the incoming printing fluid while allowing the printing fluid to travel to the second end. In other examples, there may be more or fewer ribs, and the positions of the ribs may be different from the illustrated example. The plurality of ribs 376 are illustrated as being positioned in an approximately symmetrical configuration, but in other examples, the plurality of ribs 376 may in asymmetrical positions.
In the illustrated example, the insert 370 has a uniform size in its lateral dimensions for the entirety of its depth in a longitudinal direction. For example, the plurality of ribs 376 may have a same cross-sectional area and position at a side closest to the conduit 360 as at a side closest to the cavity 320. Similarly, the hole 372 and the ring 374 may have same sizes (e.g., diameters) and positions at the side closest to the conduit 360 as at the side closest to the cavity 320. In alternate examples, the cross-sectional areas, diameters, positions, etc. may vary to aid in redirecting the printing fluid.
The interface 400 may include an insert 470. The illustrated insert 470 does not include a hole in the center, but other inserts may have such a hole. The insert 470 may obstruct a flow of printing fluid received at the distal end 435 and may redirect the printing fluid. For example, the insert 470 may direct the printing fluid along an inner surface of the body 430. In the illustrated example, incoming printing fluid may reach the insert 470 and need to move laterally before it can continue its original course. The lateral movement may create an outward pressure directing printing fluid towards the inner surface of the body.
The interface 400 may include an endcap 432. The endcap 432 may be able to couple the interface 400 to the conduit. The insert 470 may be located at a different longitudinal position than the endcap 432. In the illustrated example, the insert 470 is closer to the distal end 435 than the proximal end 436, for example, to allow the flow of the printing fluid to achieve a more uniform velocity before it reaches the proximal end 436 of the interface 400. In alternate examples, the insert 470 may be located in other locations, such as a location closer to the proximal end 436 than the distal end 435.
The interface 500 may include an insert 570. The insert 570 may include a hole 572, a ring 574, and a plurality of ribs 576. In some examples, the insert 570 may not have a uniform size in its lateral dimensions for the entirety of its depth. In the illustrated example, the hole 572 and the ring 574 may increase in size (e.g., diameter) from a side closest to the distal end 535 to a side closest to the proximal end 536. The increase in diameter of the ring 574 may direct the incoming flow of printing fluid along the walls of the body 530 as they widen, and the increase in diameter of the hole 572 may reduce the pressure and velocity of the portion of the incoming flow traveling through the hole 572. In other examples, one of the hole 572 and the ring 574 may increase in diameter, or a cross-sectional area or location of one of the plurality of ribs 576 may change along its depth. For example, the plurality of ribs 576 may include a pitch that results in changes in location along their depth.
The above description is illustrative of various principles and implementations of the present disclosure. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. Accordingly, the scope of the present application should be determined only by the following claims.
This application is a Continuation of commonly assigned U.S. patent application Ser. No. 15/760,306, filed Mar. 15, 2018, which is a national stage filing under 35 U.S.C. 371 of PCT application number PCT/US2015/053190, having an international filing date of Sep. 30, 2015, titled “DEVELOPER INLETS”. The disclosures of the U.S. Patent Application and the International Patent Application are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3651782 | MacDonald, Jr. | Mar 1972 | A |
4398818 | Jeromin et al. | Aug 1983 | A |
4421056 | Schinke | Dec 1983 | A |
6108507 | Chang et al. | Aug 2000 | A |
8965250 | Komatsu et al. | Feb 2015 | B2 |
10474067 | Sabo | Nov 2019 | B2 |
20060067739 | Kang et al. | Mar 2006 | A1 |
20080141882 | Sabo et al. | Jun 2008 | A1 |
20120114392 | Ushikubo | May 2012 | A1 |
20130011162 | Nelson et al. | Jan 2013 | A1 |
20140003840 | Onishi et al. | Jan 2014 | A1 |
20150078785 | Tanner et al. | Mar 2015 | A1 |
20150125176 | Fujii et al. | May 2015 | A1 |
20180259882 | Sabo | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
102428415 | Apr 2012 | CN |
102812403 | Dec 2012 | CN |
203116473 | Aug 2013 | CN |
104204962 | Dec 2014 | CN |
WO-2013151562 | Oct 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20200064757 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15760306 | US | |
Child | 16674855 | US |