The present invention relates to a developing device that mounts in an image-forming device such as a color printer.
An electrophotographic printer known in the art has developing devices detachably mounted therein. Each developing device includes a developing-device frame, and a developing roller and a supply roller supported in the developing-device frame.
One such developing device that has been proposed is a developer cartridge that includes a cartridge frame, a developing roller rotatably supported in the cartridge frame, and a supply roller rotatably supported in the cartridge frame while confronting and contacting the developing roller. The developer cartridge also includes grooves formed one each in the left and right side walls of the cartridge frame for receiving ends of a rotational shaft provided in the developing roller, and through-holes formed in the left and right side walls for inserting ends of a rotational shaft provided in the supply roller. The groove and through-hole formed in the left side wall are in communication.
However, the cartridge frame in this conventional developer cartridge does not have sufficient strength because the groove and through-hole formed in the left side wall are in communication. Consequently, it is not always possible to position the supply roller and the developing roller supported in the cartridge frame relative to each other with sufficient precision, leading to inconsistent image-forming results.
Therefore, it is an object of the present invention to provide a developing device capable of enhancing the strength of the outer case constituting the developing device and capable of improving precision in positioning a developer-carrying member and developer-supplying member relative to each other. It is another object of the present invention to provide a method of manufacturing such a developing device.
In order to attain the above and other objects, the invention provides a developing device. A developing device includes a developing agent member, a supply member, a housing, a first bridge portion, and a second bridge portion. The developing agent member has a first rotational shaft extending in a first direction and is configured to carry developer. The supply member has: a main body extending in the first direction; and a second rotational shaft extending in the first direction, the main body contacts the developing agent member, and is configured to supply the developer to the developing agent member. The main body covers the second rotational shaft and has an adhering region in which the main body is adhesively fixed to the second rotational shaft. A length of the adhering region in the first direction is shorter than a length of the main body in the first direction. The housing accommodates the developer, and includes a first wall and a second wall opposed with each other in the first direction. The first wall is formed with a first opening and a second opening. The second wall is formed with a third opening and a fourth opening. The first bridge portion separates the first opening and the second opening in the first wall. The second bridge portion separates the third opening and the fourth opening in the second wall. When projected in the first direction, the first rotational shaft is disposed in the first opening and the second rotational shaft is disposed in the second opening. When projected in the first direction, the first rotational shaft is disposed in the third opening and the second rotational shaft is disposed in the fourth opening.
The particular features and advantages of the invention as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
As shown in
In the following description, directions with respect to the printer 1 and developer cartridges 23 (described later) will correspond to the directions of the arrows indicated in the drawings and will assume that the printer 1 and the developer cartridges 23 are in a level orientation. In addition, the left-right direction will be equivalent to the width direction.
Specifically, the vertical and front-rear directions of the printer 1 differ from the vertical and front-rear directions of the developer cartridges 23. The developer cartridges 23 are mounted in the printer 1 and drum cartridges 22 so that their front side faces the upper front side of the printer 1 and their rear side faces the bottom rear side of the printer 1.
The printer 1 includes a main casing 2. Four photosensitive drums 3 are arranged inside the main casing 2 parallel to each other and juxtaposed in the front-rear direction. The four photosensitive drums 3 are differentiated according to the colors (black, yellow, magenta, and cyan) of toner images.
Disposed in opposition to each photosensitive drum 3 are a Scorotron charger 4, an LED unit 5, and a developing roller 6.
The surfaces of the photosensitive drums 3 are uniformly charged by the corresponding Scorotron chargers 4 and are subsequently exposed to light emitted by the corresponding LED units 5 based on image data, forming electrostatic latent images on the surfaces of the respective photosensitive drums 3. Toner carried on the developing rollers 6 is supplied to the corresponding latent images, producing visible toner images on the surfaces of the photosensitive drums 3.
Sheets P of a paper are accommodated in a paper cassette 7 inside the main casing 2. Various rollers are provided for supplying the sheets P from the paper cassette 7 to a conveying belt 8.
The conveying belt 8 is disposed between the photosensitive drums 3, and transfer rollers 9 disposed at positions confronting the respective photosensitive drums 3. A transfer bias is applied to the transfer roller 9 for sequentially transferring the toner images carried on the photosensitive drums 3 onto the sheet P so that the images are superimposed.
After toner images in the four colors have been transferred onto the sheet P, the sheet P is conveyed to a fixing unit 10. The fixing unit 10 fixes the toner images to the sheet P with heat. Various rollers are provided for subsequently discharging the sheet P into a discharge tray 11.
The printer 1 is provided with four process cartridges 21 corresponding to the four printing colors.
The process cartridges 21 are detachably mounted in the main casing 2 and are arranged parallel to one another and juxtaposed in the front-rear direction.
A top cover 49 is provided in the top wall of the main casing 2 and can be opened and closed. The process cartridges 21 can be mounted in or removed from the main casing 2 by opening the top cover 49.
Each process cartridge 21 includes a drum cartridge 22 detachably mounted in the main casing 2, and a developer cartridge 23 detachably mounted in the drum cartridge 22.
(1) Drum Cartridges
The drum cartridge 22 is configured of a drum frame 24. The drum frame 24 further includes a drum support part 25, and a developer-cartridge-accommodating part 26.
The drum support part 25 constitutes the lower rear side of the drum frame 24 and functions to support the corresponding photosensitive drum 3, the Scorotron charger 4, and a drum cleaning roller 15.
The photosensitive drums 3 are substantially cylindrical in shape and elongated in the left-right direction. The photosensitive drums 3 are rotatably supported in bottom ends of the respective drum support parts 25 and exposed through openings formed in the bottoms of the same. The Scorotron chargers 4 are disposed so as to confront the corresponding photosensitive drums 3 from a position diagonally above and rearward therefrom, but are separated from the same. The drum cleaning rollers 15 are disposed on the rear side of their corresponding photosensitive drums 3, confronting and contacting the same.
The developer-cartridge-accommodating part 26 of each drum frame 24 is provided above and forward from the drum support part 25 and is formed with an opening on the top and rear sides to allow mounting and removal of the corresponding developer cartridge 23.
(2) Developer Cartridges
As shown in
(2-1) Lower Frame
As shown in
The left and right side walls 34 and 35 have a generally flat plate shape. First contact parts 56 are formed on the front portion of the left and right side walls 34 and 35, and first openings 27 are formed in the rear portion of the left and right side walls 34 and 35.
Each of the first contact parts 56 has a generally flat plate shape. The first contact parts 56 are respectively provided on the top edges of the left and right side walls 34 and 35 and extend continuously outward from the top edges in corresponding left and right directions.
As shown in
A bridge part 33 is also provided on each of the left and right side walls 34 and 35 (see
As shown in
The exposing holes 29 are generally rectangular in a side view. The sides of the exposing holes 29 are formed longer than the diameter of left and right exposed parts 80 and 81 of a supply roller shaft 18 (described later). In the embodiment, the supply roller shaft 18 inserted in the penetration regions of the side walls 34 and 35. When projected in the left-right direction, the supply roller shaft 18 is disposed in the exposing holes 29.
As shown in
As shown in
A toner fill hole 98 is formed in the right side wall 35. The toner fill hole 98 is generally circular in a side view and is formed in a front-side portion of the right side wall 35.
As shown in
The curved wall 40 has a general arc shape that follows the rotational path of an agitator 12 (described later).
The bent wall 41 has an upward bend formed at a midpoint in the front-rear direction. More specifically, beginning from its rear edge, the bent wall 41 slopes upward toward the front from the front edge of the curved wall 40 and subsequently bends so as to slope downward toward the front.
The arc-shaped wall 42 has a general arc shape that follows the rotational path of a supply roller 13 (described later).
The rib part 43 has a general T-shape in a side view, with the bottom of the “T” formed continuously with the rear edge of the arc-shaped wall 42 and the head of the “T” protruding rearward.
The front portion and the rear portion of the bottom wall 36 are formed continuously by coupling the rear edge of the curved wall 40 with the front edge of the arc-shaped wall 42.
A partitioning wall 45 is formed between the front portion and the rear portion of the bottom wall 36. The partitioning wall 45 is formed as a continuous extension from the curved wall 40 and the arc-shaped wall 42, protruding upward. That is, the partitioning wall 45 protrudes toward the upper frame 32 while extending in the left-right direction (see
The distal end of the partitioning wall 45 vertically confronts but is separated from the bottom surface of a rear-side top wall 53 (described later) of the upper frame 32.
As shown in
The fixing parts 46 are disposed adjacent to the front side of the partitioning wall 45 and are separated from each other in the left-right direction. The fixing parts 46 are generally cylindrical in shape and are erected upward from the curved wall 40, with their distal ends protruding out above the rear-side top wall 53 (described later; see
The receiving parts 50 are disposed at positions spaced inward in right and left directions from the corresponding left and right side walls 34 and 35. The receiving parts 50 have a generally flat plate shape and protrude diagonally upward and rearward from the arc-shaped wall 42.
A receiving groove 51 is formed in each receiving part 50 for receiving the supply roller shaft 18 (described later). The receiving grooves 51 are generally U-shaped in a side view and are recessed into the receiving parts 50 in the direction X so as to be open on the upper rear side (see
The narrow groove 54 is generally U-shaped in a side view. The width of the narrow groove 54 (the length of the narrow groove 54 in a length direction orthogonal to the direction X and the left-right direction) is narrower than the width of the left receiving groove 51 (the length of the length direction of the left receiving groove 51) and wider than the diameter of a small-diameter part 70 formed on the supply roller shaft 18 (described later).
The wide groove 55 is formed continuously with the two ends of the narrow groove 54 (the ends at the open side of the narrow groove 54). After initially curving outward in the width direction, the wide groove 55 extends along the direction X. The width of the wide groove 55 (the length of the wide groove 55 in the length direction) is greater than that of the narrow groove 54 and approximately equivalent to that of the receiving groove 51. The width of the wide groove 55 (the length of the wide groove 55 in the length direction) is also substantially equivalent to the outer diameter of the supply roller shaft 18 (described later).
As shown in
As shown in
A second contact part 57 is formed on the top edge of the front wall 37. As shown in
(2-2) Upper Frame
As shown in
As shown in
The expanded part 58 constitutes the central portion of the front-side top wall 52 and expands upward.
The contact part 62 has a substantially flat plate shape and is provided along both left and right sides and the front side of the expanded part 58 so as to surround the same. When the upper frame 32 is assembled to the lower frame 31, the contact part 62 conforms to the shape of the first and second contact parts 56 and 57.
As shown in
(2-3) Developer Frame
As shown in
(2-4) Toner-Accommodating Chamber
As shown in
The agitator 12 includes a rotational shaft 83 that is rotatably supported in the side walls 34 and 35, and an agitating blade 84 provided on the rotational shaft 83.
The agitating blade 84 is formed of a flexible film material and is fixed to the outer peripheral surface of the rotational shaft 83 so as to extend radially outward therefrom.
By supporting the rotational shaft 83 in the left and right side walls 34 and 35, the agitator 12 is rotatably supported in the developer frame 30.
(2-5) Developing Chamber
A second opening 69 is formed in the rear side of the developing chamber 39. The second opening 69 is specifically defined by the rear edges of the left and right side walls 34 and 35, the rear edge of the rib part 43, and the rear edge of the rear-side top wall 53. The second opening 69 are continuously formed with the exposing grooves 28.
Provided inside the developing chamber 39 are the developing roller 6, the supply roller 13, and a thickness-regulating blade 14.
The developing roller 6 is disposed in the rear end of the developing chamber 39 so that the rear and top portions of the developing roller 6 are exposed through the second opening 69. As shown in
As will be described later in greater detail, by rotatably supporting the developing roller shaft 16 in the left and right side walls 34 and 35, the developing roller 6 is rotatably disposed in the developer frame 30.
As shown in
The sponge roller 19 serves to supply toner to the rubber roller 17. The sponge roller 19 covers the supply roller shaft 18 while leaving the left and right ends exposed. As shown in
The left and right ends of the supply roller shaft 18 protrude outward from left and right sides of the sponge roller 19 and are respectively defined as left and right exposed parts 80 and 81.
The left exposed part 80 is formed longer in the left-right direction than the right exposed part 81.
As shown in
The supply roller 13 is positioned so that the sponge roller 19 of the supply roller 13 confronts and contacts the rubber roller 17 of the developing roller 6. As will be described later in greater detail, by rotatably supporting the left and right ends of the supply roller shaft 18 in the left and right side walls 34 and 35, the supply roller 13 is rotatably provided in the developer frame 30.
As shown in
As shown in
The first side sealing members 59 are disposed in positions corresponding to the exposing holes 29. The first side sealing members 59 are generally rectangular in a side view. A through-hole 63 penetrates the center portion of each first side sealing member 59 in the left-right direction to allow passage of the supply roller shaft 18. As will be described later in greater detail, the left and right ends of the supply roller shaft 18 are inserted through the corresponding first side sealing members 59, with one of the first side sealing members 59 positioned between the left receiving part 50 and the left side wall 34 and the other between the right receiving part 50 and the right side wall 35.
The second side sealing members 60 are generally U-shaped in a side view, following the curved shape on the lower side of the exposing grooves 28. As will be described later in greater detail, the second side sealing members 60 are disposed above the corresponding first side sealing members 59, with one second side sealing member 60 interposed between each of the left and right ends of the supply roller shaft 18 and corresponding one of the left and right ends of the developing roller shaft 16.
As shown in
The left bearing member 65 has a developing-roller-shaft-supporting hole 72, a supply-roller-shaft-supporting hole 73, and a pair of bearing-side recessed parts 75 formed therein.
The supporting hole 72 has a generally circular shape in a side view and penetrates the upper rear portion of the left bearing member 65. The supporting hole 72 is formed with substantially the same (slightly larger) diameter as the outer diameter of the developing roller shaft 16.
The supporting hole 73 has a generally circular shape in a side view and penetrates the left bearing member 65 on the lower front side of the supporting hole 72. The supporting hole 73 is formed with substantially the same (slightly larger) diameter as the outer diameter of the left exposed part 80.
The bearing-side recessed parts 75 are formed on diametrically opposing sides of the supporting hole 72 at positions corresponding to the wall-side protruding parts 47. In other words, one bearing-side recessed part 75 is formed above the supporting hole 72 while the other is formed below the supporting hole 72. The bearing-side recessed parts 75 have a generally rectangular shape in a side view and penetrate the left bearing member 65 in the left-right direction.
The right bearing member 66 has a developing-roller-shaft-supporting hole 76, a developing-roller-shaft collar 77, a supply-roller-shaft-supporting part 78, and a pair of bearing-side protruding parts 79.
The supporting hole 76 is generally circular in a side view and penetrates the upper rear portion of the right bearing member 66. The supporting hole 76 is formed with substantially the same (slightly larger) diameter as the outer diameter of the developing roller shaft 16.
The collar 77 has a generally cylindrical shape and protrudes rightward from the peripheral edge of the supporting hole 76.
The supporting part 78 is formed on the left surface of the right bearing member 66 at a position below and forward of the supporting hole 76. The supporting part 78 is generally cylindrical in shape and protrudes leftward from the left surface of the right bearing member 66. The supporting part 78 is formed with substantially the same (slightly larger) inner diameter as the outer diameter of the right exposed part 81.
The bearing-side protruding parts 79 are disposed on diametrically opposing sides of the supporting hole 76 at positions corresponding to the wall-side recessed parts 48. Specifically, one of the bearing-side protruding parts 79 is disposed above the supporting hole 76 and the other is disposed below the supporting hole 76. The bearing-side protruding parts 79 are formed in a substantially columnar shape and protrude leftward from the right bearing member 66.
As will be described later in greater detail, the left bearing member 65 is fitted into the first opening 27 formed in the left side wall 34 from the outer side thereof, while the right bearing member 66 is fitted into the first opening 27 formed in the right side wall 35 from the outer side thereof.
Next, the process for assembling the developer cartridge 23 will be described.
(1) Assembling the Supply Roller in the Lower Frame
To assemble the developer cartridge 23, first the supply roller 13 and the lower frame 31 are prepared as described above, and the supply roller 13 is assembled in the lower frame 31, as shown in
Next, as shown in
Next, the supply roller 13 is moved rightward, as illustrated in
This completes the process of mounting the supply roller 13 in the lower frame 31. At this time, the left exposed part 80 of the supply roller shaft 18 is inserted through the left exposing hole 29 and protrudes leftward from the left side wall 34, while the right exposed part 81 is inserted through the right exposing hole 29 and protrudes rightward from the right side wall 35. When projected in the left-right direction, the supply roller shaft 18 is positioned within the supply-roller-shaft-exposing holes 29.
The left end portion of the sponge roller 19 corresponding to the elastically deformable region 91, which was elastically deformed when initially mounting the supply roller 13, is now restored and separated from the left receiving part 50.
(2) Mounting the First and Second Side Sealing Members in the Lower Frame
Next, the first and second side sealing members 59 and 60 are mounted in the lower frame 31. As shown in
To mount the first side sealing members 59 in the lower frame 31, the first side sealing members 59 are positioned on the left and right outer sides of the corresponding left and right exposed parts 80 and 81, with their through-holes 63 aligned with the respective left and right exposed parts 80 and 81. Next, the first side sealing members 59 are inserted inward into the developing chamber 39 in respective left and right directions until coming into contact with respective left and right outer surfaces of the corresponding receiving parts 50 (
Next, the second side sealing members 60 are placed above the corresponding first side sealing members 59. This completes the process for assembling the first and second side sealing members 59 and 60 in the lower frame 31.
(3) Mounting the Developing Roller in the Lower Frame
Next, the developing roller 6 is assembled in the lower frame 31. To mount the developing roller 6 in the lower frame 31, the developing roller 6 is inserted into the lower frame 31, as illustrated in
At this time, one of the second side sealing members 60 is interposed between the left exposed part 80 of the supply roller shaft 18 and the left end of the developing roller shaft 16, and the other second side sealing member 60 is interposed between the right exposed part 81 and the right end of the developing roller shaft 16. When projected in the left-right direction, the developing roller shaft 16 is positioned within the exposing grooves 28.
(4) Assembling the Bearing Members on the Lower Frame
Next, the bearing members 61 are mounted on the lower frame 31. That is, as shown in
When mounting the left bearing member 65 on the left side wall 34, the left bearing member 65 is moved toward the left side wall 34 from the left side so that the left exposed part 80 is inserted through the supporting hole 73 and the left end of the developing roller shaft 16 is inserted through the supporting hole 72. At this time, the wall-side protruding parts 47 formed on the left side wall 34 become engaged in the corresponding bearing-side recessed parts 75.
Similarly, when mounting the right bearing member 66 on the right side wall 35, the right bearing member 66 is moved toward the right side wall 35 from the right side so that the right exposed part 81 is inserted through the supporting part 78 and the right end of the developing roller shaft 16 is inserted through the supporting hole 76 and the collar 77. At this time, the bearing-side protruding parts 79 formed on the right bearing member 66 are engaged in the corresponding wall-side recessed parts 48.
The above operation completes the process of mounting the bearing members 61 on the lower frame 31. After completing this operation, the left exposed part 80 is rotatably supported in the supporting hole 73 and the right exposed part 81 is rotatably supported in the supporting part 78. Further, the left and right ends of the developing roller shaft 16 are rotatably supported in the supporting hole 72 and the supporting hole 76 and collar 77, respectively.
(5) Assembling the Upper Frame and Thickness-Regulating Blade on the Lower Frame
Next, the upper frame 32 is assembled to the lower frame 31, as illustrated in
Assembling the lower frame 31 and the upper frame 32 in this way forms the developer frame 30. At this time, the fixing parts 46 of the lower frame 31 protrude out from the rear-side top wall 53 (see
Next, the thickness-regulating blade 14 is fixed to the fixing parts 46. This completes assembly of the developer cartridge 23.
At this time, the rubber roller 17 of the developing roller 6 opposes and contacts the sponge roller 19 of the supply roller 13. Further, when projected in the left-right direction, the bridge parts 33 are positioned between the developing roller shaft 16 and the supply roller shaft 18.
Thereafter, the toner-accommodating chamber 38 is filled with toner via the toner fill hole 98. Once the toner-accommodating chamber 38 is filled, a cap (not shown) is press-fitted into the 98 to seal the toner in the toner-accommodating chamber 38.
(1) With the developer cartridge 23 of the embodiment, the first opening 27, and the bridge part 33 for dividing the first opening 27 into the exposing groove 28 constituting the upper portion and the exposing hole 29 constituting the lower portion are provided both on the left and right side walls 34 and 35. Hence, the developer cartridge 23 of the embodiment can enhance the strength of the developer frame 30 through a simple construction, while improving accuracy in positioning the developing roller 6 and the supply roller 13 relative to each other.
Further, when projected in the left-right direction, the bridge parts 33 are positioned between the developing roller shaft 16 and the supply roller shaft 18. As a result, the operation for mounting the developing roller 6 and the supply roller 13 in the lower frame 31 is made more efficient since the developing roller shaft 16 and the supply roller shaft 18 need only be disposed in their corresponding positions.
(2) Further, the lower frame 31 has the bottom wall 36, and the receiving parts 50 in which are formed respective receiving grooves 51 are provided on the bottom wall 36. Accordingly, when mounting the supply roller 13 in the lower frame 31, the receiving grooves 51 can receive the supply roller shaft 18.
As a result, the supply roller 13 can be positioned relative to the lower frame 31 with accuracy. Hence, it is possible to improve accuracy in positioning the developing roller 6 and the supply roller 13 relative to each other through a simple construction.
(3) The left and right ends of the supply roller shaft 18 are defined as the left exposed part 80 and the right exposed part 81, respectively. The small-diameter part 70 is formed in the right exposed part 81. Further, the receiving parts 50 are disposed one inside each of the left and right side walls 34 and 35 with respect to the left-right direction so that a gap is formed between the receiving parts 50 and corresponding left and right side walls 34 and 35. The narrow groove 54 is formed in the right receiving part 50. With this construction, the small-diameter part 70 engages with the narrow groove 54 when the supply roller 13 is assembled in the lower frame 31. This construction positions the supply roller shaft 18 in the left-right direction relative to the lower frame 31, thereby positioning the supply roller 13 relative to the lower frame 31 with accuracy.
(4) The wide groove 55 is also provided in the right receiving part 50 and is formed continuously with the narrow groove 54. Together with the bridge part 33, the wide groove 55 defines a space in which the supply roller shaft 18 can move freely. Hence, when mounting the supply roller 13 in the lower frame 31, the supply roller 13 can move within the range of movement in which the supply roller shaft 18 can move freely.
Hence, this construction makes the operation for mounting the supply roller 13 in the lower frame 31 more efficient, while still enhancing the strength of the developer frame 30 (lower frame 31).
(5) Further, the right exposed part 81 is formed shorter than the left exposed part 80. This configuration makes it easier to engage the small-diameter part 70 and the narrow groove 54 than if the right exposed part 81 were longer.
(6) Since the bearing members 61 of the developer cartridge 23 are separate members from the developer frame 30, it is possible to replace just the bearing members 61, which are more prone to wear, thereby improving maintenance efficiency for the developer cartridge 23. Further, it is possible to reduce material costs by forming just the bearing members 61 of a material having superior tribological properties.
(7) A pair of wall-side protruding parts 47 is provided on the left side wall 34, while a pair of wall-side recessed parts 48 is formed in the right side wall 35. The top wall-side recessed part 48 penetrates the right side wall 35 in the left-right direction. The bearing members 61 include the left bearing member 65 and the right bearing member 66. A pair of bearing-side recessed parts 75 is formed in the left bearing member 65, while a pair of bearing-side protruding parts 79 is provided on the right bearing member 66. This construction can prevent the left and right bearing members 65 and 66 from being mistakenly mounted on the wrong left and right side walls 34 and 35.
(8) The developer cartridge 23 is assembled by placing the sponge roller 19 in the developing chamber 39 while the supply roller 13 is shifted leftward relative to the lower frame 31 and by subsequently moving the supply roller 13 rightward until the small-diameter part 70 engages with the narrow groove 54. Hence, even though the bridge parts 33 are provided in both the left and right side walls 34 and 35, the supply roller 13 can be easily mounted in the lower frame 31.
Further, the supply roller 13 can be easily positioned relative to the lower frame 31 by engaging the small-diameter part 70 with the narrow groove 54. Therefore, production efficiency for the developer cartridge 23 can be improved while enhancing the strength of the developer frame 30 (lower frame 31) and improving the accuracy for positioning the supply roller 13 relative to the developer frame 30 (lower frame 31).
(9) Further, when the right exposed part 81 is positioned in the developing chamber 39, the left end of the sponge roller 19 is compressed against the left side of the receiving part 50 and elastically deformed. Hence, through a simple structure, the right exposed part 81 can easily be placed in the exposing hole 29 of the lower frame 31 so that the sponge roller 19 can be accommodated in the developing chamber 39.
(10) The adhering region 90 between the sponge roller 19 and the supply roller shaft 18 extends from the right edge of the sponge roller 19 to a left-right midpoint of the same. A region left of the adhering region 90 is defined as the elastically deformable region 91. Hence, elastic deformability of the sponge roller 19 can be ensured through a simple structure.
Next, a second embodiment of the present invention will be described.
As described in the first embodiment with reference to
As shown in
Consequently, to mount the supply roller 13 in the lower frame 31, the left exposed part 80 can be inserted into the left exposing hole 29, and the sponge roller 19 can be placed into the developing chamber 39 without the right exposed part 92 contacting the bridge part 33 and without the sponge roller 19 elastically deforming by contacting the left receiving part 50. This construction can make the operation for mounting the supply roller 13 in the lower frame 31 more efficient.
This construction can improve production efficiency for the developer cartridge 23 while enhancing the strength of the developer frame 30 (lower frame 31). Further, since the supporting part 94 extends farther leftward than the right side wall 35, the supporting part 94 can reliably support the right exposed part 92.
Since it is not necessary to elastically deform the left end of the sponge roller 19 when mounting the supply roller 13 in the lower frame 31 in the second embodiment, the adhering region 90 can be provided along the entire left-right dimension of the sponge roller 19.
Next, third and fourth embodiments of the invention will be described.
As shown in
In the fourth embodiment of the invention shown in
The developer cartridge according to the third and fourth embodiments can obtain the same operational advantages described in the first embodiment.
Note that the developing roller 6 may be rotatably supported in the lower frame 31 according to the same method used for mounting the supply roller 13 in the lower frame 31. If the left and right ends of the developing roller shaft 16 protrude outward in left and right directions from the left and right side walls 34 and 35 when the developing roller 6 is mounted in the lower frame 31, for example, then the developing roller 6 may be mounted in the lower frame 31 by configuring the left end of the rubber roller 17 to compress and elastically deform when contacting the inner surface of the left side wall 34 around the periphery of the first opening 27. Alternatively, if the right end of the developing roller shaft 16 is accommodated inside the developing chamber 39 when the developing roller 6 is mounted in the lower frame 31, a generally cylindrical developing-roller-shaft-supporting part (not shown) may be provided around the periphery of the supporting hole 76 and extending leftward from the right bearing member 66.
The present invention may also apply to any combination of the first through fourth embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
2011-190043 | Aug 2011 | JP | national |
This application is a continuation application of U.S. patent application Ser. No. 13/599,005 filed Aug. 30, 2012, which claims priority from Japanese Patent Application No. 2011-190043 filed on Aug. 31, 2011. The entire contents of the above noted applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7403734 | Okamoto et al. | Jul 2008 | B2 |
7630666 | Nakaya et al. | Dec 2009 | B2 |
20070071489 | Nakaya et al. | Mar 2007 | A1 |
20110158687 | Mori | Jun 2011 | A1 |
20110158710 | Shiraki et al. | Jun 2011 | A1 |
20110311266 | Taguchi | Dec 2011 | A1 |
20120003012 | Kato | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
S58-57151 | Apr 1983 | JP |
2006-126299 | May 2006 | JP |
2006-194986 | Jul 2006 | JP |
2007093951 | Apr 2007 | JP |
2011-133761 | Jul 2011 | JP |
2011133768 | Jul 2011 | JP |
Entry |
---|
Office Action issued corresponding Chinese Application No. 201210324531.7 mailed Mar. 4, 2014. |
Office Action issued corresponding Chinese Application No. 201210324531.7 dated Nov. 3, 2014. |
May 6, 2015—(CN) Decision of Rejection—App 201210324531.7. |
Jul. 21, 2015—(JP) Office Action—App 2011-190043. |
Number | Date | Country | |
---|---|---|---|
20150277284 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13599005 | Aug 2012 | US |
Child | 14740616 | US |