The present invention relates to a developing apparatus that is used in an electrophotographic image forming apparatus.
In an electrophotographic image forming apparatus using an electrophotographic image forming process, a developing apparatus that causes toner to adhere to an electrostatic latent image formed on a photosensitive drum to develop an image is used. Japanese Patent Application Laid-Open No. 2014-134787 discusses a configuration in which a cartridge including a developer carrying member (development roller), a developer supply member (toner feed roller), and a toner storage chamber is detachably attached to an electrophotographic image forming apparatus. Japanese Patent Application Laid-Open No. 2014-134787 discusses the configuration in which a driving force input from a driving output unit of the image forming apparatus into a driving input unit of the cartridge is transmitted to the developer carrying member via the developer supply member to drive the developer carrying member.
In a case where a peripheral speed of the developer carrying member fluctuates, the fluctuation becomes a factor of a defective toner image. As a result, an image having a defect, such as uneven density, might be generated. As discussed in Japanese Patent Application Laid-Open No. 2014-134787, in the configuration in which a driving force is transmitted to the developer carrying member via the developer supply member, a fluctuation of the peripheral speed of the developer supply member brings the peripheral speed of the developer carrying member into fluctuating more easily compared to a configuration in which a driving force is input into the developer carrying member not via the developer supply member. Consequently, as a fluctuation of the peripheral speed of the developer carrying member is larger, uneven density of a developer on an image is recognized more easily. Therefore, an image might become a defective image.
According to an aspect of the present invention, a developing apparatus includes a developer carrying member configured to carry developer and be rotatable, and a developer supply member configured to be in contact with the developer carrying member, to supply the developer to the developer carrying member, and to be rotatable, the developer supply member including a shaft extending in a rotational axis direction of the developer carrying member, a first driving member and a second driving member disposed at a first end of the shaft and a second end of the shaft opposite to the first end in the rotational axis direction, respectively, and a toner supply portion disposed between the first end of the shaft and the second end of the shaft in the rotational axis direction, wherein the first driving member receives a driving force for rotating the developer supply member, and the second driving member outputs the driving force, and wherein the second driving member is mounted to the shaft without play in a rotational direction of the developer supply member with respect to the shaft.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
[Whole Configuration of Image Forming Apparatus]
A whole configuration of an electrophotographic image forming apparatus (hereinafter, image forming apparatus) 100 that forms an image on a recording medium S which is a sheet such as paper will be described with reference to
In each of the drum cartridges 9, processing units are integrally disposed. The processing units include an electrophotographic photosensitive drum (hereinafter, photosensitive drum) 1 (1a, 1b, 1c, and 1d), a charge roller 2 (2a, 2b, 2c, and 2d), and a cleaning member 6 (6a, 6b, 6c, and 6d).
Further, in each of the developing cartridges 4 (4Y, 4M, 4C, and 4K), processing units are integrally disposed. The processing units include a development roller (developer carrying member) 25 (25a, 25b, 25c, and 25d) that can supply developer to the photosensitive drum 1 and a developing blade 35 (35a, 35b, 35c, and 35d).
The charge roller 2 uniformly charges the surface of the photosensitive drum 1. The development roller 25 develops a latent image formed on the photosensitive drum 1 by using the developer (hereinafter, toner) to visualize the image. The cleaning member 6 removes residual toner on the photosensitive drum 1 after the toner image formed on the photosensitive drum 1 (developer images) is transferred to the recording medium S.
Further, a scanner unit 3 is disposed below the drum cartridges 9 and the developing cartridges 4. The scanner unit 3 is for selectively exposing the photosensitive drums 1 based on image information, and forming latent images on the photosensitive drums 1, respectively.
A cassette 17 that contains the recording media S is mounted to a lower part of the image forming apparatus 100. A recording medium conveyance device is disposed so that each of the recording media S passes through a secondary transfer roller 69 and a fixing unit 74 to be conveyed to an upper part of the image forming apparatus 100. That is, a feed roller 54 that feeds the recording media S in the cassette 17 one by one, a conveyance roller pair 76 that conveys a fed recording medium S, and a registration roller pair 55 that synchronizes latent images formed on the photosensitive drums 1 with the recording medium S are disposed. Further, an intermediate transfer unit 5 which is intermediate transfer means is disposed above the drum cartridges 9 and the developing cartridges 4. The intermediate transfer unit 5 is for transferring toner images formed on the photosensitive drums 1 (1a, 1b, 1c, and 1d). The intermediate transfer unit 5 includes a driving roller 56, a driven roller 57, primary transfer rollers 58 (58a, 58b, 58c, and 58d), and an opposed roller 59. Each of the primary transfer rollers 58 is disposed at a position opposed to the photosensitive drum 1 having a different color. The opposed roller 59 is disposed in a position opposed to the secondary transfer roller 69. A transfer belt 14 is installed across the intermediate transfer unit 5. The transfer belt 14 rotates such that the transfer belt 14 opposes to and is in contact with all the photosensitive drums 1, and a voltage is applied to the primary transfer rollers 58 (58a, 58b, 58c, and 58d). As a result, primary transfer from the photosensitive drums 1 onto the transfer belt 14 is performed. Application of a voltage to the opposed roller 59 and the secondary transfer roller 69 disposed in the transfer belt 14 causes toner of the transfer belt 14 to be transferred to the recording medium S.
At a time of image formation, the scanner unit 3 selectively exposes the photosensitive drums 1 which are rotated to be uniformly charged by the charge rollers 2. As a result, electrostatic latent images are formed on the photosensitive drums 1, respectively. The latent images are developed by supplying toner from the development rollers 25. Toner images of respective colors are then formed on the photosensitive drums 1. In synchronization with the image formation, the registration roller pair 55 conveys the recording medium S to a secondary transfer position where the opposed roller 59 is in contact with the secondary transfer roller 69 via the transfer belt 14. A transfer bias voltage is applied to the secondary transfer roller 69 for performing secondary transfer of the toner images of respective colors from the transfer belt 14 to the recording medium S. Thus, a color image is formed on the recording medium S. The recording medium S on which the color image has been formed is heated and pressurized by the fixing unit 74 so that the toner images are fixed. Thereafter, the recording medium S is discharged to a discharge portion 75 by a discharge roller 72. The fixing unit 74 is disposed on an upper part of the image forming apparatus 100.
[Drum Cartridge]
The drum cartridges 9 according to the present exemplary embodiment of the present invention will be described below with reference to
The photosensitive drum 1 is disposed in a cleaning frame 27 of the drum cartridge 9 (9Y, 9M, 9C, and 9K) via a drum front bearing 10 and a drum back bearing 11 so as to freely rotate. A drum coupling 16 and a flange are disposed at one end in an axial direction of the photosensitive drum 1.
[Developing Cartridge]
The developing cartridge 4 will be described below with reference to
The developing cartridge 4 includes the development roller (developer carrying member) 25, a toner feed roller (developer supply member) 34, the developing blade 35 for regulating a toner layer on the development roller 25, a toner conveyance member 36, and a developing frame 31 that supports these above units. The development roller 25 is in contact with the photosensitive drum 1, and supplies toner to the surface of the photosensitive drum 1. The toner feed roller 34 is in contact with the development roller 25, and supplies toner to the development roller 25. The developing blade 35 regulates a thickness of the toner layer on the development roller 25.
The developing frame 31 includes a developing chamber 31c having the development roller 25, and a toner storage chamber 31a disposed below the developing chamber 31c. The respective chambers are divided by a partition 31d. Further, the partition 31d has an opening 31b through which toner passes when the toner is conveyed from the toner storage chamber 31a to the developing chamber 31c. Furthermore, the developing frame 31 is provided with an urged portion 31e that is urged by an urging member, not illustrated, of the image forming apparatus 100.
The development roller 25 and the toner feed roller 34 are rotatably supported by bearings, not illustrated. The bearings are provided on both sides, respectively, in an axial direction of the development roller 25 in the developing frame 31. Rotational axes of the development roller 25 and the toner feed roller 34 are parallel with each other.
The toner feed roller 34 includes a toner feed roller shaft 34j and a toner supply unit (developer supply unit) 34c which is an elastic foam layer (sponge layer) covering the toner feed roller shaft 34j. A D-shaped hole of a driving force input member (first driving member) 37 is engaged with a driving input unit 34a having D-shaped cross section provided at one end of the toner feed roller shaft 34j in an axial direction of the toner feed roller shaft 34j. The driving force input member 37 is a coupling into which a driving force is input (see
The development roller 25 includes a development roller shaft 25a and a toner carrying unit (developer carrying portion) 25b which is a rubber layer covering the development roller shaft 25a. The other end of the development roller shaft 25a in the axial direction of the development roller 25 has a D-shaped cross section. A hole having D-shaped cross section of a transmission member (third driving member) 39 (see
The toner conveyance member 36 is disposed in the toner storage chamber 31a of the developing frame 31. The toner conveyance member 36 agitates the stored toner and conveys the toner to the developing chamber 31c via the opening 31b. A distance between a rotational axis of the toner feed roller 34 and a rotational axis of the development roller 25 are determined in such a manner that the toner supply unit 34c is in contact with the toner carrying unit 25b with a predetermined inroad amount. That is, the toner supply unit 34c is in contact with the toner carrying unit 25b in a state that the toner supply unit 34c is compressed between the toner carrying unit 25b and the toner feed roller shaft 34j.
[Mounting of Cartridge]
A configuration where the drum cartridges 9 and the developing cartridges 4 are inserted into the image forming apparatus 100 will be described below with reference to
Upper guide units 103 (103a, 103b, 103c, and 103d) as first main body guide units are disposed on an upper portion of the image forming apparatus 100. Lower guide units 102 (102a, 102b, 102c, and 102d) as second main body guide units are disposed on a lower portion. Each of the upper guide units 103 and each of the lower guide units 102 are configured into a guide shape so as to extend along an insertion direction F of the drum cartridge 9. The drum cartridge 9 is placed on the front side of the lower guide unit 102 in the mounting direction, and the drum cartridge 9 is moved along the upper guide unit 103 and the lower guide 102 toward the insertion direction F. In such a manner, the drum cartridge 9 is inserted into the image forming apparatus 100.
Also in a case where the developing cartridge 4 are inserted, similarly to the drum cartridge 9, the developing cartridge 4 is placed, in a mounting direction, on the front side of upper guide 105 disposed on the upper portion of the image forming apparatus 100 and the front side of lower guide 104 disposed the lower portion of the image forming apparatus 100. The developing cartridge 4 is moved along the upper guide unit 105 and the lower guide unit 104 to the insertion direction F. In such a manner, the developing cartridge 4 is moved along the upper guide unit 105 is inserted into the image forming apparatus 100.
[Driving Force Transmission Configuration in Developing Cartridge]
A driving force transmission mechanism in the developing cartridges 4 will be described with reference to
When the driving force is input to the driving force input member 37, the development roller 25 is rotated to a direction of an arrow B illustrated in
Details of the engaged portion between the driving force transmission portion 34b and the transmission member 38 are illustrated in
The layout of the plurality of ribs 381 on the engagement portion between the toner feed roller 34 and the transmission member 38 will be described below with reference to
The transmission member 38 has the hole 38h that extends to the rotational axis direction of the toner feed roller 34. The other end of the toner feed roller shaft 34j is fitted into the hole 38h. The inner peripheral surface 38a forming the hole 38h has the ribs 381a and 381b, and also the ribs 381c, 381d, and 381e. The ribs 381a and 381b cause the transmission member 38 to be press-fitted (interference-fitted) into the driving force transmission portion 34b. The ribs 381c, 381d, and 381e cause the transmission member 38 to be press-fitted (interference-fitted) into the arc surface 34d. The ribs 381a, 381b, 381c, 381d, and 381e are projections that project from the inner peripheral surface 38a toward the toner feed roller shaft 34j. A projecting direction is indicated by an arrow of a dotted line. The ribs 381a and 381b are in contact with the driving force transmission portion 34b. The ribs 381c, 381d, and 381e are in contact with an arc surface 34d. With such a configuration, the transmission member 38 is fitted into the driving force transmission portion 34b of the toner feed roller shaft 34j without clearance (play) between the transmission member 38 and the toner feed roller shaft 34j in a rotational direction of the toner feed roller shaft 34j. That is, the rib 381b as a driving force reception unit receives a rotational driving force mainly from the driving force transmission portion 34b. However, the rib 381b is pressed against the driving three transmission portion 34b and is in contact with the driving force transmission portion 34b. That is, the rib 381b pressure-contacts with the driving force transmission portion 34b.
In the present exemplary embodiment, in a case where a shaft diameter of the toner feed roller 34 is φ7, the inner peripheral surface 38a of the transmission member 38 has a gap of about 25 μm with respect to the driving force transmission portion 34b and the arc surface 34d of the toner feed roller 34. Because of the ribs 381 having a height of about 40 μm, play in the gap can be suppressed, and play between the toner feed roller shall 34j and the transmission member 38 in the rotational direction of the toner feed roller shaft 34j can be thus suppressed.
If the ribs 381 are not provided, the transmission member 38 is fitted into the driving force transmission portion 34b with play in the rotational direction of the toner feed roller shaft 34j due to a gap between the driving force transmission portion 34b and the transmission member 38. In a case where play is present between the driving force transmission portion 34b and the transmission member 38, a driving force is transmitted after the toner feed roller 34 is driven and the driving force transmission portion 34b rotates by an amount of play and butts against the transmission member 38. Therefore, in a driving state, there is play on an upstream side in the rotational direction before a portion where the driving force transmission portion 34b butts against the transmission member 38. If a load change occurs in the toner feed roller 34 in a state that play is present, a phase might shift within a range of the play in the rotational direction of the driving force transmission portion 34b and the transmission member 38. This phase shift causes a fluctuation of the peripheral speed of the toner feed roller 34 in N rotational periods (N is a natural number), in the development roller 25 as a driving transmission destination.
On the other hand, in a case where the ribs 381 are provided, play is not present in the rotational direction of the toner feed roller shaft 34j. For this reason, a phase shift can be suppressed in the rotational direction of the driving force transmission portion 34b and the transmission member 38. Therefore, a fluctuation of the peripheral speed of the toner feed roller 34 in the N rotational periods can be suppressed in the development roller 25. If a fluctuation of the peripheral speed of the development roller 25 is suppressed, images irregularities can be suppressed.
The toner supply unit 34c of the toner feed roller 34 is a flexible member. The toner supply unit 34c is in contact with and makes a predetermined amount of inroads into the development roller 25. For this reason, the toner supply unit 34c is held so as to be partially pressed to the development roller 25 and compressed. Therefore, during the rotation of the toner feed roller 34, an outer shape of the toner supply unit 34c is uniform until the compressed part of the toner supply unit 34c returns to an original shape. Accordingly, the rotational load of the toner feed roller 34 easily fluctuates. The transmission member 38 is thus fitted into the toner feed roller 34, where the rotational load easily fluctuates in the above described manner, without play in the rotational direction of the toner feed roller shaft 34j. With such a configuration, a fluctuation of the peripheral speed of the development roller 25 can be effectively suppressed. Therefore, image irregularities caused by a fluctuation of the peripheral speed of the development roller 25 can be suppressed.
Since the ribs 381 are provided, in a case where the transmission member 38 is mounted to the toner feed roller shaft 34j, the transmission member 38 has to be press-fitted into the driving force transmission portion 34b.
In the present exemplary embodiment, the driving force input member 37 is fitted into the driving input unit 34a of the toner feed roller shaft 34j such that play is present in the rotational direction of the toner feed roller shaft 34j. Further, the transmission member 39 is fitted into the development roller shaft 25a such that play is present in a rotational direction of the development roller shaft 25a.
However, in addition to the above described form, the driving force input member 37 can be fitted into the driving input unit 34a of the toner feed roller shaft 34j without play in the rotational direction of the toner feed roller shaft 34j. Similarly, in addition to the above described form, the transmission member 39 can be fitted into the development roller shaft 25a without play in the rotational direction of the development roller shaft 25a. In order to fit the members without play, ribs similar to the ribs 381 can be provided to the driving force input member 37 and the transmission member 39.
A configuration, as described above, that the transmission member 38 is mounted to the toner feed roller shaft 34j without play is a configuration A. A configuration that the driving force input member 37 is mounted to the toner feed roller shaft 34j without play is a configuration B. A configuration that the driving force input member 37 is mounted to the development roller shaft 25a without play is a configuration C. A suppressing effect on a fluctuation of the peripheral speed of the development roller 25 in the configurations A, B, and C will be described.
According to a study by Inventors, the configuration A is the most effective in suppressing a fluctuation of the peripheral speed of the development roller 25.
Further, the ribs 381c, 381d, and 381e protrude toward a shaft center of the toner feed roller 34. As a result, misalignment of the shaft center on the engagement portion between the toner feed roller 34 and the transmission member 38 can be reduced. This configuration is more effective for suppressing an image irregularity.
As a method for fitting the transmission member 38 into the toner feed roller shaft 34j without play in the rotational direction of the toner feed roller shaft 34j, the configuration with the plurality of ribs 381 has been described. However, methods other than the formation of the ribs can produce a similar effect. For example, the inner peripheral surface 38a forming the hole 38h in the transmission member 38 can be configured to be in contact with an entire periphery of the toner feed roller shaft 34j. Further, a different member can be used to fill the gap between the inner peripheral surface 38a forming the hole 38h of the transmission member 38 and the toner feed roller shaft 34j, to eliminate play in the rotational direction. Further, in the present exemplary embodiment, the developing cartridge 4 without the photosensitive drum 1 has been described as the developing apparatus, but a cartridge having the photosensitive drawn 1 besides the development roller 25 and the toner feed roller 34 can be used as the developing apparatus.
Layouts of the ribs 381 at the engagement portion between the toner feed roller 34 and the transmission member 38 will be described below with reference to
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-166002, filed Aug. 30, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-166002 | Aug 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2968504 | Hansen | Jan 1961 | A |
3130990 | Leitmann | Apr 1964 | A |
3329452 | Ammon | Jul 1967 | A |
3961855 | Basile | Jun 1976 | A |
6496667 | Shiratori | Dec 2002 | B2 |
8756787 | Zimmermann | Jun 2014 | B2 |
9057976 | Yoshida | Jun 2015 | B2 |
20050111882 | Sudo | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2986530 | Jun 2014 | CA |
2933685 | Oct 2015 | EP |
11-303972 | Dec 1999 | JP |
2005-069239 | Mar 2005 | JP |
04365150 | Nov 2009 | JP |
2012-229723 | Nov 2012 | JP |
2014-134787 | Jul 2014 | JP |
10-2014-0043412 | Apr 2014 | KR |
Entry |
---|
English machine-translation of JP 2012-229723 (cited in IDS dated Jul. 23, 2018) (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20190064731 A1 | Feb 2019 | US |