The present invention relates to a developer storage container, a developing device and an image forming apparatus.
Japanese Laid-open Patent Publication No. 2007-26511 discloses a developer cartridge storing a developer. The developer cartridge is provided with a sealing member for preventing leakage of the developer.
Recently, a developer storage container (such as a developer cartridge) is required to be large in capacity and required to be transported for a long time. For this reason, there is a demand for enhancing a sealing performance.
An aspect of the present invention is intended to provide a developer storage container, a developing device and an image forming apparatus having a high sealing performance.
According to an aspect of the present invention, there is provided a developer storage container including a first storage member storing a developer, a second storage member fitted to the first storage member, and a sealing member that seals between the first storage member and the second storage member for preventing leakage of the developer. The first storage member includes a first fitting portion. The second storage member includes a second fitting portion fitted to the first fitting portion. The first fitting portion includes a pressing portion pressing the sealing member. The pressing portion includes an inclined portion that faces the second fitting portion.
With such a configuration, it becomes possible to provide a developer storage container, a developing device and an image forming apparatus having a high sealing performance.
According to still another aspect of the present invention, there is provided a developing device including the above described developer storage container, and a developing member that develops a latent image using the developer supplied by the developer storage container.
According to yet another aspect of the present invention, there is provided an image forming apparatus including an image bearing body, a latent image forming unit that forms a latent image on the image bearing body, the above described developer storage container, and a developing member that develops a latent image using the developer supplied by the developer storage container.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific embodiments, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
In the attached drawings:
Hereinafter, embodiments of the present invention will be described with reference to drawings. The present invention is not limited to the embodiments described below. The embodiments can be modified without departing the scope of the present invention.
The image forming apparatus 100 includes a lower frame 1 and a top cover 2 provided above the lower frame 1.
A medium conveying path 10 having a substantially “S”-shape is provided in the lower frame 1. A recording medium (i.e., a recording sheet) is conveyed along the medium conveying path 10. Medium conveying rollers 15, 16, 17 and 18 are provided along the medium conveying path 10. The recording medium is conveyed in a direction shown by an arrow C (i.e., a conveying direction) along the medium conveying path 10. A medium cassette 11 is provided on an upstream end of the medium conveying path 10 in the conveying direction. The medium cassette 11 stores a stack of the recording media (i.e., the recording sheets). A stacker 12 is provided on a downstream end of the medium conveying path 10 in the conveying direction. The printed recording media are placed on the stacker 12.
Along the medium conveying path 10, a medium feeding unit 13, a detection unit 14, and a transfer belt unit 20 are arranged in this order from upstream to downstream in the conveying direction. The medium feeding unit 13 feeds the recording medium from the medium cassette 11. The medium conveying rollers 15 and 16 convey the medium toward the transfer belt unit 20. The detection unit 14 detects a thickness of the recording medium. The transfer belt unit 20 includes a transfer belt 21. The transfer belt 21 electrostatically absorbs the recording medium, and conveys the recording medium.
Image forming units 30K, 30Y, 30M and 30C are provided above the transfer belt unit 20 so as to sandwich the recording medium between the image forming units 30K, 30Y, 30M and 30C and the transfer belt 21. The image forming units 30K, 30Y, 30M and 30C are collectively referred to as the image forming units 30 as necessary. The image forming units 30K, 30Y, 30M and 30C respectively stores toners (i.e., developers) of Black (K), Yellow (Y), Magenta (M) and Cyan (C), and form toner images on the recording medium using the respective toners. The image forming units 30K, 30Y, 30M and 30C are detachably mounted to a main body of the image forming apparatus 100. In this regard, the main body of the image forming apparatus 100 is a part of the image forming apparatus 100 from which detachable components are detached. Similarly, an image forming unit main body 3a (
A fixing unit 40 is provided in the lower frame 1. The fixing unit 40 is disposed downstream of the transfer belt unit 20 in the medium conveying direction. The fixing unit 40 fixes the toner image to the recording medium conveyed from the transfer belt unit 20. The fixing unit 40 includes a heat roller 41 and a backup roller 42 pressed against the heat roller 41. The fixing unit 40 fixes the toner image to the recording medium by applying heat and pressure to the toner. The medium conveying rollers 17 and 18 convey the recording medium (to which the toner image is fixed) to the stacker 12.
The top cover 2 is supported by the lower frame 1 so that the top cover 2 is swingable about a swinging axis 3. In other words, the top cover 2 is swingable so as to open and close an upper part of the lower frame 1. The image forming units 30, the fixing unit 40 and the transfer belt unit 20 can be replaced by opening the top cover 2.
As shown in
The charging roller 32 is configured to supply an electric charge to a surface of the photosensitive body 31 so as to uniformly charge the surface of the photosensitive body 31. The charging roller 32 is pressed against the surface of the photosensitive body 31 with a constant pressure, and rotates in a direction shown by an arrow R2 in
The transfer roller 35 is configured to transfer the toner image from the surface of the photosensitive body 31 to the recording medium (shown by mark P in
The cleaning unit 36 is configured to remove the toner (referred to as a residual toner T2) that removes on the surface of the photosensitive body 31 after the toner image is transferred to the recording medium P. The cleaning unit 36 includes a cleaning blade 36a that scrapes off the residual toner T2 from the surface of the photosensitive body 31, and a waste toner collecting unit 36b storing the residual toner T2 having been scraped off from the surface of the photosensitive body 31. The cleaning blade 36 is formed of a resilient body. An edge portion of the cleaning blade 36 contacts the surface of the photosensitive body 31 with a constant pressure.
Next, a configuration of the developing device 34 will be described.
The developing device 34 includes a toner cartridge 50 (i.e., a developer storage container), a toner reservoir 51 (i.e., a developer holding portion), a toner supplying roller 52 (i.e., a developer supplying member), a developing blade 53 (i.e., a developer regulating member), and a developing roller 54 (i.e., a developing member or a developer bearing body).
The toner cartridge 50 is a container for storing the toner T as a developer. The toner cartridge 50 includes a toner storage chamber 50a (i.e., a developer storage chamber) in which the toner T is stored, and a toner ejection opening 50b (i.e., a developer ejection opening) through which the toner T is ejected outside. The toner ejection opening 50b is formed on a bottom of the toner cartridge 50.
The toner reservoir 51 is provided below the toner cartridge 50, and stores the toner T supplied (ejected) from the toner cartridge 50. The toner supplying roller 52 supplies the toner T in the toner reservoir 51 to the developing roller 54. The developing blade 53 forms a thin toner layer having a constant thickness on a surface of the developing roller 54. The developing roller 54 develops the latent image on the surface of the photosensitive body 31 using the toner T supplied by the toner cartridge 50. More specifically, the developing roller 54 is pressed against the photosensitive body 31 with a constant pressure, and develops the latent image on the surface of the photosensitive body 31 using the toner.
The toner cartridge 50 is detachably mounted to an image forming unit main body 30a at a portion above the toner reservoir 51 and the toner supplying roller 52. In this regard, the image forming unit main body 30a is a part of the image forming unit 30K from which the toner cartridge 50 is removed. The image forming unit main body 30a has a mold 39 that constitutes an enclosure. The developing roller 54 and the toner supplying roller 52 are disposed in parallel to each other. The developing roller 54 and the toner supplying roller 52 contact each other with a constant pressure. The developing roller 54 and the toner supplying roller 52 rotate in the same directions as respectively shown by arrows R4 and R5. The developing roller 54 and the developing blade 53 are disposed in parallel to each other as shown in
The photosensitive body 31, the charging roller 32, the developing roller 54 and other rotating bodies of the image forming apparatus 100 are rotated by a power transmitted from driving sources (not shown) via gears.
Hereinafter, a configuration of the toner cartridge 50 will be described in detail.
The container main body 60 is a container for storing the toner T therein. The container main body 60 includes an inner space 61 that constitutes the toner storage chamber 50a, and an opening 62 leading to the inner space 61. More specifically, the container main body 60 includes a surrounding wall portion 63 that encloses the inner space 61 and extends in the fitting-in direction. The opening 62 is formed on an end of the surrounding wall portion 63 in the fitting-in direction. The opening 62 faces the fitting-in direction. A side wall portion 64 is formed on the other end of the surrounding wall portion 63. In other words, the side wall portion 64 closes the other end (i.e., an end opposite to the opening 62) of the surrounding wall portion 63. The container main body 60 has a substantially rectangular U-shaped cross section when cut along a plane perpendicular to the fitting-in direction.
The container main body 60 includes a fitting-in portion 65 (i.e., a first fitting portion) fitted to the lid member 80. More specifically, the fitting-in portion 65 is fitted into inside of the lid member 80. The fitting-in portion 65 is formed on the end of the container main body 60 in the fitting-in direction (i.e., the same end as the opening 62).
The toner ejection opening 50b is formed on the bottom of the container main body 60 (more specifically, the surrounding wall portion 63). The toner ejection opening 50b is provided for ejecting the toner T stored in the inner space 61. A shutter member 66 is provided on a lower part of the inner space 61. The shutter member 66 opens and closes the toner ejection opening 50b. A lever member 66A is fixed to the shutter member 66 for rotating the shutter member 66. By rotating the lever member 66A, the shutter member 66 rotates with respect to the container main body 60 to open and close the toner ejection opening 50b.
The lid member 80 is fitted to the container main body 60 so as to close the inner space 61. The lid member 80 is mounted to the container main body 60 so as to close the opening 62. More specifically, the lid member 80 includes a side wall portion facing the opening 62, and a surrounding wall portion 82 extending from a periphery of the side wall portion 81. The surrounding wall portion 82 extends in the fitting-in direction toward the container main body 60, and is fitted to the fitting-in portion 65. The lid member 80 has a substantially rectangular U-shaped cross section when cut along a plane perpendicular to the fitting-in direction.
A sealing member 90 is provided between the container main body 60 and the lid member 80 for preventing leakage of the toner T in the inner space 61. The sealing member 90 seals between the container main body 60 and the lid member 80, and has a function to prevent leakage of the toner T from the toner cartridge 50.
As shown in
The sealing member 90 is provided so as to contact the bottom surface 84 and the fitting surface 83 of the lid member 80. The sealing member 90 (i.e., a resilient member) is formed of a resilient material. In this example, the sealing member 90 is formed of a sponge. The sealing member 90 has a constant thickness, and is fixed (more specifically, bonded) to the bottom surface 84 of the lid member 80.
The fitting-in portion 65 of the container main body 60 extends in the fitting-in direction. The fitting-in portion 65 includes an inner wall surface 67, a pressing surface 68 (i.e., a pressing portion) and an outer wall surface 69.
The inner wall surface 67 extends toward the bottom surface 84 of the lid member 80. The inner wall surface 67 defines the inner space 61, and holds the toner T stored in the inner space 61. In this example, the inner wall surface 67 is parallel to the fitting surface 83. The inner wall surface 67 is perpendicular to the bottom surface 84.
The pressing surface 68 is a surface pressed against the sealing member 90. More specifically, the pressing surface 68 is formed continuously with the inner wall surface 67. The pressing surface 68 contacts the sealing member 90 to compress the sealing member 90 between the pressing surface 68 and the lid member 80. The pressing surface 68 is an end surface of the container main body 60 located on the same side as the opening 62. In other words, the pressing surface 68 is formed on a downstream end of the container main body 60 in the fitting-in direction. Further, the pressing surface 68 is disposed downstream of a latch 70 (described later) in the fitting-in direction. A direction in which the pressing surface 68 presses the sealing member 90 is parallel to the fitting-in direction.
In order to achieve a high sealing performance, the pressing surface 68 has an inclined surface 68a that faces the fitting surface 83 via the sealing member 90. The inclined surface 68a is inclined so that a distance between the inclined surface 68a and the fitting surface 83 increases toward the opening 62 (or toward the sealing member 90). The pressing surface 68 has a tip portion 68b (i.e., an end portion) disposed at a tip of the container maim body 60 facing the lid member 80. As shown in
The outer wall surface 69 is formed continuously with the pressing surface 68. The outer wall surface 69 is formed on a side opposite to the inner wall surface 67. The outer wall surface 69 faces the fitting surface 83 of the lid member 80. The outer wall surface 69 and the fitting surface 83 are disposed proximate to each other, and a gap G is formed between the outer wall surface 69 and the fitting surface 83. The gap G is isolated from the inner space 61 by the sealing member 90.
Further, the container main body 60 includes a latch 70 as a first engaging portion. The lid member 80 includes a hole 85 as a second engaging portion that engages the latch 70. The latch 70 and the hole 85 engage each other in a state where the sealing member 90 contacts the pressing surface 68. More specifically, when the latch 70 and the hole 85 engage each other, the pressing surface 68 contacts the sealing member 90 while compressing the sealing member 90. By engagement between the latch 70 and the hole 85, relative positions of the container main body 60 and the lid member 80 are determined. The latch 70 is a convex that protrudes from the outer wall surface 69 toward the fitting surface 83. The hole 85 is a concave receding from the fitting surface 83 in a direction away from the outer wall surface 69. The latch 70 has an inclined portion 70a. The inclined portion 70a is inclined with respect to the outer wall surface 69 so that a height (i.e., a protruding amount) from the outer wall surface 69 increases toward an upstream side in the fitting-in direction. The hole 85 is a through hole penetrating the surrounding wall portion 82. In this example, as shown in
The container main body 60 has a facing surface 60a (
In
A printing operation of the image forming apparatus 100 will be described with reference to
When the image forming apparatus 100 receives print command from a host device (not shown), the image forming apparatus 100 causes the medium feeding unit 13 to feed the recording medium from the medium cassette 11. The medium conveying rollers 15 and 16 convey the recording medium along the medium conveying path 10 toward the transfer belt unit 20. The detection unit 14 detects the thickness of the recording medium. In the transfer belt unit 20, the transfer belt 21 coveys the recording medium in the direction shown by the arrow C. When the recording medium is conveyed through the image forming units 30K, 30Y, 30M and 30C, the toner images of the respective colors are transferred to a recording surface of the recording medium. Then, the transfer belt 21 conveys the recording medium to the fixing unit 40, and the fixing unit 40 fixes the toner image to the recording surface of the recording medium. Then, the medium conveying rollers 17 and 18 convey the recording medium to the stacker 12.
A toner image formation in the above described printing operation will be described with reference to
The photosensitive body 31 rotates in the direction indicated by the arrow R1. The surface of the photosensitive body 31 is uniformly charged by the charging roller 32. Then, the surface of the photosensitive body 31 is exposed with light emitted by the exposure unit 33 so that a latent image is formed on the surface of the photosensitive body 31 according to image information. In the developing device 34, the toner T is supplied from the toner cartridge 50 and is held in the toner reservoir 51. The toner T is supplied by the toner supplying roller 52 to the developing roller 54. The toner T supplied to the developing roller 54 is formed into the thin toner layer having a constant thickness by the developing blade 53. The latent image on the surface of the photosensitive body 31 is developed by the toner T on the surface of the developing roller 54, and a toner image (i.e., a developer image) is formed on the surface of the photosensitive body 31. The toner image on the surface of the photosensitive body 31 is transferred to the recording medium P by the electrical potential difference between the photosensitive body 31 and the transfer roller 35. The residual toner that remains on the surface of the photosensitive body 31 after the toner image is transferred to the recording medium P is removed by the cleaning blade 36a, and is collected in the waste toner collection unit 36b.
An assembly of the toner cartridge 50 will be described. The assembly described below is carried out by an operator or manufacturing equipment.
Before the container main body 60 and the lid member 80 are fitted to each other, the toner cartridge 50 is in a state shown in
Next, an operation of the fitting section N shown in
Before the container main body 60 and the lid member 80 are fitted to each other, the container main body 60 and the lid member 80 are in a state shown in
In this way, when the latch 70 moves toward the hole 85, the latch 70 contacts the fitting surface 83, and the container main body 60 resiliently deforms so that the pressing surface 68 moves away from the fitting surface 83. Further, when the latch 70 engages the hole 85, the container main body 60 resiliently restores its original shape, and the pressing surface 68 moves toward the fitting surface 83. Therefore, a gap between the fitting-in portion 65a and the fitting surface 83 is smaller when the latch 70 engages the hole 85 (i.e., when the container main body 60 and the lid member 80 are completely fitted to each other) than while the container main body 60 and the lid member 80 are being fitted to each other.
Next, a function of the pressing surface 68 will be described.
As shown in
In this regard, assuming that leakage of the toner T from the inner space 61 occurs due to a low sealing performance, the toner T may mainly move through a contact portion between the pressing surface 68 and the sealing member 90, move through the gap G, and reach the outside of the toner cartridge 50 through the hole 85.
According to Embodiment 1, the sealing member 90 is compressed between the inclined surface 68a and the fitting surface 83, and the inclined surface 68a contacts the sealing member 90 with a high pressure. Therefore, a leakage path of the toner T leading to the gap G is closed. Thus, the leakage of the toner T is prevented.
In
In contrast, according to Embodiment 1, the seal member 90 is pressed against the fitting surface 83 by the pressure P1 in the direction toward the fitting surface 83 as shown in
In a configuration shown in
In contrast, according to Embodiment 1, the lid member 80 has the fitting surface 83, and therefore the seal member 90 is applied with the pressure P2 in the direction from the fitting surface 83 toward the inclined surface 68a as shown in
In this regard, it is preferred to that the fitting-in portion 65 and the fitting surface 83 are disposed proximate to each other. With such an arrangement, the pressure applied to the sealing member 90 between the fitting surface 83 and the inclined surface 68a increases, and the sealing performance is enhanced.
As described above, Embodiment 1 of the present invention provides the following advantages (1) through (4).
(1) In Embodiment 1, the pressing surface 68 has the inclined surface 68a facing the fitting surface 83 via the sealing member 90. Therefore, the sealing performance between the container main body 60 and the lid member 80 can be enhanced, as compared with a configuration in which the inclined surface 68a is not provided. More specifically, the sealing member 90 can be compressed between the inclined surface 68a and the fitting surface 83 with a high pressure, and the inclined surface 68a and the sealing member 90 can be brought into contact with each other with a high pressure. Thus, the sealing performance between the pressing surface 68 and the fitting surface 83 can be enhanced, and the toner can be prevented from entering into the gap G between the fitting surface 83 and the outer wall surface 69. Furthermore, the sealing member 90 can be pressed against the fitting surface 83 by the inclined surface 68a, and therefore the sealing member 90 can be prevented from moving away from the fitting surface 83 and prevented from escaping from a portion between the pressing surface 68 and the lid member 80. Thus, the sealing performance can be enhanced. As a result, even when the toner cartridge 50 has a large capacity or is transported for a long time, the leakage of the toner from the toner cartridge 50 can be surly prevented.
(2) The pressing surface 68 has the tip portion 68b contacting the sealing member 90. The tip portion 68b extends in parallel to the surface of the sealing member 90 before the sealing member 90 is compressed and deformed. With such a configuration, concentration of the pressure applied to the sealing member 90 can be prevented, as compared with a configuration in which the tip portion 68b has an acute-angled portion. Accordingly, a load on the sealing member 90 can be reduced.
(3) The pressing surface 68 does not have a surface (i.e., a reversely inclined surface) which is inclined so that a distance from the fitting surface 83 decreases toward the opening 62. Therefore, the sealing member 90 is prevented from being applied with a pressure in a direction away from the fitting surface 83. Therefore, a decrease in sealing performance (due to the pressure in the direction away from the fitting surface 83) can be prevented. More specifically, if the pressing surface 68 has the reversely inclined surface, the sealing member 90 is applied with the pressure in the direction away from the fitting surface 83. This reduces a pressure applied to the sealing member 90 between the inclined surface 68a and the fitting surface 83, and causes the sealing member 90 to move away from the fitting surface 83, which may decrease the sealing performance. In contrast, according to Embodiment 1, the pressing surface 68 does not have such a reversely inclined surface, and therefore the sealing member 90 is prevented from being applied with the pressure in the direction away from the fitting surface 83. Thus, the decrease in sealing performance can be prevented.
(4) While the latch 70 and the hole 85 are being brought into engagement with each other, when the latch 70 moves toward the hole 85, the latch 70 contacts the fitting surface 83 and causes the container main body 60 to deform so that the pressing surface 68 moves away from the fitting surface 83. When the latch 70 engages the hole 85, the container main body 60 resiliently restores its original shape so that the pressing surface 68 moves toward the fitting surface 83. With such a configuration, when the latch 70 engages the hole 85, the sealing member 90 is compressed by being sandwiched between the fitting surface 83 and the pressing surface 68. Therefore, the sealing member 90 is pressed against the fitting surface 83, and the sealing performance can be enhanced.
In the above description, the tip portion 68b of the pressing surface 68 is parallel to the surface of the sealing member 90. However, the tip portion 68b of the pressing surface 68 can have another shape.
Further, in the above description, the pressing surface 68 does not have the reversely-inclined portion. However, it is also possible that the pressing surface 68 has the reversely-inclined portion.
Further, in the examples shown in
Further, in the example shown in
Next, Embodiment 2 of the present invention will be described.
As shown in
According to Embodiment 2, the sealing member 90 is compressed between the inclined surface 68a and the inclined surface 86. Therefore, the sealing member 90 and the inclined surface 68a are pressed against each other with a higher pressure, as compared with a configuration in which the inclined surface 86 is not provided. Thus, the sealing performance can be enhanced.
Next, Embodiment 3 of the present invention will be described.
As shown in
In the example shown in
In Embodiment 3, when the sealing member 90 is compressed by being pressed by the pressing surface 68, the sealing member 90 is applied with a pressure P5 by the inclined surface 87 in a direction toward the fitting surface 83. With the pressure P5, the sealing member 90 is pressed against the fitting surface 83. Therefore, the sealing performance can be enhanced, as compared with the Comparison Example shown in
Although the pressing surface 68 of
In this specification, the term “parallel” is intended to mean generally or substantially parallel. Similarly, the term “perpendicular” is intended to mean generally or substantially perpendicular.
While the preferred embodiments of the present invention have been illustrated in detail, it should be apparent that modifications and improvements may be made to the invention without departing from the spirit and scope of the invention as described in the following claims.
For example, in the above description, the container main body 60 and the lid member 80 are fitted to each other or engaged with each other. However, it is also possible that the container main body 60 and the lid member 80 are fixed to each other using bonding or screws.
Further, in the above description, the printer has been described as an example of the image forming apparatus. However, the present invention is applicable to a copier, a facsimile machine, a MFP (Multi-Function Peripheral) or other image forming apparatus.
Number | Date | Country | Kind |
---|---|---|---|
2013-036838 | Feb 2013 | JP | national |