The disclosures of Japanese Patent Application No. 2007-096603 which is filed Apr. 2, 2007, Japanese Patent Application No. 2007-134101 which is filed on May 21, 2007, and Japanese Patent Application No. 2007-195001, Japanese Patent Application No. 2007-195002, and Japanese Patent Application No. 2007-195003 which are filed on Jul. 26, 2007, including specifications, drawings and claims are incorporated herein by reference in its entireties.
The present invention relates to a developing apparatus, an image forming apparatus, an image forming system, and an image forming method.
An image forming apparatus such as a laser beam printer is known well. Such an image forming apparatus includes an image carrier holding a latent image and a developing apparatus developing the latent image held by the image carrier by the use of a developer. When an image signal, etc. is transmitted from an external apparatus such as a computer, the image forming apparatus forms a developer image and then transfers the developer image onto a medium, thereby finally forming an image on the medium.
The developing apparatus includes a developer carrier rotating with a developer held thereon and the developer carrier develops the latent image held by the image carrier by the use of the developer. Concave portions regularly arranged might be formed on the surface of the developer carrier so as to hold a sufficient amount of developer. The developing apparatus might be provided with a contact member being made of a rubber elastic body and coming in contact with the surface of the developer carrier. An example of the contact member is a layer thickness regulating member regulating the layer thickness of the developer held by the developer carrier.
It is known that the contact member made of a rubber elastic body exhibits a rubber-like characteristic or a glass-like characteristic depending on the temperature of the contact member. At the temperature at which the contact member usually operates, the contact member exhibits the rubber-like characteristic. Accordingly, even when the contact member is disposed in the developing apparatus, it is required that the contact member should be used with the rubber-like characteristic.
It is also known that the contact member may vibrate and the contact member exhibits the rubber-like characteristic or the glass-like characteristic depending on the magnitude of the vibration frequency. That is, it is assumed that a value obtained by dividing the loss elastic modulus of the contact member by the storage elastic modulus is a loss tangent (tan δ). Then, when the frequency of the contact member is greater than the frequency at which the loss tangent (tan δ) is the greatest (hereinafter, also referred to as “greatest loss tangent frequency”), the contact member exhibits the glass-like characteristic. On the other hand, when the frequency of the contact member is smaller than the greatest loss tangent frequency, the contact member exhibits the rubber-like characteristic.
As described above, the contact member is in contact with the surface (which includes the concave portions) of the developer carrier and the developer carrier frictionally slides on the contact member at the time of rotation thereof, thereby causing the contact member to vibrate. When the number of vibrations of the contact member vibrating with the rotation of the developer carrier is greater than the greatest loss tangent frequency, the contact member exhibits the glass-like characteristic and thus the above-mentioned requirement cannot be satisfied.
It is known that the contact member may vibrate with the rotation of the developer carrier and the contact member exhibits the rubber-like characteristic or the glass-like characteristic depending on the number of vibrations. Accordingly, in order to satisfy the above-mentioned requirement, it is preferable that the frequency of the contact member at the time of the rotation of the developer carrier is controlled so as for the contact member to exhibit the rubber-like characteristic.
On the other hand, when the contact member is used with the rubber-like characteristic, abnormal noises may be generated with the vibration of the contact member. Here, the contact member made of the rubber elastic body exhibits dynamic viscoelasticity (an elastic behavior and a viscous behavior). When the elastic behavior of the two behaviors is superior, the amplitude of the vibration of the contact member increases and thus the abnormal noises are easily generated.
It is known that the contact member may vibrate with the rotation of the developer carrier and the contact member exhibits the rubber-like characteristic or the glass-like characteristic depending on the magnitude of the number of vibrations. Accordingly, in order to satisfy the above-mentioned requirements it is preferable that the frequency of the contact member is controlled so as for the contact member to exhibit the rubber-like characteristic.
On the other hand, when the contact member is used with the rubber-like characteristic, the temperature of the contact member may rise with the vibration of the contact member. Here, the contact member made of the rubber elastic body exhibits dynamic viscoelasticity (an elastic behavior and a viscous behavior). When the viscous behavior of the two behaviors is superior, the molecular chains constituting the contact member easily vibrates and thus heat may be easily generated. As a result, the temperature of the contact member easily rises.
As described above, the contact member is in contact with the surface of the developer carrier and the surface of the developer carrier is provided with concave portions regularly arranged. Accordingly, when the developer carrier rotates, the developer carrier slides on the contact member and thus the contact vibrates.
When the number of vibrations of the contact member (the value obtained by dividing the movement speed of the surface with the rotation of the developer carrier by the pitch of the concave portions in the peripheral direction of the developer carrier corresponds to the number of vibrations) is too great, it is known that the contact member made of the rubber elastic body exhibits the glass-like characteristic, not the rubber-like characteristic. Accordingly, at the time of development, it is necessary to allow the developer carrier to rotate at a rotation speed at which the frequency is too great (that is, the contact member does not exhibit the glass-like characteristic).
However, when the development is made in a state where the contact member exhibits the rubber-like characteristic, a filming is generated in the contact member due to tackiness of the contact member based on the rubber-like characteristic. When the filming becomes remarkable, the quality of an image developed and finally formed on the medium is deteriorated.
An object of the invention is to provide a developing apparatus, an image forming apparatus, and an image forming system in which the contact member is properly used with the rubber-like characteristic at the time of rotation of the developer carrier.
Another object of the invention is to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress abnormal noises from being generated with the vibration of the contact member.
Another object of the invention is to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the temperature from rising.
Another object of the invention is to properly prevent the image quality from being deteriorated.
In order to accomplish the above-mentioned objects, according to a first aspect of the invention, there is provided a developing apparatus including: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier is smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest.
In the developing apparatus, it is preferable that the contact member is a layer thickness regulating member coming in contact with the surface to regulate the layer thickness of the developer held in the developer carrier. In this case, the layer thickness regulating member is used with a glass-like characteristic, thereby preventing the layer thickness of the developer from being improperly regulated.
In the developing apparatus, it is preferable that the contact member is in contact with the surface so that the longitudinal direction thereof is parallel to the axial direction of the developer carrier and an end in the width direction faces the upstream in the rotation direction of the developer carrier and that a contact portion of the contact member is apart from the end in the width direction.
In the developing apparatus, it is preferable that the concave portions are two types of spiral grooves having different tilt angles about the peripheral direction, the two types of spiral grooves interest each other to form a lattice shape, the developer carrier has square-like top faces surrounded with the two types of spiral grooves, and one of two diagonals of each square-like top face is parallel to the peripheral direction. In this case, the regular concave portions can be easily formed on the surface of the developer carrier.
In the developing apparatus, it is preferable that the developing apparatus can be mounted on and demounted from an image forming apparatus body of an image forming apparatus, an operating temperature range is set in the image forming apparatus, the number of vibrations of the contact member when the loss tangent is the greatest varies depending on the magnitude of a temperature, and the value obtained by dividing the movement speed of the surface at the time of rotation of the developer carrier by the pitch of the concave portions in the peripheral direction of the developer carrier is smaller than the number of vibrations of the contact member when the loss tangent is the greatest at all the temperatures in the operating temperature range. In this case, the contact member is necessarily used with a rubber-like characteristic when the image forming apparatus forms an image.
In the developing apparatus, it is preferable that the contact member is made of thermoplastic elastomer.
In the developing apparatus, it is preferable that the value obtained by dividing the movement speed of the surface at the time of rotation of the developer carrier by the pitch of the concave portions in the peripheral direction of the developer carrier is smaller than the number of vibrations of the contact member when the loss tangent is the greatest and is smaller than the number of vibrations at which the loss tangent at the number of vibrations is a half of the greatest value. In this case, the contact member is more properly used with the rubber-like characteristic.
Similarly, according to the first aspect of the invention, there is provided an image forming apparatus including: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with the developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier is smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming apparatus, the contact member can be used with the rubber-like characteristic at the time of rotation of the developer carrier.
Similarly, according to the first aspect of the invention, there is provided an image forming system including: (A) a computer; and (B) an image forming apparatus connectable to the computer, (C) wherein the image forming apparatus includes: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with the developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier is smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming system, the contact member can be used with the rubber-like characteristic at the time of rotation of the developer carrier.
In order to accomplish the above-mentioned object, according to a second aspect of the invention, there is provided a developing apparatus including: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the storage elastic modulus is smaller than the loss elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the developing apparatus, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the generation of an abnormal noise resulting from the vibration of the contact member.
In the developing apparatus, it is preferable that the contact member is a layer thickness regulating member coming in contact with the surface to regulate the layer thickness of the developer held in the developer carrier. In this case, the layer thickness regulating member can be used with the rubber-like characteristic, thereby properly regulating the layer thickness of the developer.
In the developing apparatus, it is preferable that the concave portions are two types of spiral grooves having different tilt angles about the peripheral direction, the two types of spiral grooves interest each other to form a lattice shape, the developer carrier has square-like top faces surrounded with the two types of spiral grooves, and one of two diagonals of each square-like top face is parallel to the peripheral direction. In this case, the regular concave portions can be easily formed on the surface.
Similarly, according to the second aspect of the invention, there is provided an image forming apparatus including: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the storage elastic modulus is smaller than the loss elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming apparatus, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the generation of an abnormal noise resulting from the vibration of the contact member.
Similarly, according to the second aspect of the invention, there is provided an image forming system including: (A) a computer; and (B) an image forming apparatus connectable to the computer, (C) wherein the image forming apparatus includes: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the storage elastic modulus is smaller than the loss elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming system, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the generation of an abnormal noise resulting from the vibration of the contact member.
In order to accomplish the above-mentioned object, according to a third aspect of the invention, there is provided a developing apparatus including: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the loss elastic modulus is smaller than the storage elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the developing apparatus, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the increase in temperature of the contact member.
In the developing apparatus, it is preferable that the contact member is a layer thickness regulating member coming in contact with the surface to regulate the layer thickness of the developer held in the developer carrier. In this case, the layer thickness regulating member can be properly used with the rubber-like characteristic, thereby properly regulating the layer thickness of the developer.
In the developing apparatus, it is preferable that the layer thickness regulating member is in contact with the surface so that the longitudinal direction thereof is parallel to the axial direction of the developer carrier and an end in the width direction faces the upstream in the rotation direction of the developer carrier, and a contact portion of the layer thickness regulating member is apart from the end in the width direction. In this case, the generation of the filming between the contact portion and an end is suppressed.
In the developing apparatus, it is preferable that the concave portions are two types of spiral grooves having different tilt angles about the peripheral direction, the two types of spiral grooves interest each other to form a lattice shape, the developer carrier has square-like top faces surrounded with the two types of spiral grooves, and one of two diagonals of each square-like top face is parallel to the peripheral direction. In this case, the regular concave portions can be easily formed on the surface.
Similarly, according to the third aspect of the invention, there is provided an image forming apparatus including: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the loss elastic modulus is smaller than the storage elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming apparatus, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the increase in temperature of the contact member.
Similarly, according to the third aspect of the invention, there is also provided an image forming system including: (A) a computer; and (B) an image forming apparatus connectable to the computer, (C) wherein the image forming apparatus includes: (a) an image carrier holding a latent image; and (b) a developing apparatus developing the latent image held by the image carrier with a developer, (c) wherein the developing apparatus includes: a developer carrier having concave portions regularly arranged on the surface thereof and being rotatable with a developer thereon; and a contact member being made of an elastic rubber material, being in contact with the surface of the developer carrier, and vibrating with the rotation of the developer carrier, wherein a value obtained by dividing a movement speed of the surface at the time of rotation of the developer carrier by a pitch of the concave portions in a peripheral direction of the developer carrier has the same magnitude of the number of vibrations at which the loss elastic modulus is smaller than the storage elastic modulus among the numbers of vibrations smaller than the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest. According to the image forming system, it is possible to properly use the contact member with the rubber-like characteristic at the time of rotation of the developer carrier and to suppress the increase in temperature of the contact member.
In order to accomplish the above-mentioned object, according to a fourth aspect of the invention, there is provided an image forming apparatus including: (A) an image carrier holding a latent image; (B) a developer carrier having concave portions regularly arranged on a surface thereof, being rotatable with a developer held thereon, and developing the latent image with the developer held thereon; (C) a contact member made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; and (CD) a controller starting the rotation of the developer carrier, then raising a rotation speed of the developer carrier to a first rotation speed at which a movement speed of the surface at the time of rotation of the developer carrier is greater than a product of a pitch of the concave portions in a peripheral direction of the developer carrier and the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest, lowering the rotation speed of the developer carrier to a second rotation speed at which the movement speed is smaller than the product after the rotation speed of the developer carrier becomes the first rotation speed, and allowing the developer carrier rotating at the second rotation speed to develop the latent image. According to the image forming apparatus, it is possible to properly prevent the deterioration in image quality.
The image forming apparatus may further include a developing bias application section applying a developing bias for developing the latent image to the developer carrier, and the controller may lower the rotation speed of the developer carrier from the first rotation speed to the second rotation speed via a third rotation speed at which the movement speed is equal to the product after the rotation speed of the developer carrier becomes the first rotation speed and starts the application of the developing bias from the developing bias application section after the rotation speed of the developer carrier becomes the third rotation speed.
In this case, the filming can be properly collected.
The controller may start the application of the developing bias from the developing bias application section after a time point in a time period, when a portion, on the surface of the developer carrier, in contact with the contact member when the rotation speed of the developer carrier becomes the third rotation speed moves to a position opposed to the image carrier with an additional rotation of the developer carrier, after the rotation speed of the developer carrier becomes the third rotation speed.
In this case, the filming can be more properly collected.
In order to accomplish the above-mentioned object, according to a fifth aspect of the invention, there is provided an image forming apparatus including: (A) an image carrier holding a latent image; (B) a developer carrier having concave portions regularly arranged on a surface thereof being rotatable with a developer held thereon, and developing the latent image with the developer held thereon; (C) a contact member made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; and (D) a controller allowing the developer carrier which rotates at a fifth rotation speed at which a movement speed of the surface at the time of rotation of the developer carrier is smaller than a product of a pitch of the concave portions in a peripheral direction of the developer carrier and the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest, to develop the latent image, raising the rotation speed of the developer carrier to a fourth rotation speed at which the movement speed is greater than the product after the developing of the latent image is ended, and stopping the rotation of the developer carrier after the rotation speed of the developer carrier becomes the fourth rotation speed.
According to the image forming apparatus, it is possible to properly prevent the deterioration in image quality.
The image forming apparatus may further include a developing bias application section applying a developing bias for developing the latent image to the developer carrier, and the controller may raise the rotation speed of the developer carrier from the fifth rotation speed to the fourth rotation speed via a third rotation speed at which the movement speed is equal to the product after ending the developing of the latent image, and may stop the application of the developing bias from the developing bias application section before a time point in a time period, when a portion, on the surface of the developer carrier, in contact with the contact member when the rotation speed of the developer carrier becomes the third rotation speed moves to a position opposed to the image carrier with an additional rotation of the developer carrier, after the rotation speed of the developer carrier becomes the third rotation speed.
In this case, the filming can be properly collected.
The controller may stop the application of the developing bias from the developing bias application section before the rotation speed of the developer carrier becomes the third rotation speed.
In this case, the filming can be more properly collected.
The image forming apparatus may further include a rake-out member coming in contact with the surface of the developer carrier to rake out the developer from the developer carrier. Here, the controller may stop the rotation after a time point in a time period, when a portion, on the surface of the developer carrier, in contact with the contact member when the rotation speed of the developer carrier becomes the third rotation speed moves to a position opposed to the image carrier with an additional rotation of the developer carrier, after the rotation speed of the developer carrier becomes the third rotation speed, at the time of stopping the rotation of the developer carrier after the rotation speed of the developer carrier becomes the fourth rotation speed.
In this case, the filming can be properly raked out by the rake-out member before the developer carrier is stopped.
Similarly, according to the fourth aspect of the invention, there is provided an image forming system including: a computer; and an image forming apparatus being connectable to the computer, wherein the image forming apparatus includes: an image carrier holding a latent image; a developer carrier having concave portions regularly arranged on a surface thereof, being rotatable with a developer held thereon, and developing the latent image with the developer held thereon; a contact member made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; and a controller starting the rotation of the developer carrier, then raising a rotation speed of the developer carrier to a first rotation speed at which a movement speed of the surface at the time of rotation of the developer carrier is greater than a product of a pitch of the concave portions in a peripheral direction of the developer carrier and the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest, lowering the rotation speed of the developer carrier to a second rotation speed at which the movement speed is smaller than the product after the rotation speed of the developer carrier becomes the first rotation speed, and allowing the developer carrier rotating at the second rotation speed to develop the latent image.
According to the image forming system, it is possible to properly prevent the deterioration in image quality.
Similarly, according to the fifth aspect of the invention, there is provided an image forming system including: a computer; and an image forming apparatus being connectable to the computer, wherein the image forming apparatus includes: an image carrier holding a latent image; a developer carrier having concave portions regularly arranged on a surface thereof, being rotatable with a developer held thereon, and developing the latent image with the developer held thereon; a contact member made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; and a controller allowing the developer carrier which rotates at a fifth rotation speed at which a movement speed of the surface at the time of rotation of the developer carrier is smaller than a product of a pitch of the concave portions in a peripheral direction of the developer carrier and the number of vibrations of the contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus is the greatest, to develop the latent image, raising the rotation speed of the developer carrier to a fourth rotation speed at which the movement speed is greater than the product after the developing of the latent image is ended, and stopping the rotation of the developer carrier after the rotation speed of the developer carrier becomes the fourth rotation speed.
According to the image forming system, it is possible to properly prevent the deterioration in image quality.
Similarly, according to the fourth aspect of the invention, there is provided an image forming method including: a step of raising a rotation speed of a developer carrier to a first rotation speed at which a movement speed of a surface of the developer carrier at the time of rotation of the developer carrier is greater than a product of a pitch of concave portions in a peripheral direction of the developer carrier and the number of vibrations of a contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus thereof is the greatest after starting the rotation of the developer carrier, the developer carrier having the concave portions regularly arranged on the surface, being rotatable with a developer held thereon, and developing the latent image with the developer held thereon, the contact member being made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; a step of lowering the rotation speed of the developer carrier to a second rotation speed at which the movement speed is smaller than the product after the rotation speed of the developer carrier becomes the first rotation speed; and a step of allowing the developer carrier rotating at the second rotation speed to develop the latent image.
According to the image forming system, it is possible to properly prevent the deterioration in image quality.
Similarly, according to the second aspect of the invention, there is provided an image forming method including: a step of allowing a developer carrier to develop a latent image, the developer carrier rotating at a fifth rotation speed at which a movement speed of a surface of the developer carrier at the time of rotation of the developer carrier is smaller than a product of a pitch of concave portions in a peripheral direction of the developer carrier and the number of vibrations of a contact member when a loss tangent obtained by dividing a loss elastic modulus of the contact member by a storage elastic modulus thereof is the greatest, the developer carrier having the concave portions regularly arranged on the surface, being rotatable with a developer held thereon, and developing the latent image with the developer held thereon, the contact member being made of an elastic rubber material being in contact with the surface of the developer carrier and vibrating with the rotation of the developer carrier; a step of raising the rotation speed of the developer carrier to a fourth rotation speed at which the movement speed is greater than the product after the rotation speed of the developer carrier becomes the first rotation speed after ending the developing of the latent image; and a step of stopping the rotation of the developer carrier after the rotation speed of the developer carrier becomes the fourth rotation speed.
According to the image forming system, it is possible to properly prevent the deterioration in image quality.
Other features of the invention will be apparently understood from the following description and the accompanying drawings.
The above objects and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the accompanying drawings, wherein:
Hereinafter, a developing apparatus, an image forming apparatus, an image forming system, and an image forming method according to embodiments of the invention will be described with reference to the accompanying drawings.
Entire Configuration of Image Forming Apparatus
A laser beam printer 10 (hereinafter, also referred to as a printer) as an image forming apparatus will be roughly described with reference to
Configuration of Printer 10
As shown in
The photosensitive member 20 includes a cylindrical conductive base and a photosensitive layer formed on the periphery thereof, rotates about the center axis thereof. In this embodiment, the photosensitive member rotates clockwise as indicated by an arrow in
The charging unit 30 serves to charge the photosensitive member 20. The Exposure unit 40 serves to form a latent image on the charged photosensitive member 20 by applying a laser beam thereto. The exposure unit 40 includes a semiconductor laser, a polygon mirror, and an F-θ lens and applies a modulated laser beam to the charge photosensitive member 20 on the basis of an image signal input from a host computer not shown such as a personal computer and a word processor.
The YMCK developing unit 50 serves to develop the latent image formed on the photosensitive member 20 by the use of a toner as an example of a developer contained in the developing apparatus, that is, a black (K) toner contained in a black developing apparatus 51, a magenta (M) toner contained in a magenta developing apparatus 52, a cyan (C) toner contained in a cyan developing apparatus 53, and a yellow (Y) toner contained in a yellow developing apparatus 54.
The YMCK developing unit 50 allows the positions of the four developing apparatus 51, 52, 53, and 54 to move by rotating with the four developing apparatus 51, 52, 53, and 54 mounted thereon. That is, the YMCK developing unit 50 holds the four developing apparatus 51, 52, 53, and 54 in four holding sections 55a, 55b, 55c, and 55d. The four developing apparatus 51, 52, 53, and 54 can rotate about the center axis 50a with the relative positions maintained. Every when the formation of an image corresponding to 1 page ends, the developing apparatus are selectively opposed to the photosensitive member 20 to sequentially develop the latent image formed on the photosensitive member 20 with the toner received in the four developing apparatus 51, 52, 53, and 54. The four developing apparatus 51, 52, 53, and 54 each can be attached to and detached from a printer body 10a (specifically, the holding sections of the YMCK developing unit 50) as an example of an image forming apparatus body Details of the developing apparatus are described later.
The primary transfer unit 60 serves to transfer a monochromatic toner images formed on the photosensitive member 20 to the intermediate transfer member 70. When four color toners are sequentially transferred in an overlapping manner, a full color toner image is formed on the intermediate transfer member 70. The intermediate transfer member 70 is an endless belt in which a tin deposited layer is formed on the surface of a PET film and semi-conductive paint is formed and stacked on the surface thereof, and rotates substantially at the same peripheral speed as the photosensitive member 20. The secondary transfer unit 80 serves to transfer the monochromatic toner image or the full color toner image formed on the intermediate transfer member 70 to a medium such as paper, film, and cloth. The fixing unit 90 serves to fix the monochromatic toner image or the full color toner image transferred to the medium to form a permanent image.
The cleaning unit 75 is disposed between the primary transfer unit 60 and the charging unit 30, includes a rubber cleaning blade 76 in contact with the surface of the photosensitive member 20, and serves to rake out and remove the toner remaining on the photosensitive member 20 by the use of the cleaning blade 76 after the toner image is transferred to the intermediate transfer member 70 by the primary transfer unit 60.
As shown in
An operation of the printer 10 having the above-mentioned configuration is described now.
First, when an image signal and a control signal from the host computer not shown are input to the main controller 101 of the printer 10 through the interface (I/F) 112, the photosensitive member 20 and the intermediate transfer member 70 rotate under the control of the unit controller 102 based on an instruction from the main controller 101.
The photosensitive member 20 is sequentially charged at a charging position by the charging unit 30 while rotating. The charged region of the photosensitive member 20 reaches an exposure position with the rotation of the photosensitive member 20 and a latent image based on image information of a first color, for example, yellow Y, is formed in the region by the exposure unit 40. In the YMCK developing unit 50, the yellow developing apparatus 54 containing the yellow (Y) toner is located at a developing position facing the photosensitive member 20. The latent image formed on the photosensitive member 20 reaches the developing position with the rotation of the photosensitive member 20 and is developed with the yellow toner by the yellow developing apparatus 54. Accordingly, a yellow toner image is formed on the photosensitive member 20. The yellow toner image formed on the photosensitive member 20 reaches a primary transfer position with the rotation of the photosensitive member 20 and is transferred to the intermediate transfer member 70 by the primary transfer unit 60. At this time, a primary transfer voltage having a polarity opposite to the charged polarity of the toner T (negative polarity in this embodiment) is applied to the primary transfer unit 60. In the meantime, the photosensitive member 20 is in contact with the intermediate transfer member 70 and the secondary transfer unit 80 is separated from the intermediate transfer member 70.
By repeatedly performing the above-mentioned process on the developing apparatus of the second color, the third color, and the fourth color, four color toner images corresponding to the image signals are transferred to the intermediate transfer member 70 in an overlapping manner. Accordingly, a full color toner image is formed on the intermediate transfer member 70.
The full color toner image formed on the intermediate transfer member 70 reaches a secondary transfer position with the rotation of the intermediate transfer member 70 and is transferred to a medium by the secondary transfer unit 80. The medium is transported from the sheet feed tray 92 to the secondary transfer unit 80 through a feed roller 94 and a register roller 96. At the time of performing the transfer operation, the secondary transfer unit 80 is pressed against the intermediate transfer member 70 and is supplied with a secondary transfer voltage.
The full color toner image transferred to the medium is heated and pressurized by the fixing unit 90 and is fixed to the medium. On the other hand, after the photosensitive member 20 passes through the primary transfer position, the toner T attached to the surface thereof is raked out by the cleaning blade 76 supported by the cleaning unit 75 and the charging operation for forming a next latent image is prepared. The raked-out toner T is collected in a remaining toner recovering section of the cleaning unit 75.
Control Unit
A configuration of the control unit 100 is described now with reference to
Developing Apparatus
A configuration and an operation of the developing apparatus are described now with reference to
The YMCK developing unit 50 includes the black developing apparatus 51 containing the black (K) toner, the magenta developing apparatus 52 containing the magenta (M) toner, the cyan developing apparatus 53 containing the cyan (C) toner, and the yellow developing apparatus 54 containing the yellow (Y) toner. Configurations of the developing apparatus are equal to each other and thus the yellow developing apparatus 54 is representatively described now.
The yellow developing apparatus 54 includes a developing roller 510 as an example of the developer carrier, an upper seal 520, a toner container 530, a housing 540, a toner supply roller 550 as an example of the removing member, a regulating blade 560 as an example of the contact member, and a holder 526.
The developing roller 510 transports the toner T to the opposed position (developing position) opposed to the photosensitive member 20 by rotating with the toner T held therein. The latent image held by the photosensitive member 20 is developed with the toner T (the toner T held by the developing roller 510). The developing roller 510 is made of aluminum ally or steel alloy.
As shown in
Each groove 512 includes a bottom surface 514 and a side surface 513 and the slope angle of the side surface 513 is about 45 degree (see
As shown in
As described above, in this embodiment, since the magnitude of the acute angle formed by the longitudinal direction of the first grooves 512a and the axial direction of the developing roller 510 and the magnitude of the acute angle formed by the longitudinal direction of the second grooves 512b and the axial direction are both about 45 degrees, the top face 515 has a square plane shape and one (the other) of two diagonals of the top face 515 is parallel to the peripheral direction (axial direction) of the developing roller 510. The length of one side of the square top face 515 is about 38 mm as shown in
The developing roller 510 is rotatable about the center axis and as shown in
In the state where the yellow developing apparatus 54 is opposed to the photosensitive member 20, a gap is disposed between the developing roller 510 and the photosensitive member 20. That is, the yellow developing apparatus 54 develops the latent image formed on the photosensitive member 20 in a non-contact manner. In the printer 10 according to this embodiment, a jumping developing method is employed and an alternating electric field is formed between the developing roller 510 and the photosensitive member 20 at the time of developing the latent image formed on the photosensitive member 20. The printer 10 includes a developing bias applying portion 121 (
The housing 540 is formed by welding plural resin housing portions incorporated in a body, that is, an upper housing portion 542 and a lower housing portion 544, and a toner container 530 containing the toner T is formed therein. The toner container 530 is divided into two toner containing portions, that is, a first toner containing portion 530a and a second toner containing portion 530b, by a partition wall 545 protruding inward (in the vertical direction in
A toner supply roller 550 is disposed in the first toner containing portion 530a, and serves to supply the toner T contained in the first toner containing portion 530a to the developing roller 510 and to rake out the toner T remaining in the developing roller 510 from the developing roller 510 after the developing. The toner supply roller 550 is made of polyurethane foam or the like and is in contact with the developing roller in an elastically deformed state (in contact with the surface of the developing roller 510). The toner supply roller 550 is disposed below the first toner containing portion 530a and the toner T contained in the first toner containing portion 530a is supplied to the developing roller 510 on the lower side of the first toner containing portion 530a by the toner supply roller 550. The toner supply roller 550 is rotatable about the center axis thereof and the center axis is disposed below the rotation center axis of the developing roller 510. The toner supply roller 550 rotates in the opposite direction (clockwise direction in
The upper seal 520 comes in contact with the developing roller 510 in the axial direction thereof so as to allow the movement of the toner T remaining on the developing roller 510 after passing through the developing position into the housing 540 and to regulate the movement of the toner T in the housing 540 from the housing 540. The upper seal 520 is a seal made of a polyethylene film or the like. The upper seal 520 is supported by an upper seal supporting metal plate 522. An upper seal urging member 524 made of an elastic body such as Moltopren is disposed in a compressed state on the other side of the developing roller 510 about the upper seal 520. The upper seal urging member 524 pressed the upper seal 520 on the developing roller 510 by urging the upper seal 520 to the developing roller 510 with the urging force thereof. The contact position where the upper seal 520 comes in contact with the developing roller 510 is higher than the center axis of the developing roller 510.
The regulating blade 560 comes in contact with the surface of the developing roller 510 from one end in the axial direction of the developing roller 510 to the other end to regulate the layer thickness of the toner T held on the developing roller 510 and to give charges to the toner T held on the developing roller 510. The regulating blade 560 includes a rubber portion 562 as an example of the contact member and a rubber supporting portion 564 as shown in
The rubber portion 562 is a layer thickness regulating member coming in contact with the surface of the developing member 510 to regulate the layer thickness of the toner T held on the developing roller 510. The rubber portion 562 is disposed so that the longitudinal direction thereof is parallel to the axial direction (
The rubber portion 562 is made of an elastic rubber material. Here, the elastic rubber material is defined as an elastic material having rubber elasticity. The elastic rubber material is classified in a rubber and a thermoplastic elastomer, where the rubber is an elastic material (that is, an elastic material exhibiting a thermosetting characteristic) hardened from a fluidized state by heating and the thermoplastic elastomer is an elastic material (that is, an elastic material exhibiting a thermoplastic characteristic) fluidized from a solidified state by heating. An example used for the rubber portion 562 is urethane rubber. The rubber portion 562 in this embodiment is made of the thermoplastic elastomer in view of easy processing due to the thermoplastic characteristic.
The rubber supporting portion 564 includes a thin plate 564a and a thin plate supporting portion 564b and supports the rubber portion 562 by the use of an end 564d (that is, an end close to the thin plate 564a) in the width direction thereof. The thin plate 564a is made of phosphor bronze or stainless and has elasticity. The thin plate 564a supports the rubber portion 562 and pressed the rubber portion 562 to the developing roller 510 with the urging force thereof. The thin plate supporting portion 564b is a metal plate disposed at the other end 564e in the width direction of the rubber supporting portion 564. The thin plate supporting portion 564b is attached to the housing 540 while supporting an end of the thin plate 564a opposite to the side supporting the rubber portion 562. A blade back member 570 made of Moltopren is disposed on the opposite side of the developing roller 510 about the thin plate supporting portion 564b.
In the yellow developing apparatus 54 having the above-mentioned configuration, the toner supply roller 550 supplies the toner T contained in the toner container 530 to the developing roller 510. The toner T supplied to the developing roller 510 reaches the contact position of the regulating blade 560 with the rotation of the developing roller 510, the layer thickness is regulated and the toner is provided with negative charges (negatively charged) at the time of passing through the contact position. The toner T on the developing roller 510 having been regulated in layer thickness and supplied with the negative charges is trans ported to the opposed position (developing position) opposed to the photosensitive member 20 with the addition rotation of the developing roller 510 and is provided to the development of the latent image formed on the photosensitive member 20 at the opposed position. The toner T on the developing roller 510 passing through the developing position with the rotation of the developing roller 510 passes through the upper seal 520 and is collected in the developing apparatus without being raked out by the upper seal 520. The toner T remaining on the developing roller 510 can be raked out by the toner supply roller 550.
Relation between Physical Properties of Rubber Portion 562 and Temperature
The storage elastic modulus and the loss elastic modulus are known as indicating dynamic viscoelasticity of a material of the rubber portion 562 made of an elastic rubber material. The storage elastic modulus indicates an elastic behavior of a material and the loss elastic modulus indicates a viscous behavior of the material. The magnitudes of the storage elastic modulus and the loss elastic modulus vary depending on the temperature of the material. The material exhibits the rubber-like characteristic (physical property) or the glass-like characteristic depending on the variation in magnitude of the storage elastic modulus (loss elastic modulus). Specifically, when the storage elastic modulus or the loss elastic modulus is great, the material exhibits the glass-like characteristic. When the storage elastic modulus or the loss elastic modulus is small, the material exhibits the rubber-like characteristic.
Details thereof are described with reference to
The loss tangent (tan δ in
The graph shown in
In the printer 10 according to this embodiment, the operating temperature range is set and specifically, the operating temperature range is 10° C. to 35° C. The temperatures of the rubber portion 562 of the developing apparatus 51, 52, 53, and 54 mounted on the printer body 10a are slightly (by about 10° C.) higher than the operating temperature range. Accordingly, the rubber portion 562 is used at a temperature higher than the peak temperature T (about −35° C.), the rubber-like characteristic is exhibited in relation to the temperature.
As can be seen from the fact that the rubber portion 562 exhibits rubber-like characteristic in relation to the temperature, it is required that the rubber portion 562 is used with the rubber-like characteristic when the rubber portion 562 is usually used.
Relation between Physical Characteristic of Rubber Portion 562 and Number of Vibrations (Frequency)
As described above, since the rubber portion 562 is in contact with the surface of the developing roller 510, the developing roller 510 frictionally slides on the rubber portion 562 at the time of rotation thereof. Accordingly, the rubber portion 562 vibrates with the rotation of the developing roller 510. Particularly, since the grooves 512 are formed on the surface of the developing roller 510, the rubber portion 562 easily vibrates with the rotation of the developing roller 510. It is known that the characteristic of the rubber portion 562 is changed depending on the magnitude of the number of vibrations of the rubber portion 562. That is, it is known that the rubber portion 562 exhibits the rubber-like characteristic or the glass-like characteristic depending on the magnitude of the number of vibrations. This point is described now.
The loss tangent (tan δ in
Accordingly, in order to satisfy the above-mentioned requirement, that is, the requirement for using the rubber portion 562 vibrating with the rotation of the developing roller 510 with the rubber-like characteristic, it is necessary to allow the number of vibrations (frequency) of the rubber portion 562 to be lower than the peaks frequency f.
The graph shown in
<Effectiveness of Developing Apparatus 51, 52, 53, and 54 according to This Embodiment>
In the developing apparatus 51, 52, 53, and 54 according to this embodiment, the value obtained by dividing the movement speed of the surface of the developing roller 510 at the time of rotation of the developing roller 510 by the pitch of the grooves 512 in the peripheral direction of the developing roller 510 is smaller than the number of vibrations of the rubber portion 562 when the loss tangent of the rubber portion 562 obtained by dividing the loss elastic modulus by the storage elastic modulus is the greatest (V/L1<f). Accordingly, the rubber portion 562 vibrating with the rotation of the developing roller 510 can be properly used with the rubber-like characteristic.
The details are described in detail with reference to
As described above, the movement speed V of the surface of the developing roller 510 at the time of rotation of the developing roller 510 is 320 mm/s. Accordingly, the value V/L1 obtained by dividing the movement speed of the surface of the developing roller 510 at the time of rotation of the developing roller 510 by the pitch of the grooves 512 in the peripheral direction of the developing roller 510 is about 2831 Hz. As shown in
When the relation of V/L1<f is satisfied, why the rubber portion 562 can be used with the rubber-like characteristic at the time of rotation of the developing roller 510 is described now. As described above, the rubber portion 562 is in contact with the surface of the developing roller 510 and the grooves 512 regularly arranged are formed on the surface. Accordingly, the grooves 512 frictionally slide on the rubber portion 562, whereby the rubber portion 562 vibrates at a constant number of vibrations. The magnitude of the number of vibrations of the rubber portion 562 is determined depending on the pitch L1 of the grooves 512 in the peripheral direction and the movement speed V of the surface of the developing roller 510. That is, the number of vibrations of the rubber portion 562 at the time of rotation of the developing roller 510 is V/L1. Accordingly, when V/L1 is smaller than the peak frequency f of the rubber portion 562 (V/L1<f, the rubber portion 562 is used with the rubber-like characteristic.
Accordingly, in the developing apparatus 51, 52, 53, and 54 according to this embodiment, since the relation of V/L1<f is satisfied, the number of vibrations of the rubber portion 562 vibrating with the rotation of the developing roller 510 is smaller than the peak frequency f (about 100000 Hz) of the rubber portion 562. Accordingly, the rubber portion 562 is used with the rubber-like characteristic at the time of rotation of the developing roller 510. As a result, the rubber portion 562 can properly perform the function of regulating the layer thickness of the toner held on the developing roller 510.
<Relation between Peak Frequency f and Temperature of Rubber Portion 562>
As described above, the operating temperature range (that is, 10° C. to 35° C.) and the temperature of the rubber portion 562 varies depending on the operating temperature of the printer 10. The peak frequency f of the rubber portion 562 when the loss tangent (tan δ) of the rubber portion 562 is the greatest varies depending on the magnitude of the temperature of the rubber portion 562. This point is described now with reference to
Accordingly, in this embodiment, since the above-mentioned relation V/L1<f is satisfied at all the temperatures in the operating temperature range (10° C. to 35° C.) of the printer 10, the rubber portion 562 is necessarily used with the rubber-like characteristic at the time of rotation of the developing roller 510 with the image forming operation of the printer 10.
<Relation between Peak Frequency f and Material of Rubber Portion 562>
The rubber portion 562 is made of T8175 (Example 1) made by DIC. However, a material other than T8125 may be used as the rubber portion 562 and for example, T7350 (Example 2) made by TOYO TIRE & RUBBER Co., LTD. or SS2 (Example 3) made by Bando GUM may be used. Three materials have the following characteristics. That is, T8175 of Example 1 is a thermoplastic elastomer and the hardness (shore A) thereof is 78. T7350 of Example 2 is a urethane rubber and the hardness thereof (JIS A) is 75. SS2 of Example 3 is a urethane rubber and the hardness thereof (JIS A) is 78.
The loss tangent (tan δ) of 201759 made by Hokushin Industries Inc. and usable for the cleaning blade 76 is shown as Comparative Example 1 in
The graph of the loss tangent of T8175 of Example 1 shown in
Although it has been described in the above-mentioned embodiment, the pitch L1 of the grooves 512 in the peripheral direction is about 113 mm and the movement speed of the surface of the developing roller 510 is 320 mm/s, the invention is not limited to the embodiment. The pitch L1 and the movement speed V may have any value as long as they can satisfy the relation of V/L1<f. Here, it is preferable that the magnitude of the pitch L1 is in the range of about 85 μm to about 142 μm and the movement speed V is in the range of 1000 mm/s to 480 mm/s.
Countermeasure for Maintaining Relation of V/L1<f during Operation of Developing apparatus
As described above, the movement speed V of the developing roller 510 is 320 mm/s, the pitch L1 of the grooves 512 is about 113 mm, and the value V/L1 (about 2831 Hz) obtained by dividing the movement speed V by the pitch L1 is smaller than the peak frequency f of the rubber portion 562.
The magnitude of the value V/L1 may vary during operation of the developing apparatus. For example, when an external disturbance acts on the developing apparatus 51, 52, 53, and 54 and the movement speed V of the developing roller 510 in rotation is greater than 320 mm/s, the value V/L1 also increases in other words, the number of vibrations (frequency) of the rubber portion 562 vibrating with the rotation of the developing roller 510 increases). When the peak frequency f of the rubber portion 562 is close to 2831 Hz (which is the frequency when the movement speed V/L1 is 320 mm/s), the magnitude of the value V/L1 may be greater than the peak frequency f at the time of variation (that is, the relation of V/L1<f may not be maintained during operation of the developing apparatus but the relation of V/L1>f may be satisfied). When the value V/L1 is greater than the peak frequency f, as described above, there is a problem in that the rubber portion 562 exhibits the glass-like characteristic.
In order to solve the above-mentioned problem, as a countermeasure for maintaining the relation of V/L1<f even when the movement speed V and the like vary in the course of operation of the developing apparatus, the value V/L1 obtained by dividing the movement speed V of the developing roller 510 by the pitch L1 of the grooves 512 is smaller than the peak frequency f when the loss tangent (tan δ) is the greatest and smaller than the frequency (hereinafter, also referred to as frequency f2) when the loss tangent at the frequency is the half of the greatest value (V/L1<f2).
The details are described with reference to
In this way, when the relation of V/L1<2 is established and the magnitude of the value V/L1 varies with the variation in magnitude of the movement speed V, the value V/L1 is hardly greater than the peak frequency f. This is because the frequency f2 (about 1000 Hz) is 1/100 of the peak frequency f (about 100000 Hz). As a result, the relation of V/L1<f is maintained during operation of the developing apparatus (during rotation of the developing roller 510) and the rubber portion 562 can be properly used with the rubber-like characteristic at the time of rotation of the developing roller 510.
Although it has been described that the value V/L1 is smaller than the frequency f2, the loss tangent may be smaller than the frequency which is a mean value (about 0.28) of the greatest value (about 0.58) and the least value (about 0.02 in
The relation of V/L1<f2 in the rubber portion 562 (T7350) according to Example 2 and the rubber portion 562 (SS2) according to Example 3 will be described now with reference to
In the rubber portion 562 of T7350 of Example 2, as shown in
In the rubber portion 562 of SS2 of Example 3, as shown in
As shown in
The loss tangent (tan δ in
Accordingly, in order to satisfy the above-mentioned requirement, that is, the requirement for using the rubber portion 562 vibrating with the rotation of the developing roller 510 with the rubber-like characteristic, it is necessary to make the number of vibrations (frequency) of the rubber portion 562 lower than the peak frequency f.
The graph shown in
<Countermeasure for Allowing vibrating Rubber Portion 562 to be Used with Rubber-like Characteristic>
A specific counter measure for allowing the rubber portion 562 vibrating with the rotation of the developing roller 510 to be used with the rubber-like characteristic is described now. As the countermeasure, in this embodiment, the value obtained by dividing the movement speed of the surface of the developing roller 510 at the time of rotation of the developing roller 510 by the pitch of the grooves 512 in the peripheral direction of the developing roller 510 is smaller than the number of vibrations of the rubber portion 562 when the loss tangent obtained by dividing the loss elastic modulus of the rubber portion 562 by the storage elastic modulus is the greatest.
The point is described in more detail with reference to
As described above, the movement speed V of the surface of the developing roller 510 at the time of rotation of the developing roller 510 is 320 mm/s. Accordingly, the value V/L1 obtained by dividing the movement speed V of the surface of the developing roller 510 at the time of rotation of the developing roller 510 by the pitch L1 is about 2831 Hz. As shown in
When the relation of V/L1<f is satisfied, why the rubber portion 562 can be used with the rubber-like characteristic at the time of rotation of the developing roller 510 is described now. As described above, the rubber portion 562 is in contact with the surface of the developing roller 510 and the grooves 512 regularly arranged are formed on the surface. Accordingly, the grooves 512 frictionally slide on the rubber portion 562, whereby the rubber portion 562 vibrates at a constant number of vibrations. The magnitude of the number of vibrations of the rubber portion 562 is determined depending on the pitch L1 of the grooves 512 in the peripheral direction and the movement speed V of the surface of the developing roller 510. That is, the number of vibrations of the rubber portion 562 at the time of rotation of the developing roller 510 is V/L1. Accordingly, when V/L1 is smaller than the peak frequency f of the rubber portion 562 (V/L1<), the rubber portion 562 is used with the rubber-like characteristic.
Accordingly, in the developing apparatus 51, 52, 53, and 54 according to this embodiment, since the relation of V/L1<f is satisfied, the number of vibrations (frequency) of the rubber portion 562 vibrating with the rotation of the developing roller 510 is smaller than the peak frequency f (about 20000 Hz) of the rubber portion 562. Accordingly, the rubber portion 562 is used with the rubber-like characteristic at the time of rotation of the developing roller 510. As a result, the rubber portion 562 can properly perform the function of regulating the layer thickness of the toner held on the developing roller 510.
Abnormal Noises Accompanied with Vibration of Rubber Portion 562
By satisfying the relation of V/L1<f, the rubber portion 562 is used with the rubber-like characteristic. However, when the rubber portion 562 is used with the rubber-like characteristic, the rubber portion 562 vibrates with the rotation of the developing roller 510, thereby causing the abnormal noises. The abnormal noises are specifically wind roar (sound resulting from the vibration of air) due to the rubber portion 562 vibrating with the rotation of the developing roller 510.
The abnormal noises have a predetermined relation with the dynamic viscoelasticity (the elastic behavior and the viscous behavior) of the rubber portion 562. That is, when the elastic behavior of two behaviors is superior an other words, when the storage elastic modulus G′ is superior), the amplitude of the vibration of the rubber portion 562 increases, thereby easily causing the abnormal noises (wind roar). When the abnormal noises are generated, a user may misunderstand that a problem is caused with the printer 10.
A countermeasure for suppressing the generation of the abnormal noises is described now. As this countermeasure, the value V/L (this value V/L1 is the number of vibrations of the rubber portion 562 at the time of rotation of the developing roller 510) obtained by dividing the movement speed V of the developing roller 510 by the pitch L1 of the grooves 512 has the same magnitude as the frequency (number of vibrations) where the storage elastic modulus G′ is smaller than the loss elastic modulus G″.
The details are described now with reference
In this way, when the storage elastic modulus G′ is smaller than the loss elastic modulus G′, the viscous behavior is superior to (more dominant than) the elastic behavior. Since the amplitude of the vibration of the rubber portion 562 is suppressed from increasing by suppressing the elastic behavior of the rubber portion 562, it is possible to suppress the generation of the abnormal noises (wind roar).
Specific advantages of this countermeasure are described with reference to the measurement result shown in
As in this embodiment, when the movement speed V is 320 mm/s and the pitch L1 is 113 mm, that is, when the value V/L1 (the number of vibrations of the rubber portion 562) is 2831 Hz (Example 4), the storage elastic modulus G′ is smaller than the loss elastic modulus G″ (see
As can be seen from the measurement result, when the storage elastic modulus G′ is smaller than the loss elastic modulus G″ at the time of vibration of the rubber portion 562 (Examples 4 and 5), the volume of the abnormal noise is the half or less of the volume of the abnormal noise when the storage elastic modulus G′ is greater than the loss elastic modulus G″ at the time of vibration of the rubber portion 562 (Comparative Example 2). Accordingly, when the number of vibrations of the rubber portion 562 is the number of vibrations at which the storage elastic modulus G′ is smaller than the loss elastic modulus G″, the generation of the abnormal noise in the rubber portion 562 is suppressed.
As described above, in the printer 1 according to this embodiment, since the value V/L1 has the same magnitude as the number of vibrations at which the storage elastic modulus G′ is smaller than the loss elastic modulus G′ among the frequencies smaller than the number of vibrations (peak frequency f) of the rubber portion 562 when the loss tangent (tan δ) of the rubber portion 562 is the greatest, it is possible to properly use the rubber portion 562 with the rubber-like characteristic at the time of rotation of the developing roller 510 and to suppress the generation of the abnormal noise accompanied with the vibration of the rubber portion 562.
Filming Generated with Increase in Temperature of Rubber Portion 562
By satisfying the relation of V/L1<f, the rubber portion 562 can be used with the rubber-like characteristic. However; when the rubber portion 562 is used with the rubber-like characteristic, the temperature of the rubber portion 562 may increase due to the frictional sliding of the developing roller 510 on the rubber portion 562 during the rotation. Particularly, when the developing roller 510 continuously performs the developing operation (the image forming operation), the developing roller 510 frictionally slides on the rubber portion 562 for a long time and thus the temperature of the rubber portion 562 can easily increase.
There is a predetermined relation between the increase in temperature of the rubber portion 562 and the dynamic viscoelasticity (the elastic behavior and the viscous behavior) of the rubber portion 562. That is, when the elastic behavior of two behaviors is superior an other words, when the loss elastic modulus G″ is superior), the molecular chains of the rubber portion 562 can easily vibrate. Accordingly, heat can be easily generated and thus the temperature of the rubber portion 562 can easily increase.
In general, the rubber usually has tackiness (viscosity). Accordingly, when the rubber portion 562 is used with the rubber-like characteristic, the toner may be secured to the surface of the rubber portion 562. When the temperature of the rubber portion 562 increases (that is, when the loss elastic modulus G″ is superior), the securing of the toner is promoted and the filming (lump of secured toner) may be generated on the surface of the rubber portion 562. When the filming is generated, the charting of the toner by the rubber portion 562 is not proper, thereby causing the deterioration in image quality.
<Generation of Filming Accompanied with Increase in Temperature of Rubber Portion 562>
The generation of the filming is described with reference to
As described above, the rubber portion 562 according to this embodiment is in contact with the surface of the developing roller 510 so that the longitudinal direction thereof is parallel to the axial direction of the developing roller 510 and one end in the width direction thereof (that is, an end 560a of the regulating blade 560) faces the upstream side in the rotation direction of the developing roller 510. The contact portion 562a of the rubber portion 562 coming in contact with the surface of the developing roller 510 is apart from the end (end 560a) in the width direction. In this configuration, since the toner flows into the portion D (a portion between the rubber portion 562 and the developing roller 510) shown in
When the temperature of the rubber portion 562 increases with the rotation of the developing roller 510, the securing of the toner is promoted. As a result, as shown in
Countermeasure for Suppressing Increase in Temperature of Rubber 562
A countermeasure for suppressing an increase in temperature of the rubber portion 562 is described now. As this countermeasure, the value V/L1 (this value V/L1 is the number of vibrations of the rubber portion 562 at the time of rotation of the developing roller 510) obtained by dividing the movement speed V of the developing roller 510 by the pitch L1 of the grooves 512 has the same magnitude as the frequency (number of vibrations) where the loss elastic modulus G″ is smaller than the storage elastic modulus G′.
The details are described now with reference
In this way, when the loss elastic modulus G″ is smaller than the storage elastic modulus G′, the elastic behavior is superior to (more dominant than) the viscous behavior. Since the vibration of the molecular chains of the rubber portion 562 is suppressed by suppressing the viscous behavior of the rubber portion 562, it is possible to suppress the generation of heat and to suppress the increase in temperature of the rubber portion 562. Accordingly, it is possible to suppress the generation of the filming in the rubber portion 562.
Specific advantages of this countermeasure are described with reference to the measurement result shown in
As in this embodiment, when the movement speed V is 50 mm/s and the pitch L1 is 141 mm, that is, when the value V/L1 (the number of vibrations of the rubber portion 562) is 442 Hz (Example 6), the loss elastic modulus G″ is smaller than the storage elastic modulus G7 (see
On the other hand, in Comparative Example 3, when the movement speed V is 160 mml/s and the pitch L1 is 141 mm (when the value V/L1 is 1135 Hz), the loss elastic modulus G″ is greater than the storage elastic modulus G′, the temperature of the rubber portion 562 is 50.3° C., and the filming is generated on the surface of the rubber portion 562. In Comparative Example 4, when the movement speed V is 320 mm/s and the pitch L1 is 113 mm (when the value V/L1 is 2831 Hz), the loss elastic modulus G″ is greater than the storage elastic modulus G′, the temperature of the rubber portion 562 is 54.7° C., and the filming is generated on the surface of the rubber portion 562.
In this way, when the loss elastic modulus G′ is smaller than the storage elastic modulus G′ at the time of vibration of the rubber portion 562 (Example 6), the temperature of the rubber portion 562 is lower than that when the loss elastic modulus G″ is greater than the storage elastic modulus G′ at the time of vibration of the rubber portion 562 (Comparative Examples 3 and 4), and the filming is not generated on the surface of the rubber portion 562. Accordingly, the effectiveness of this countermeasure is validated by the measurement.
As described above, in the printer 1 according to this embodiment, since the value V/L1 has the same magnitude as the number of vibrations at which the loss elastic modulus an is smaller than the storage elastic modulus G′ among the numbers of vibrations smaller than the number of vibrations (peak frequency f) of the rubber portion 562 when the loss tangent (tan δ) of the rubber portion 562 is the greatest, it is possible to properly use the rubber portion 562 with the rubber-like characteristic at the time of rotation of the developing roller 510 and to suppress the increase in temperature of the rubber portion 562 (as a result, it is possible to suppress the generation of the filming).
Rubber Portion 562 According to Examples 7 to 9
The rubber portion 562 according to Examples 7 to 9 different in material from the rubber portion 562 according to the above-mentioned embodiment (Example 6) is described now. The configurations of the developing roller 510 and the like are the same as Example 6.
The peak frequency f when the loss tangent (tan δ) of the rubber portion 562 according to Example 7 is the greatest is about 6700 Hz as shown in
As shown in
Here, the advantage of suppressing the increase in temperature of the rubber portion 562 according to Example 7 (of accordingly suppressing the generation of the filming) is specifically described with reference to the measurement results shown in
When the movement speed V is 50 mm/s and the pitch L1 is 141 mm, that is, when the value V/L1 is 442 Hz (Example 7), the loss elastic modulus G″ is smaller than the storage elastic modulus G′. The temperature of the rubber portion 562 is 42.4° C. and the filming is not generated on the surface of the rubber portion 562.
Similarly, when the movement speed V is 160 mm/s and the pitch L1 is 141 mm in Example 8 (when the value V/L1 is 1135 Hz) or when the movement speed V is 320 mm/s and the pitch L1 is 113 mm in Example 9 (when the value V/L1 is 2830 Hz), the loss elastic modulus G″ is smaller than the storage elastic modulus G′. The temperature of the rubber portion 562 in two cases is almost equal to the temperature of Example 7 and the filming is not generated on the surface of the rubber portion 562.
As described above, in Examples 7 to 9, since the value V/L1 has the same magnitude as the frequency at which the loss elastic modulus G′ is smaller than the storage elastic modulus G′ among the frequencies smaller than the number of vibrations (peak frequency C) of the rubber portion 562 when the loss tangent (tan δ) of the rubber portion 562 is the greatest, it is possible to properly use the rubber portion 562 with the rubber-like characteristic at the time of rotation of the developing roller 510 and to suppress the increase in temperature of the rubber portion 562 (as a result, it is possible to suppress the generation of the filming).
Driving Control and Stopping Control Developing Roller 510
As described above, the developing roller 510 transports the toner to the developing position by rotating and develops the latent image held on the photosensitive member 20 with the toner (the toner held on the developing roller 510). The developing roller 510 rotates at a constant rotation speed (hereinafter, referred to as a developing rotation speed) at the time of performing the developing operation (rotates at the rotation speed at which the movement speed of the surface of the developing roller 510 is 320 mm/s).
Accordingly, the control unit 100 needs to control the rotation of the developing roller 510 stopped at the time of starting the developing operation to raise the rotation speed of the developing roller 510 up to the developing rotation speed. The control unit 100 needs to control the rotation of the developing roller 510 rotating at the developing rotation speed to lower the rotation speed of the developing roller 510 at the time of ending the developing operation up to 0 (that is, it is necessary to stop the rotation of the developing roller 510).
Here, until the developing roller 510 rotates at the developing rotation speed from the stopped state, how the control unit 100 should control the rotation of the developing roller 510 (which is hereinafter referred to as a driving control of the developing roller 510 for the purpose of convenience) is described now. In addition, until the developing roller 510 is stopped from the state where it rotates at the developing rotation speed, how the control unit 100 should control the rotation of the developing roller 510 (which is hereinafter referred to as a stopping roller of the developing roller 510 for the purpose of convenience) is described now.
Basic Concept of Control
As described in the Problems that the Invention is to Solve, the contact member (the rubber portion 562 as the layer thickness regulating member in this embodiment) is in contact with the surface of the developing roller 510 and the grooves 512 regularly arranged are formed on the surface of the developing roller 510. Accordingly, when the developing roller 510 rotates, the rubber portion 562 vibrates with the sliding movement of the developing roller 510 on the rubber portion 562.
It is known that when the number of vibrations of the rubber portion 562 (the value obtained by dividing the movement speed of the surface at the time of rotation of the developing roller 510 by the pitch of the grooves 512 in the peripheral direction of the developing roller 510 correspond to the number of vibrations) is too great, the rubber portion 562 made of a elastic rubber material exhibits the glass-like characteristic, not the rubber-like characteristic. Accordingly, at the time of development, it is necessary to allow the developing roller 510 to rotate at a rotation speed at which the number of vibrations is not too great (at which the rubber portion 562 does not exhibit the glass-like characteristic), so as to allow the rubber portion 562 made of a elastic rubber material to properly perform its function.
This point is described in more details. The storage elastic modulus and the loss elastic modulus indicate dynamic viscoelasticity of a material of the rubber portion 562 made of an elastic rubber material. The storage elastic modulus indicates an elastic behavior of the material and the loss elastic modulus indicates a viscous behavior of the material. Both values vary with the variation in the number of vibrations of the material when the material vibrates. Since both values vary with the variation in the number of vibrations, the loss tangent (tan δ) obtained by dividing the loss elastic modulus G″ by the storage elastic modulus G′ varies with the variation in the number of vibrations. It is known that the characteristic of the material is changed at the number of vibrations (hereinafter, also referred to as boundary number of vibrations f)) as the boundary at which the loss tangent (tan δ) is the greatest. That is, the material exhibits the rubber-like characteristic when the number of vibrations of the material at the time of vibration of the material is lower than the boundary number of vibrations f. The material exhibits the glass-like characteristic when the number of vibrations is higher than the boundary number of vibrations f.
The graph shown in
In this way, when the number of vibrations of the rubber portion 562 is greater than the boundary number of vibrations f, the rubber portion 562 made of a rubber elastic material exhibits the glass-like characteristic, not the rubber-like characteristic. Accordingly, at the time of performing the developing operation, it is possible to control the frequency to allow the rubber portion 562 made of the elastic rubber material to perform its function, so that the number of vibrations is not greater than the boundary number of vibrations f (the frequency is smaller than the boundary number of vibrations f).
The control of the number of vibrations is accomplished by controlling the rotation speed of the developing roller 510. That is, as described above, since the number of vibrations of the rubber portion 562 is the value obtained by dividing the movement speed of the surface at the time of rotation of the developing roller 510 by the pitch of the grooves 512 in the peripheral direction of the developing roller 510, the frequency is proportional to the movement speed. Since the movement speed is proportional to the rotation speed of the developing roller 510, the number of vibrations is proportional to the rotation speed of the developing roller 510. That is, when the rotation speed of the developing roller 510 is enhanced, the number of vibrations increases. When the rotation speed is reduced, the number of vibrations decreases.
Accordingly, when the rotation speed (the developing rotation speed) of the developing roller 510 at the time of developing is made to be the rotation speed at which the number of vibrations (that is, the value obtained by dividing the movement speed by the pitch) is smaller than the boundary number of vibrations, that is, the rotation speed at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations, it is possible to keep the rubber portion 562 made of the elastic rubber material in the rubber-like characteristic at the time of developing, thereby allowing the rubber portion 562 to properly perform its function.
In this embodiment, as described above, the movement speed, the pitch, and the boundary number of vibrations at the time of developing are about 320 mm/s, about 113 mm, and about 6700 Hz, respectively and the product is 757.1 mm/s. Accordingly, the movement speed of the surface of the developing roller 510 when the developing roller 510 rotates at the developing rotation speed at the time of developing is smaller than the product. That is, in order to allow the rubber portion 562 to properly perform its function, the control unit 100 according to this embodiment controls the rotation of the developing roller 510 so that the developing rotation speed of the developing roller 510 is made to be the rotation speed at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations.
However, as described in the BACKGROUND, etc., when the developing operation is performed in a state where the rubber portion 562 exhibits the rubber-like characteristic, the filming is generated in the rubber portion 562 due to the tackiness of the rubber portion 562 based on the rubber-like characteristic.
When the filming is remarkable, the quality of an image developed and finally formed on the medium is deteriorated.
Accordingly, the control unit 100 according to this embodiment makes a control of shaking and removing the filming from the rubber portion 562 temporarily in the course of the driving control and the stopping control.
Here, the control of shaking and removing the filming from the rubber portion 562 is described now. As described above, the rubber portion 562 exhibits the rubber-like characteristic or the glass-like characteristic depending on the number of vibrations of the rubber portion 562. When the vibrating rubber portion 562 exhibits the glass-like characteristic, the tackiness of the rubber portion 562 based on the rubber-like characteristic is weakened to make it easy to remove the filming from the rubber portion 562. When the rubber portion 562 exhibits the glass-like characteristic, the rubber portion 562 is harder than when the rubber portion exhibits the rubber-like characteristic. Accordingly, the vibration generated in the contact portion 562a when the developing roller 510 slides on the rubber portion 562 at the contact portion 562a is easily transmitted to the portion in which the filming exists and which is hatched in
On the other hand, as described above, when the rotation speed of the developing roller 510 is made to be the rotation speed at which the number of vibrations (that is, the value obtained by dividing the movement speed by the pitch) is smaller than the boundary number of vibrations, that is, the rotation speed at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations, the vibrating rubber portion 562 exhibits the rubber-like characteristic. On the contrary, when the rotation speed of the developing roller 510 is made to be the rotation speed at which the number of vibrations (that is, the value obtained by dividing the movement speed by the pitch) is greater than the boundary number of vibrations, that is, the rotation speed at which the movement speed is greater than the product of the pitch and the boundary number of vibrations, the vibrating rubber portion 562 exhibits the glass-like characteristic. Accordingly, by controlling the rotation of the developing roller 510 so that the rotation speed of the developing speed 510 is made to be the rotation speed at which the movement speed is greater than the product of the pitch and the boundary number of vibrations, it is possible to properly shake and remove the filming from the rubber portion 562.
Accordingly, in this embodiment, in order to shake and remove the filming from the rubber portion 562, the control unit 100 controls the rotation of the developing roller 510 so that the rotation speed of the developing roller 510 is temporarily made to be the rotation speed at which the movement speed is greater than the product of the pitch and the boundary number of vibrations during the driving control and the stopping control.
More specifically, in the driving control, the control unit 100 starts the rotation of the developing roller 510 and then raises the rotation speed of the developing roller 510 up to the rotation speed (hereinafter, also referred to as first rotation speed V1) at which the movement speed is greater than the product of the pitch and the boundary number of vibrations so as to shake and remove the filming from the rubber portion 562. Thereafter (that is, after the rotation speed of the developing roller 510 becomes the first rotation speed V1), the control unit 100 lowers the rotation speed of the developing roller 510 up to the rotation speed (hereinafter, also referred to as second rotation speed V2) at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations so as to allow the developing roller rotating at the second rotation speed V2 to develop the latent image. That is, the control unit 100 shakes and removes the filming from the rubber portion 562 by raising the rotation speed of the developing roller 510 up to the first rotation speed V1 before performing the developing operation, when it is not necessary to allow the rubbing portion 562 made of the elastic rubber material to perform its function. Thereafter, in the state where the filming is properly removed, the developing roller 510 develops the latent image.
The control unit 100 allows the developing roller 510 rotating at the rotation speed (hereinafter, also referred to as fifth rotation speed V5; the fifth rotation speed V5 is equal to the second rotation speed V2 in this embodiment) at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations to develop the latent image, finishes the developing of the latent image by the developing roller, raising the rotation speed of the developing roller 510 up to the rotation speed (hereinafter, also referred to as fourth rotation speed V4; the fourth rotation speed V4 is equal to the first rotation speed V1 in this embodiment) at which the movement speed is greater than the product of the pitch and the boundary number of vibrations in the stopping control, and thereafter (that is, after the rotation speed of the developing roller 510 becomes the fourth rotation speed V4) stops the rotation of the developing roller 510. That is, the control unit 100 raises the rotation speed of the developing roller 510 up to the fourth rotation speed V4 so as to shake and remove the filming generated at the time of developing from the rubber portion 562 after performing the developing operation, when it is not necessary to allow the rubber portion 562 made of the elastic rubber material to perform its function.
Although it has been described that the second rotation speed V2 and the fifth rotation speed V5 are the rotation speeds at which the movement speed of the surface of the developing roller 510 is about 320 mm/s, the first rotation speed V1 and the fourth rotation speed V4 in this embodiment are the rotation speeds (2.5 times the second rotation speed V2 and the fifth rotation speed V5) at which the movement speed of the surface of the developing roller 510 is about 800 mm/s. As described above, since the product of the pitch and the boundary number of vibrations is 757.1 mm/s. Accordingly, by setting the first rotation speed V1 and the fourth rotation speed V4 to the above-mentioned rotation speed, it is possible to shake and remove the filming from the rubber portion 562. However, the value of the rotation speed is not limited to the above-mentioned numerical values, but may be properly determined depending on the values of the pitch or the boundary number of vibrations.
A specific example of the driving control of the developing roller 510 is described now with reference to
When the time in the horizontal axis is 0 in
In order to allow the rubber portion 562 to properly perform its function at the time of developing, at ta4, the control unit 100 instructs the developing roller 510 to allow the developing roller 510 to rotate at the second rotation speed V2 (that is, the developing rotation speed) and lowers the rotation speed of the developing roller 510 to the second rotation speed. The rotation speed of the developing roller 510 slowly decreases from the first rotation speed V1, passes through the third rotation speed V3 at time ta5, and becomes the second rotation speed V2 at time ta6. In this embodiment, ta4 is set so that the time from time ta3 to time ta4, that is, the time when the developing roller 510 is rotating at the first rotation speed V1 is greater than the time (about 70 msec in this embodiment) when the developing roller 510 rotates once.
After the rotation speed of the developing roller 510 becomes the third rotation speed V3 at time ta5, more specifically, after a time point (which is represented by time ta7 in
The reason for defining the application start timing of the developing bias as described above is described. As described above, in order to shake and remove the filming from the rubber portion 562, the control unit 100 allows the developing roller 510 to rotate at the first rotation speed V1 from time ta3 to time ta4. Specifically, since the time period when the rubber portion 562 exhibits the glass-like characteristic is from time ta2 to time ta5, the filming is shaken and removed from the rubber portion 562 in the meantime. When the filming is shaken and removed from the rubber portion 562, the filming falls in the gravity direction and is collected by the toner container 530, but some of the filming moves to the developing roller 510 and is attached to the surface of the developing roller 510. The filming attached to the surface moves from the contact position in contact with the rubber portion 562 with the rotation of the developing roller 510, finally reaches the contact position in contact with the toner supply roller 550, is raked out at the contact position by the toner supply roller 550, and is properly collected into the toner container 530. However, when the filming attached to the surface of the developing roller 510 moves from the contact position with the rotation of the developing roller 510 to the position opposed to the photosensitive member 20 and the developing bias is applied thereto, the filming may move to the photosensitive member 20. When the filming moves to the photosensitive member 20, the proper collection of the filming into the toner container 530 is hindered.
Accordingly, in order to avoid such a problem, the control unit 100 according to this embodiment allows the developing bias application section 121 to start the application of the developing bias at time ta8 after the time point (time ta7) in a time (that is, a time until the filming finally attached to the surface moves to the position opposed to the photosensitive member 20 with the rotation of the developing roller 510), when a portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 (time ta5) moves to the position opposed to the photosensitive member 20 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3 at time ta5 (that is, after the filming is finally attached to the surface of the developing roller 510).
In a time when the developing bias is sufficiently stabilized after the application of the developing bias is started at time ta8, the control unit 100 allows the developing roller 510 rotating at the second rotation speed V2 to develop the latent image at time ta9. That is, at time ta9, the latent image on the photosensitive member 20 is opposed to the developing roller 510 and the developing of the latent image is started.
A specific example of the stopping control of the developing roller 510 is described now with reference to
When the time in the horizontal axis is 0 in
The control unit 100 ends the developing of the latent image at time tb1, gives the developing roller 510 an instruction for allowing the developing roller 510 to rotate at the fourth rotation speed V4 at time tb2 so as to shake and remove the filming from the rubber portion 562, and raises the rotation speed of the developing roller 510 to the fourth rotation speed V4. The rotation speed of the developing roller 510 slowly increases from the fifth rotation speed V5, passes through the third rotation speed V3 at which the movement speed is equal to the product of the pitch and the boundary number of vibrations at time tb4, and becomes the fourth rotation speed V4 at time tb5.
The application end timing for ending the application of the developing bias is described. In this embodiment, in consideration of the possibility that the application end timing is earlier than the developing end timing due to an error of the timing control, the application end timing is not equal to the developing end timing, but the application end timing is made to be later than the developing end timing. That is, the control unit 100 ends the application of the developing bias from the developing bias application section 121 after ending the developing of the latent image at time tb1. The control unit 100 ends the application of the developing bias at time tb3 before the rotation speed of the developing roller 510 becomes the third rotation speed V3 at time tb4. more specifically, before the time point (which is represented by time tb6 in
That is, in order to avoid the above-mentioned problem, that is, a problem in that the filming moves to the photosensitive member 20 when the filming attached to the surface of the developing roller 510 moves from the contact position with the rotation of the developing roller 510 and reaches the position opposed to the photosensitive member 20 and the developing bias is applied thereto, the control unit 100 ends the application of the developing bias at time tb3 before the time point (time tb6) in a time (that is, a time when the filming first attached to the surface moves from the contact position with the rotation of the developing roller 510 and reaches the position opposed to the photosensitive member 20), when a portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 (time tb4) moves to the position opposed to the photosensitive member 20 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3 at time tb4 (that is, after the filming is first attached to the surface of the developing roller 510).
After the rotation speed of the developing roller 510 becomes the fourth rotation speed V4 at time tb5, the control unit 100 lowers the rotation speed of the developing roller 510 to start stopping the rotation of the developing roller 510 at time tb7. Here, the control unit 100 according to this embodiment stops the rotation at time tb12 after the time point (which is represented by time tb10 in
The reason for defining the stop timing of the developing roller 510 as described above is described now. As described above, in order to shake and remove the filming from the rubber portion 562, the control unit 100 allows the developing roller 510 to rotate at the fourth rotation speed V4 from time tb5 to time tb7. Specifically, since the time period when the rubber portion 562 exhibits the glass-like characteristic is from time tb4 to time tb8, the filming is shaken and removed from the rubber portion 562 in the meantime. As described above, when the filming is shaken and removed from the rubber portion 562, some of the filming moves to the developing roller 510 and is attached to the surface of the developing roller 510. The filming attached to the surface moves from the contact position in contact with the rubber portion 562 with the rotation of the developing roller 510, finally reaches the contact position in contact with the toner supply roller 550, is raked out at the contact position by the toner supply roller 550, and is properly collected into the toner container 530. It is preferable that the filming shaken and removed and attached to the surface from time tb4 to time tb8 is preferably raked out at the contact position by the toner supply roller 550 before the developing roller 510 is stopped at time tb12.
Accordingly, in consideration of the above-mentioned point, the control unit 100 according to this embodiment stops the rotation at time tb12 after the time point (time tb10) in a time period (that is, a time period when the filming finally attached to the surface moves from the contact position with the rotation of the developing roller 510 and reaches the contact position), when the portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 (time tb8) moves to the contact position in contact with the toner supply roller 550 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3 at time tb8 (that is, after the filming is finally attached to the surface of the developing roller 510), at the time of stopping the rotation of the developing roller 510.
After starting stopping the rotation of the developing roller 510 at time tb7, the control unit 100 stops the developing roller 510 for a sufficient time period so as to embody the above-mentioned point. More specifically, the control unit 100 gives the developing roller 510 an instruction for allowing the developing roller 510 to rotate at the fifth rotation speed V5 (that is, the developing rotation speed) at time tb7, and lowers the rotation speed of the developing roller 510 to the second rotation speed V2. The rotation speed of the developing roller 510 slowly decreases from the fourth rotation speed V4, passes through the third rotation speed V3 at time tb8, and reaches the fifth rotation speed V5 at time tb9. After allowing the developing roller 510 at the fifth rotation speed V5 for a moment, the control unit gives the developing roller 510 an instruction for stopping the developing roller 510 at time tb11, and lowers the rotation speed of the developing roller 510 to 0. The rotation speed of the developing roller 510 slowly decreases from the fifth rotation speed V5 and becomes 0 at time tb12 (the developing roller 510 is stopped). In this embodiment, time tb7 is set so that the time period from time tb5 to time tb7, that is, the time period when the developing roller 510 rotates at the fourth rotation speed V4 is greater than the time period (about 70 msec in this embodiment) when the developing roller 510 rotates once.
Effectiveness of Printer 10 according to Embodiment
As described above, in the printer 10 according to this embodiment, the control unit 100 starts the rotation of the developing roller 510, then raises the rotation speed of the developing roller 510 up to the first rotation speed V1 at which the movement speed is greater than the product of the pitch and the boundary number of vibrations, lowers the rotation speed of the developing roller 510 up to the second rotation speed V2 at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations after the rotation speed of the developing roller 510 becomes the first rotation speed V1, and allows the developing roller 510 rotating at the second rotation speed V2 to develop the latent image. Accordingly, the filming is properly shaken and removed from the rubber portion 562 before the filming is remarkable. As a result, the deterioration in image quality of an image developed and finally formed on the medium can be properly prevented.
In the printer 10 according to this embodiment, the control unit 100 lowers the rotation speed of the developing roller 510 from the first rotation speed V1 to the second rotation speed V2 via the third rotation speed V3 at which the movement speed is equal to the product after the rotation speed of the developing roller 5 to becomes the first rotation speed V1, and starts the application of the developing bias by the developing bias application section 121 after the rotation speed of the developing roller 510 becomes the third rotation speed V3. More specifically, the control unit starts the application of the developing bias after the time point in a time period, when the portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 moves to the position opposed to the photosensitive member 20 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3. Accordingly, the filming hardly moves to the photosensitive member 20 and is properly collected by the toner container 530. By starting the application of the developing bias from the developing bias application section 121 after the rotation speed of the developing roller 510 becomes the third rotation speed V3, the above-mentioned advantage (that is, the advantage of allowing the toner container 530 to properly collect the filming) is obtained even when the application of the developing bias is started before the above-mentioned time point. For the purpose of obtaining the complete advantage, it is preferable that the application of the developing bias is started after the above-mentioned time point.
In the printer 10 according to this embodiment, the control unit 100 allows the developing roller 510, which rotates at the fifth rotation speed V5 at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations, to develop the latent image, raises the rotation speed of the developing roller 510 to the fourth rotation speed V4 at which the movement speed is greater than the product after ending the developing of the latent image, and stops the rotation of the developing roller 510 after the rotation speed of the developing roller 510 becomes the fourth rotation speed V4. Accordingly, the filming is properly shaken and removed from the rubber portion 562 before the filming is remarkable. Accordingly, the deterioration in image quality of the image developed and finally formed on the medium is properly prevented.
In the printer 10 according to this embodiment, the control unit 100 raises the rotation speed of the developing roller 510 from the fifth rotation speed V5 to the fourth rotation speed V4 via the third rotation speed V3 at which the movement speed is equal to the product after ending the developing of the latent image, and stops the application of the developing bias from the developing bias application section 121 before the rotation speed of the developing roller 510 becomes the third rotation speed V3. More specifically, the control unit stops the application of the developing bias before the time point in the time period, when the portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 moves to the position opposed to the photosensitive member 20 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3. Accordingly, the filming hardly moves to the photosensitive member 20 and is properly collected in the toner container 530. By stopping the application of the developing bias before the above-mentioned time point, the above-mentioned advantage (that is, the advantage of allowing the toner container 530 to properly collect the filming) is obtained. For the purpose of obtaining the complete advantage with a margin, it is preferable that the application of the developing bias is stopped before the rotation speed of the developing roller 510 becomes the third rotation speed V3.
In the printer 10 according to this embodiment, at the time of stopping the rotation of the developing roller 510 after the rotation speed of the developing roller 510 becomes the fourth rotation speed V4, the control unit 100 stops the rotation after the time point in the time period, when the portion, on the surface of the developing roller 510, in contact with the rubber portion 562 when the rotation speed of the developing roller 510 becomes the third rotation speed V3 moves to the position in contact with the toner supply roller 550 with the additional rotation of the developing roller 510, after the rotation speed of the developing roller 510 becomes the third rotation speed V3. Accordingly, the filming is properly removed by the toner supply roller 550 before the rotation of the developing roller 510 is stopped.
Method of Manufacturing Developing Roller 510
A method of manufacturing the developing roller 510 is described now with reference to
First, as shown in
That is, as shown in
After the rolling process is finished, the surface of the center portion 510a is plated. In this embodiment, electroless Ni—P plating is used, but the invention is not limited to it. For example, hard chrome plating or electrical plating may be used.
Although the image forming apparatus, etc. according to the invention have been described with reference to the above-mentioned embodiments, the embodiments are intended to easily understand the invention, but not to define the invention. The invention may be modified in various forms without departing from the gist thereof and the invention includes equivalents thereof.
Although an intermediate transfer type full color laser beam printer has been described as the image forming apparatus in the embodiments, the invention may be applied to various image forming apparatuses such as a full color laser beam printer other than the intermediate transfer type, a monochrome laser beam printer, a copier, and a facsimile.
As the photosensitive member, a so-called photosensitive belt in which a photosensitive layer is formed on the surface of a belt-like conductive base member may be employed as well as a so-called photosensitive roller in which a photosensitive layer is formed on the peripheral surface of a cylindrical conductive base member.
In the above-mentioned embodiments, as shown in
However, when the rubber portion 562 is used as the contact member, it is possible to prevent the layer thickness of the toner from being improperly regulated due to the use of the rubber portion 562 with the glass-like characteristic by satisfying the relation of V/L1<f. As a result, the above-mentioned embodiments are more preferable, in that the developing can be more properly performed by the developing roller 510.
In the above-mentioned embodiment, the rubber portion 562 is in contact with the surface so that the longitudinal direction thereof is parallel to the axial direction of the developing roller 510 and one end in the width direction thereof (that is, the end 560a of the regulating blade 560) faces the upstream side in the rotation direction of the developing roller 510. The contact portion 562a of the rubber portion 562 coming in contact with the surface of the developing roller 510 is apart from the end in the width direction (that is, the rubber portion 562 is in contact with the developing roller 510 at the center portion). However, the invention is not limited to the embodiment. For example, the contact portion 562a, that is, the rubber portion 562, may be in contact with the developing roller 510 at the edge.
In the above-mentioned embodiments, the rubber portion 562 has been made of thermoplastic elastomer as a kind of elastic rubber material, but the invention is not limited to the thermoplastic elastomer. For example, the rubber portion 562 may be made of rubber (more specifically, urethane rubber).
In the above-mentioned embodiments, as shown in
However, when the rubber portion 562 is used as the contact member, the above-mentioned embodiments are more preferable in that the rubber portion 562 can be used with the rubber-like characteristic to properly regulate the layer thickness of the toner by satisfying the relation of V/L1<f.
In the above-mentioned embodiment, as shown in
However, as described below, the above-mentioned embodiments are more preferable in that the generation of the filming can be suppressed between the contact portion 562a of the rubber portion 562 and the end (end 560a). That is, when the rubber portion 562 is in contact with the developing roller 510 at the center portion, the filming may be generated between the contact portion 562a and the end due to the increase in temperature of the rubber portion 562. Therefore, by setting the value V/L1 to the same magnitude as the number of vibrations at which the loss elastic modulus G″ is smaller than the storage elastic modulus G′, the increase in temperature of the rubber portion 562 can be suppressed. As a result, the filming is suppressed from being generated between the contact portion 562a and the end.
In the above-mentioned embodiments, as shown in
In the above-mentioned embodiments, as shown in
In the above-mentioned embodiments, the grooves 512 have the bottom surface 514 and the side surface 513 and the slope angle of the side surface 513 is about 45 degree (see
In the above-mentioned embodiments, the developing apparatus 51, 52, 53, and 54 can be mounted on and demounted from the printer body 10a of the printer 10 (see
However, when the relation of V/L1<f is satisfied at all the temperatures in the operating temperature range, the above-mentioned embodiments are more preferable in that the rubber portion 562 can be used with the rubber-like characteristic when the printer 10 forms an image.
In the above-mentioned embodiments, the rubber portion 562 is made of thermoplastic elastomer, but the invention is not limited to the material. For example, the rubber portion 562 may be made of urethane rubber.
In the above-mentioned embodiments, the value V/L1 obtained by dividing the movement speed V of the surface at the time of the rotation of the developing roller 510 by the pitch L1 of the grooves 512 in the peripheral direction of the developing roller 510 is set to be smaller than the peak frequency (number of vibrations) f of the rubber portion 562 when the loss tangent (tan δ) is the greatest, and to be smaller than the number of vibrations f2 (see
However, when the value V/L1 is smaller than the frequency f2 and the movement speed V of the developing roller 510 varies to change the number of vibrations (frequency) of the rubber portion 562, the number of vibrations (frequency) is hardly greater than the peak frequency f (in other words, the rubber portion 562 hardly exhibits the glass-like characteristic. Accordingly, the above-mentioned embodiments are more preferable in that the rubber portion 562 can be properly used with the rubber-like characteristic at the time of the rotation of the developing roller 510.
In the printer 10, the operating temperature range (for example, the range of temperature in which no problem is guaranteed to occur at the time of using the printer 10) is set. However, even when the printer 10 is used at any temperature in the operating temperature range, it is preferable that the rotation speed of the developing roller 510 is raised up to the first rotation speed V1 or the fourth rotation speed V4 at which the movement speed is greater than the product of the pitch and the boundary number of vibrations.
It is known that the value of the number of vibrations minutely varies with the variation in temperature of the rubber portion 562. Accordingly, the value of the boundary number of vibrations slightly varies depending on what temperature in the operating temperature range the printer 10 is used at. Therefore, when the rotation speed of the developing roller 510 is set to a predetermined rotation speed, the predetermined rotation speed may become a rotation speed at which the movement speed is greater than the product of the pitch and the boundary number of vibrations at some temperatures in the operating temperature range, and the predetermined rotation speed may become a rotation speed at which the movement speed is smaller than the product of the pitch and the boundary number of vibrations at other temperatures in the operating temperature range.
Even when the rotation speed of the developing roller 510 is raised to the first rotation speed V1 or the fourth rotation speed V4 at which the movement speed is greater than the product of the pitch and the boundary number of vibrations at some temperatures in the operating temperature range, the above-mentioned advantage (that is, the advantage of properly preventing the deterioration in image quality) is sufficiently obtained, but it is preferable that the rotation speed of the developing roller 510 is raised to the first rotation speed V1 or the fourth rotation speed V4 at which the movement speed is greater than the product of the pitch and the boundary number of vibrations in the entire operating temperature range.
An image forming system according to an embodiment of the invention is described now with reference to the drawings.
It has been described above that the image forming system is constructed by connecting the printer 706 to the computer 702, the display device 704, the input device 708, and the reading device 710, but the invention is not limited to such a construction. For example, the image forming system may includes the computer 702 and the printer 706 and the image forming system may not include any one of the display device 704, the input device 708, and the reading device 710. For example, the printer 706 may have a part of the functions or mechanisms of the computer 702, the display device 704, the input device 708, and the reading device 710. For example, the printer 706 may be constructed to have an image processing unit processing an image, a display unit performing various display operations, and a recording medium mounting unit to and from which a recording medium in which image data photographed with a digital camera are recorded is attached and detached.
The image forming system embodied in the above-mentioned way is more excellent than a conventional system as a whole.
Number | Date | Country | Kind |
---|---|---|---|
2007-096603 | Apr 2007 | JP | national |
2007-134101 | May 2007 | JP | national |
2007-195001 | Jul 2007 | JP | national |
2007-195002 | Jul 2007 | JP | national |
2007-195003 | Jul 2007 | JP | national |