This application claims priority from Japanese Patent Applications No. 2014-000598 filed Jan. 6, 2014 and No. 2014-000599 filed Jan. 6, 2014. The entire contents of these priority applications are incorporated herein by reference.
The present invention relates to a developing cartridge mountable in an image forming apparatus of an electrophotographic type.
One example of a developing cartridge mountable in an electrophotographic image forming apparatus has a developing roller for carrying toner. This developing cartridge is first mounted in a drum cartridge possessing a photosensitive drum, before being mounted in the image forming apparatus.
Japanese Patent Application Publication No. 2011-39561 has proposed a developing cartridge which is provided with a drive-force receiving developing gear. The drive-force receiving developing gear receives an inputted drive force for driving the developing roller and the like.
In the developing cartridge proposed in the above-described publication, two contact-receiving parts having a general L-shape in cross section are provided on the outer endface of the drive-force receiving developing gear. Accordingly, when an advancing/retracting member inside the main casing is advanced and fitted into the drive-force receiving developing gear, engaging parts on the advancing/retracting member sometimes catch on the contact-receiving parts of the drive-force receiving developing gear.
It is conceivable to increase the size of the drive-force receiving developing gear, in order to increase the rigidity of the drive-force receiving developing gear. However, increasing the size of the drive-force receiving developing gear would require a larger amount of resin material for molding the gear. This could lead to an increase in the production costs for the developing cartridge.
In view of the foregoing, it is an object of the present invention to provide a developing cartridge capable of smoothly receiving a drive force from outside of the developing cartridge.
It is another object of the present invention to provide a developing cartridge capable of suppressing an increase in production costs.
In order to attain the above and other objects, the invention provides a developing cartridge including: an enclosure; a developing roller; and a drive-force receiving member. The enclosure may be configured to accommodate developer therein and may have a support part. The drive-force receiving member may be configured to receive a drive force from an outside of the developing cartridge and may be supported by the support part so as to be rotatable about a rotational axis relative to the support part. The drive-force receiving member may include: a first cylindrical part; a second cylindrical part; and a receiving part. The first cylindrical part may have a gear part configured to transmit a drive force to the developing roller. The second cylindrical part may be disposed radially inward of the first cylindrical part with a gap being formed between the first cylindrical part and the second cylindrical part. The second cylindrical part may be in contact with the support part. The receiving part may be configured to receive a drive force from the outside of the developing cartridge. The receiving part may be disposed outward of both of the first cylindrical part and the second cylindrical part in an axial direction in which the rotational axis extends. The receiving part may have an internal space that is in communication with the gap formed between the first cylindrical part and the second cylindrical part. The receiving part may be disposed such that the receiving part overlaps the gap between the first cylindrical part and the second cylindrical part when the receiving part is viewed in the axial direction. The receiving part may have an outward end in the axial direction, at least part of the outward end of the receiving part being closed.
According to another aspect, the present invention provides a developing cartridge including: an enclosure; a developing roller; and a drive-force receiving member. The enclosure may be configured to accommodate developer therein. The drive-force receiving member may include a receiving part and a gear part. The receiving part may have a receiving surface configured to receive a drive force from a drive source disposed in an outside of the developing cartridge. The gear part may be configured to transmit a drive force to the developing roller. The drive-force receiving member may be configured to rotate about a rotational axis. A radial direction may be defined orthogonal to the rotational axis. The receiving surface may include a first radial end farthest from the rotational axis in the radial direction and a second radial end closest to the rotational axis in the radial direction. A first distance may be defined as a distance between the first radial end and the second radial end of the receiving surface in a direction orthogonal to the axial direction. A second distance may be defined as a distance between the rotational axis and the first radial end of the receiving surface in the radial direction. The first distance may be smaller than or equal to ½ of the second distance.
The particular features and advantages of the invention as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
A developing cartridge according to embodiments of the invention will be described while referring to the accompanying drawings wherein like parts and components are designated by the same reference numerals to avoid duplicating description.
As shown in
In the following description, directions will be specified based on the state of the developing cartridge 1 disposed in a horizontal orientation. Thus, the upper side in
The developing roller 2 is rotatably supported to a rear end portion of the developing cartridge 1. The developing roller 2 includes a developing-roller shaft 2A and a developing-roller body 2B.
The developing-roller shaft 2A extends in leftward/rightward direction and is generally columnar. The developing-roller shaft 2A is made from metal.
The developing-roller body 2B extends in leftward/rightward direction and is generally cylindrical. The developing-roller body 2B is made from electrically conductive rubber. The developing-roller body 2B does not cover left and right end portions of the developing-roller shaft 2A, but covers an intermediate portion thereof.
The supply roller 3 is positioned frontward and downward of the developing roller 2 and is rotatably supported to the developing cartridge 1. The supply roller 3 includes a supply-roller shaft 3A and a supply-roller body 3B.
The supply-roller shaft 3A extends in leftward/rightward direction and is generally columnar. The supply-roller shaft 3A is made from metal.
The supply-roller body 3B extends in leftward/rightward direction and is generally cylindrical. The supply-roller shaft 3A is made from electrically conductive sponge material. The supply-roller body 3B does not cover left and right end portions of the supply-roller shaft 3A, but covers an intermediate portion thereof.
The supply-roller body 3B is in contact with a front lower portion of the developing-roller body 2B.
The thickness regulation blade 4 is positioned frontward and upward of the developing roller 2, and is in contact with a front end portion of the developing roller 2.
The toner accommodating portion 5 is positioned frontward of the supply roller 3 and the thickness regulation blade 4. The toner accommodating portion 5 is adapted to accommodate toner as an example of the developer. The toner accommodating portion 5 includes an agitator 6.
The agitator 6 is rotatably supported in the toner accommodating portion 5.
As shown in
The image forming apparatus 11 is an electro-photographic type monochromatic printer, and includes an apparatus body 12 as an example of an outside of a developing cartridge, a process cartridge 13, a scanner unit 14, and a fixing unit 15.
The apparatus body 12 is generally box-shaped, and includes an opening portion 16, a front cover 17, a sheet supply tray 18, and a discharge tray 19.
The opening portion 16 is positioned at a front end portion of the apparatus body 12. The opening portion 16 provides communication between an interior and exterior of the apparatus body 12 in the front-rear direction for allowing the process cartridge 13 to pass through the opening portion 16.
The front cover 17 is positioned at a front end portion of the apparatus body 12, and is generally flat plate shaped. The front cover 17 extends in vertical direction and has a lower end portion pivotally supported to a front wall of the apparatus body 12. The front cover 17 is adapted to open and close the opening portion 16.
The sheet supply tray 18 is positioned at a bottom portion of the apparatus body 12. The sheet supply tray 18 is adapted to accommodate therein a stack of sheets P.
The discharge tray 19 is positioned at a rear half portion of a top wall of the apparatus body 12. The discharge tray 19 is recessed downward from a top surface of the apparatus body 12 so as to receive the sheet P.
The process cartridge 13 is accommodated at a vertically center portion of the apparatus body 12, and is attachable to and detachable from the apparatus body 12. The process cartridge 13 includes a drum cartridge 20 and the developing cartridge 1.
The drum cartridge 20 includes a photosensitive drum 21, a scorotron charger 22 and a transfer roller 23.
The photosensitive drum 21 is rotatably supported to a rear end portion of the drum cartridge 20.
The scorotron charger 22 is positioned rearward and upward of the photosensitive drum 21, and is spaced away from the photosensitive drum 21.
The transfer roller 23 is positioned below the photosensitive drum 21, and is in contact with a lower end portion of the photosensitive drum 21.
The developing cartridge 1 is attached to the drum cartridge 20 such that the developing cartridge 1 is positioned frontward of the photosensitive drum 21 and the developing roller 2 is in contact with a front end portion of the photosensitive drum 21.
The scanner unit 14 is positioned above the process cartridge 13. The scanner unit 14 is adapted to emit laser beam to the photosensitive drum 21 on a basis of image data.
The fixing unit 15 is positioned rearward of the process cartridge 13. The fixing unit 15 includes a heat roller 24 and a pressure roller 25 in pressure contact with a rear lower portion of the heat roller 24.
Upon start of the image forming operation in the image forming apparatus 11, the scorotron charger 22 uniformly charge a surface of the photosensitive drum 21, and the surface of the photosensitive drum 21 is exposed to light by the scanner unit 14. Thus, an electrostatic latent image based on the image data is formed on the surface of the photosensitive drum 21.
Further, the agitator 6 agitates toner in the toner accommodating portion 5, and supplies the toner to the supply roller 3. The supply roller 3 supplies toner from the toner accommodating portion 5 to the developing roller 2. At this time, toner is triboelectrically charged with positive polarity at a position between the developing roller 2 and the supply roller 3 and carried on the developing roller 2. The thickness regulation blade 4 regulates a thickness of a toner layer carried on the developing roller 2 into a uniform thickness.
The toner carried on the developing roller 2 is supplied to the surface of the photosensitive drum 21. Thus, a toner image corresponding to the electrostatic latent image is carried on the surface of the photosensitive drum 21.
Each sheet P is supplied to a portion between the photosensitive drum 21 and the transfer roller 23 at a prescribed timing by the rotation of various rollers. The toner image on the surface of the photosensitive drum 21 is transferred onto the sheet P when the sheet passes through the portion between the photosensitive drum 21 and the transfer roller 23.
Thereafter, the sheet P is heated and pressed when the sheet passes through a portion between the heat roller 24 and pressure roller 25. Thus, the toner image on the sheet P is thermally fixed to the sheet P. Then, the sheet P is discharged onto the discharge tray 19.
As shown in
As shown in
The side walls 35 are arranged with one on each of the left and right ends of the developing-cartridge frame 31. The side walls 35 are plate-shaped and have a general rectangular shape in a side view that is elongated in the front-rear and vertical directions.
The bottom wall 36 has a general plate shape that is elongated in the front-rear and left-right directions. The left and right ends of the bottom wall 36 are formed continuously with the bottom edges of the corresponding side walls 35.
The front wall 37 has a general plate shape that is elongated in the vertical and left-right directions. The bottom edge of the front wall 37 is formed continuously with the front edge of the bottom wall 36. The left and right edges of the front wall 37 are formed continuously with the front edges on the corresponding side walls 35.
The top wall 38 is formed in a general plate shape that is elongated in the front-rear and left-right directions. The front edge of the top wall 38 is formed continuously with the top edge of the front wall 37. The left and right edges of the top wall 38 are formed continuously with the top edges of the corresponding side walls 35.
As shown in
The coupling support boss 39 is disposed in the upper front corner of the bearing member 32. The coupling support boss 39 has a general cylindrical shape and protrudes leftward from the left surface of the bearing member 32.
As shown in
The developing coupling 41 is disposed near the rear end on the left side of the developing cartridge 1. The developing coupling 41 has a general columnar shape that is elongated in the left-right direction. The rear portion of the developing coupling 41 overlaps the developing-roller body 2B of the developing roller 2 in a left-right projection. In other words, the rear portion of the developing coupling 41 overlaps the developing-roller body 2B when the developing coupling 41 is viewed in the left-right direction. As shown in
The first cylindrical part 50 constitutes the approximate right half of the developing coupling 41. The first cylindrical part 50 has a general cylindrical shape that is elongated in the left-right direction. The central axis A of the first cylindrical part 50 is also the central axis of the developing coupling 41. The first cylindrical part 50 has a gear-tooth part 51.
The gear-tooth part 51 is disposed around the entire outer circumference of the first cylindrical part 50. The gear-tooth part 51 includes gear teeth.
As shown in
As shown in
The base part 52A is disposed on the right end of the coupling part 52 and constitutes the right wall of the same. The base part 52A has a disc-like shape that is aligned with radial directions of the coupling part 52. The right surface of the base part 52A is formed continuously with the left edges of the first cylindrical part 50 and second cylindrical part 53. Thus, the base part 52A closes the left sides of the first cylindrical part 50 and second cylindrical part 53.
The third cylindrical part 52B has a general cylindrical shape that extends leftward from the peripheral edge of the base part 52A and constitutes the circumferential wall of the coupling part 52. The outer diameter of the third cylindrical part 52B is smaller than the diameter of the addendum circle E3 described by the gear teeth of the gear-tooth part 51. The inner diameter of the third cylindrical part 52B is larger than the outer diameter of the second cylindrical part 53. Specifically, the outer diameter D1 of the third cylindrical part 52B is 19.6 mm, and the inner diameter D2 of the same is 16.05 mm.
The engaging parts 54 are disposed on opposing sides of the central axis A along a radial direction of the coupling part 52. The engaging parts 54 have a general trapezoidal shape in a side view that protrudes radially inward from the inner circumferential surface of the coupling part 52 and that extends along the circumferential direction of the coupling part 52. Each of the engaging parts 54 has an upstream wall 55 as an example of the first wall, a downstream wall 56 as an example of the third wall, an inner circumferential wall 57 as an example of the second wall, and a left wall 58 as an example of the fourth wall.
The upstream wall 55 is provided on the upstream end of the corresponding engaging part 54 with respect to the clockwise direction in a left side view. The upstream wall 55 extends from the inner peripheral surface of the third cylindrical part 52B toward inward in an orthogonal direction. The orthogonal direction is orthogonal to an axial direction, in which the central axis A of the coupling part 52 extends, and does not pass through the central axis A of the coupling part 52. The upstream wall 55 is directed in the leftward/rightward direction. The right edge of the upstream wall 55 is formed continuously with the base part 52A. The left edge of the upstream wall 55 is beveled such that the surface of the left edge of the upstream wall 55 slopes toward downstream in the clockwise direction of a left side view while proceeding to the left.
The upstream wall 55 has an engaging surface 55A as an example of the receiving surface. The engaging surface 55A is the surface of part of the upstream wall 55 that is disposed on the upstream end in the clockwise direction of a left side view. In other words, the engaging surface 55A is the surface of a main part of the upstream wall 55 that is other than the beveled left edge thereof. The engaging surface 55A is directed in the leftward/rightward direction. As shown in
Further, the outer radial edge E1 of the engaging surface 55A is positioned radially inward of the addendum circle E3 described by the gear teeth formed on the gear-tooth part 51, and radially outward of an inner circumferential surface E4 of the second cylindrical part 53. The inner radial edge E2 of the engaging surface 55A is disposed radially inward of the inner circumferential surface E4 formed on the second cylindrical part 53. Hence, the inner radial edge E2 of the engaging surface 55A is positioned further inward radially than the outer circumferential surface of the coupling support boss 39.
The downstream wall 56 is disposed on the end of the respective engaging parts 54 downstream in the clockwise direction of a left side view. The downstream wall 56 extends from the inner circumferential surface of the third cylindrical part 52B toward inward substantially in the radial direction of the coupling part 52. The downstream wall 56 is directed in the leftward/rightward direction. The right edge of the downstream wall 56 is formed continuously with the base part 52A.
The left edge of the downstream wall 56 is positioned further rightward than the left edge of the upstream wall 55. The left edge of the downstream wall 56 is beveled such that the surface of the left edge of the downstream wall 56 slopes toward upstream in the clockwise direction of a left side view while proceeding to the left.
The inner circumferential wall 57 is provided on the radial inside of the engaging part 54. The inner circumferential wall 57 is separated in a direction radially inward from the third cylindrical part 52B. The inner circumferential wall 57 has an arc shape centered on the central axis A of the coupling part 52. The end of the inner circumferential wall 57 upstream in the clockwise direction of a left side view is formed continuously with the inside end of the upstream wall 55. An inner diameter D6 of the inner circumferential walls 57, that is, the distance between the opposing inner circumferential walls 57, is specifically 10.55 mm in the embodiment. The end of the inner circumferential wall 57 that is downstream in the clockwise direction of a left side view is formed continuously with the inside end of the downstream wall 56. The inner circumferential wall 57 is directed in the leftward/rightward direction. The right edge of the inner circumferential wall 57 is formed continuously with the base part 52A. The left edge of the inner circumferential wall 57 is beveled such that the surface of the left edge of the inner circumferential wall 57 slopes toward radially outward in the radial direction of the coupling part 52 while proceeding to the left.
The left wall 58 is disposed on the left end of the corresponding engaging part 54. The left wall 58 is elongated in the circumferential direction of the coupling part 52, with its width being aligned with the radial directions of the coupling part 52. The upstream end of the left wall 58 in the clockwise direction of a left side view is formed continuously with the left end of the upstream wall 55. The downstream end of the left wall 58 in the clockwise direction of a left side view is formed continuously with the left end of the downstream wall 56. The inner radial end of the left wall 58 is formed continuously with the left end of the inner circumferential wall 57. The outer radial end of the left wall 58 is formed continuously with the inner peripheral surface of the third cylindrical part 52B. The left wall 58 slopes rightward along the clockwise direction of a left side view. The left wall 58 closes the left end of the engaging part 54 and, along with the upstream wall 55, downstream wall 56, inner circumferential wall 57, and third cylindrical part 52B, defines an internal space 59 of the corresponding engaging part 54. The internal spaces 59 of both engaging parts 54 penetrate the base part 52A so as to connect with the gap 60 formed between the second cylindrical part 53 and the first cylindrical part 50.
As shown in
As shown in
The supply gear 43 is disposed below the developing coupling 41. The supply gear 43 has a disc-like shape with substantial thickness in the left-right direction. Gear teeth are provided around the entire circumference of the supply gear 43. The supply gear 43 is supported on the left end of the supply-roller shaft 3A so as to be incapable of rotating relative to the same. The supply gear 43 is engaged with the gear-tooth part 51 of the developing coupling 41 from the bottom thereof.
The idle gear 44 is disposed on the front side of the developing coupling 41. The idle gear 44 is rotatably supported on the left side wall 35 of the developing-cartridge frame 31. The idle gear 44 is integrally provided with a large-diameter gear 44A, and a small-diameter gear 44B.
The large-diameter gear 44A constitutes the left portion of the idle gear 44. The large-diameter gear 44A has a disc-like shape with substantial thickness in the left-right direction. Gear teeth are provided around the entire circumference of the large-diameter gear 44A. The large-diameter gear 44A is engaged with the gear-tooth part 51 of the developing coupling 41 from the front side thereof.
The small-diameter gear 44B has a general columnar shape that extends rightward from the right surface of the large-diameter gear 44A. The small-diameter gear 44B shares a central axis with the large-diameter gear 44A. The small-diameter gear 44B has a smaller outer diameter than that of the large-diameter gear 44A. Gear teeth are provided around the entire circumference of the small-diameter gear 44B.
The agitator gear 45 is disposed on the lower front side of the idle gear 44. The agitator gear 45 has a first gear part 45A, and a second gear part 45B.
The first gear part 45A constitutes the right half of the agitator gear 45. The first gear part 45A has a disc-like shape with substantial thickness in the left-right direction. Gear teeth are provided around the entire circumference of the first gear part 45A. The first gear part 45A is engaged with the small-diameter gear 44B of the idle gear 44 from the front side thereof.
The second gear part 45B constitutes the left half of the agitator gear 45. The second gear part 45B has a disc-like shape with substantial thickness in the left-right direction and overlaps the left surface of the first gear part 45A. The second gear part 45B shares a central axis with the first gear part 45A. The second gear part 45B has a smaller outer diameter than that of the first gear part 45A. Gear teeth are provided around the entire circumference of the second gear part 45B.
The sensor gear 46 is disposed on the front side of the agitator gear 45. The sensor gear 46 has a disc-like shape with substantial thickness in the left-right direction. The sensor gear 46 is a partially-toothed gear having gear teeth on only a portion of its circumferential surface. When the developing cartridge 1 is first mounted in the apparatus body 12, the sensor gear 46 engages with the second gear part 45B of the agitator gear 45 and rotates until becoming disengaged from the second gear part 45B and coming to a halt. By detecting this rotation of the sensor gear 46, the apparatus body 12 can determine that the developing cartridge 1 has not been used.
As shown in
The engaging part 62 is disposed on the right end of the apparatus-side coupling 61. The engaging part 62 has a general columnar shape and protrudes rightward from the right end of the apparatus-side coupling 61. The engaging part 62 has a pair of engaging protrusions 62A.
The engaging protrusions 62A are columnar-shaped and have a general rectangular shape in a side view. The engaging protrusions 62A extend radially outward from diametrically opposing side surfaces of the engaging part 62.
After mounting the developing cartridge 1 in the apparatus body 12, the operator closes the front cover 17. As the front cover 17 is closed, the apparatus-side coupling 61 advances toward the developing cartridge 1. At this time, the engaging part 62 of the apparatus-side coupling 61 becomes fitted into the coupling part 52 of the developing coupling 41, as shown in
Since the left ends of the engaging parts 54 in the developing coupling 41 are closed by the corresponding left walls 58, the engaging protrusions 62A of the apparatus-side coupling 61 do not catch in the internal spaces 59 of the engaging parts 54, but rather are guided along the sloped surfaces of the left walls 58 in the clockwise direction of a left side view as the engaging part 62 is fitted into the coupling part 52. Consequently, the engaging protrusions 62A come face to face with the corresponding engaging parts 54 of the developing coupling 41 in the circumferential direction.
When the motor 63 in the apparatus body 12 outputs a drive force for rotating the apparatus-side coupling 61 clockwise in a left side view, the engaging protrusions 62A of the apparatus-side coupling 61 contact the corresponding engaging surfaces 55A of the developing coupling 41 from the upstream side in the clockwise direction of a left side view.
As the apparatus-side coupling 61 rotates in this state, the developing coupling 41 rotates clockwise in a left side view together with the apparatus-side coupling 61, as illustrated in
When the developing coupling 41 rotates, the developing gear 42, supply gear 43, and idle gear 44 rotate counterclockwise in a left side view. Consequently, the developing roller 2 and supply roller 3 also rotate counterclockwise in a left side view.
Further, as the idle gear 44 rotates, the agitator gear 45 rotates clockwise in a left side view. Consequently, the agitator 6 also rotates clockwise in a left side view.
(1) In the developing cartridge 1 of the embodiment described above, as shown in
The gap 60 formed between the first cylindrical part 50 having the gear-tooth part 51 and the second cylindrical part 53 positioned radially inward of and apart from the corresponding first cylindrical part 50 is connected to the internal spaces 59 in the engaging parts 54.
Accordingly, a die having a continuous shape that corresponds to the gap 60 between the first cylindrical part 50 and second cylindrical part 53, and the internal spaces 59 in the engaging parts 54 can be used to mold the first cylindrical part 50 and second cylindrical part 53 individually with precision, and to mold the engaging parts 54 so as to be shaped with closed left ends. Thus, this arrangement enables the developing coupling 41 to be molded efficiently.
(2) As shown in
Here, the second cylindrical part 53 has high rigidity in order to rotate the developing coupling 41 with stability. The gear-tooth part 51 also has high rigidity so as to be able to transmit a drive force reliably. Accordingly, by disposing the engaging parts 54 between the second cylindrical part 53 and gear-tooth part 51, both of which have high rigidity, this arrangement ensures the overall rigidity of the developing coupling 41. Consequently, the developing coupling 41 can stably receive a drive force.
(3) As shown in
(4) As shown in
With this arrangement, it is possible to increase the outer diameter of the coupling support boss 39 relative to the outer diameter of the developing coupling 41 in order to ensure the rigidity of the coupling support boss 39. Thus, this configuration ensures that the developing coupling 41 is rotated with stability.
(5) As shown in
(6) The distance D4 between the outer radial edge E1 and inner radial edge E2 of each engaging surface 55A is set no greater than ½ of the distance D5 between the outer radial edge E1 of the engaging surface 55A and the central axis A of the coupling part 52, as illustrated in
Thus, the above configuration suppresses an increase in the production costs for the developing cartridge 1.
(7) As shown in
(8) As shown in
(9) In the developing cartridge 1 of the embodiment, the distance D4 between the outer radial edge E1 and inner radial edge E2 of each engaging surface 55A is set between 2.8 mm and 2.95 mm This setting ensures that the engaging surfaces 55A are sufficiently wide, while suppressing an increase in the quantity of resin material used for forming the engaging parts 54. Thus, this construction ensures that the engaging surfaces 55A stably receive the drive force, while suppressing an increase in production costs for the developing cartridge 1.
The left walls 58 of the engaging parts 54 in the embodiment described above may be configured to close the left ends of the respective engaging parts 54 completely or only partially. When the left walls 58 close the left ends of the engaging parts 54 partially, the left walls 58 close enough of the left ends of the engaging parts 54 to prevent the engaging protrusions 62A of the apparatus-side coupling 61 from getting caught in the internal spaces 59 of the engaging parts 54. More specifically, it is preferable that the left walls 58 should close at least half of the internal spaces 59 when viewed along the left-right direction.
While the invention has been described in detail with reference to the embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-000598 | Jan 2014 | JP | national |
2014-000599 | Jan 2014 | JP | national |