The present disclosure relates to a developing cartridge.
Electro-photographic image forming apparatuses, such as laser printers and LED printers, have been developed. A developing cartridge is used in an image forming apparatus. The developing cartridge includes a developing roller for supplying a developer material.
The conventional developing cartridge is mounted on a drum cartridge. The drum cartridge includes a photosensitive drum. When the developing cartridge is mounted on the drum cartridge, the photosensitive drum is brought into contact with the developing roller. Thereafter, the drum cartridge having the developing cartridge mounted therein is mounted in the image forming apparatus.
The developing cartridge includes a member for positioning the developing roller relative to the photosensitive drum. The developing cartridge further includes a developing electrode for supplying a bias voltage to a shaft of the developing roller. Still furthermore, the developing cartridge includes a member that receives a pressing force when separating the developing roller from the photosensitive drum. However, if the member for positioning the developing roller, the developing electrode for supplying a bias voltage to the shaft of the developing roller, and the member for receiving a pressing force at the time of separation are separately provided, the number of parts in the developing cartridge increases.
Accordingly, the object of the present disclosure is to provide a structure capable of reducing the number of parts in a developing cartridge.
Aspects of the disclosure are illustrated by way of example and not by limitation in the accompanying figures in which like reference characters indicate similar elements.
Embodiments of the present disclosure are described below with reference to the accompanying drawings.
Hereinafter, the direction in which a developing roller 30 of a developing cartridge 1 extends is referred to as a “first direction”. In addition, the direction between which an agitator 20 and the developing roller 30 of the developing cartridge 1 are arranged is referred to as a “second direction”. The first direction and the second direction cross (preferably, orthogonally cross) each other.
As illustrated in
The casing 10 is a casing capable of containing a developer material. The casing 10 has the first outer surface 11 and the second outer surface 12. The first outer surface 11 is located at one end of the casing 10 in the first direction. The second outer surface 12 is located at the other end of the casing 10 in the first direction. The first outer surface 11 and the second outer surface 12 are separated from each other in the first direction. The casing 10 extends in the first direction between the first outer surface 11 and the second outer surface 12. In addition, the casing 10 extends in the second direction.
The casing 10 has an accommodation chamber 13 provided thereinside. The developer material is stored in the accommodation chamber 13. In addition, the casing 10 has an opening 14. The opening 14 is located at one end 10a of the casing 10 in the second direction. The outside of the casing 10, in other words the external space, and the accommodation chamber 13 of the casing 10 communicate with each other through the opening 14. Note that the casing 10 may have a handle on the outer surface at the other end 10b in the second direction.
The agitator 20 includes an agitator shaft 21 and a blade 22. The agitator shaft 21 extends in the first direction. The blade 22 extends or expands from the agitator shaft 21 toward the inner surface of the casing 10. The blade 22 and part of the agitator shaft 21 are disposed in the accommodation chamber 13 of the casing 10. An agitator gear 51 included in the gear unit 50 is attached to one end of the agitator shaft 21 in the first direction. The agitator shaft 21 is fixed to the agitator gear 51 so as not to rotate relative to the agitator gear. When the agitator gear 51 rotates, the agitator shaft 21 and the blade 22 rotate about the rotation axis extending in the first direction. Thus, the developer material is agitated in the accommodation chamber 13 by the blade 22 that is rotating.
The developing roller 30 is a roller that can rotate about a rotation axis (a first axis) A1 extending in the first direction. The developing roller 30 is located in the opening 14 of the casing That is, the developing roller 30 is located at the one end of the casing 10 in the second direction. The developing roller 30 includes a developing roller main body 31 and a developing roller shaft 32. The developing roller main body 31 is a cylindrical member extending in the first direction. As the material used for the developing roller main body 31, rubber having resilience is used, for example. The developing roller shaft 32 is a cylindrical member that extends in the first direction and passes completely through the developing roller main body 31. The developing roller shaft 32 is electrically conductive. For the material of the developing roller shaft 32, metal or resin having electrical conductivity is used.
The developing roller main body 31 is fixed to the developing roller shaft 32 so as not to rotate relative to the developing roller shaft 32. Furthermore, a developing roller gear 52 included in the gear unit 50 is attached to an end portion of the developing roller shaft 32 in the first direction. The developing roller shaft 32 is fixed to the developing roller gear 52 so as not to rotate relative to the developing roller gear 52. Accordingly, when the developing roller gear 52 rotates, the developing roller shaft 32 rotates, and the developing roller main body 31 also rotates together with the developing roller shaft 32.
Note that the developing roller shaft 32 need not pass completely through the developing roller main body 31 in the first direction. For example, the developing roller shaft 32 may comprise two respective parts that extend in the first direction from both ends of the developing roller main body 31 in the first direction.
The supply roller 40 is a roller that is rotatable about a rotation axis (a second axis) extending in the first direction. The supply roller 40 is located between the agitator 20 and the developing roller 30. The supply roller 40 includes a supply roller main body 41 and a supply roller shaft 42. The supply roller main body 41 is a cylindrical member extending in the first direction. As the material used for the supply roller main body 41, rubber having resilience is used, for example. The supply roller shaft 42 is a columnar member extending in the first direction so as to pass completely through the supply roller main body 41.
The supply roller main body 41 is fixed to the supply roller shaft 42 so as not to rotate relative to the supply roller shaft 42. In addition, a supply roller gear 53 included in the gear unit 50 is attached to an end of the supply roller shaft 42 in the first direction. The supply roller shaft 42 is fixed to the supply roller gear 53 so as not to rotate relative to the supply roller gear. Consequently, if the supply roller gear 53 rotates, the supply roller shaft 42 also rotates and, thus, the supply roller main body 41 also rotates together with the supply roller shaft 42.
Note that the supply roller shaft 42 need not pass completely through the supply roller main body 41 in the first direction. For example, the supply roller shaft 42 may comprise two respective parts that extend in the first direction from both ends of the supply roller main body 41 in the first direction.
When the developing cartridge 1 receives the driving force, the developer material is supplied from the accommodation chamber 13 in the casing 10 to the outer peripheral surface of the developing roller 30 via the supply roller 40. At this time, the developer material is triboelectrically charged between the supply roller 40 and the developing roller 30. In addition, a bias voltage is applied to the developing roller shaft 32 of the developing roller 30. For this reason, the developer material is attracted to the outer peripheral surface of the developing roller main body 31 by the electrostatic force between the developing roller shaft 32 and the developer material.
Furthermore, the developing cartridge 1 includes a layer thickness regulation blade (not illustrated). The layer thickness regulation blade shapes the developer material supplied onto the outer peripheral surface of the developing roller main body 31 into a predetermined thickness. Thereafter, the developer material on the outer peripheral surface of the developing roller main body 31 is supplied to a photosensitive drum 92 (described below) of the drum cartridge 2. At this time, the developer material moves from the developing roller main body 31 onto the photosensitive drum 92 in accordance with an electrostatic latent image formed on the outer peripheral surface of the photosensitive drum 92. In this manner, the electrostatic latent image is visualized on the outer peripheral surface of the photosensitive drum 92.
The gear unit 50 is located on the second outer surface 12 of the casing 10. As illustrated in
The coupling 54 has an engagement portion 541 recessed in the first direction. The engagement portion 541 is exposed through the gear cover 55. When the developing cartridge 1 mounted on the drum cartridge 2 is mounted in an image forming apparatus having a drive shaft, the drive shaft of the image forming apparatus is connected to the engagement portion 541 of the coupling 54. Thus, the rotation of the drive shaft of the image forming apparatus is transmitted to the agitator gear 51, the plurality of idle gears 56, the developing roller gear 52, and the supply roller gear 53 via the coupling 54.
The plurality of gears included in the gear unit 50 may transmit the rotational force by meshing of teeth or may transmit the rotational force by friction.
The first bearing 60 has a first end portion 61 and a second end portion 62. The second end portion 62 is farther away from the developing roller shaft 32 than the first end portion 61 is to the developing roller shaft 32. In addition, the second end portion 62 is farther away in the second direction from the one end 10a of the casing 10 in the second direction than the first end portion 61 is to the one end 10a of the casing 10 in the second direction. The first bearing 60 extends along the first outer surface 11 of the casing 10 between the first end portion 61 and the second end portion 62.
The first bearing 60 includes a first arm 63 and a second arm 64. The second arm 64 is farther away from the developing roller shaft 32 than the first arm 63. In addition, the second arm 64 is farther away from the one end 10a in the second direction of the casing 10 than the first arm 63 is to the one end 10a in the second direction. The first arm 63 has the first end portion 61 described above. The second arm 64 has the second end portion 62 described above. The first arm 63 extends along the first outer surface 11 of the casing 10, for example, linearly. The second arm 64 extends along the first outer surface 11 of the casing 10, for example, linearly. Note that the first arm 63 is at an angle to the second arm 64. The angle formed by the first arm 63 and the second arm 64 is an obtuse angle.
According to the present embodiment, the first arm 63 and the second arm 64 are integrally formed. However, the first arm 63 and the second arm 64 may be separate parts. In this case, the first arm 63 and the second arm 64 can be fixed to each other.
The first bearing 60 has a first shaft hole 65. The first shaft hole 65 extends in the first direction in the first end portion 61 of the first bearing 60. The first shaft hole 65 may be a through-hole passing through the first end portion 61 in the first direction. Alternatively, the first shaft hole 65 may be a hole that does not pass through the first end portion 61. The first shaft hole 65 has a cylindrical inner peripheral surface. One end of the developing roller shaft 32 in the first direction is inserted into the first shaft hole 65. Thus, the one end of the developing roller shaft 32 in the first direction is supported so as to be rotatable about a rotation axis (a first axis) A1 extending in the first direction. In addition, the first bearing 60 is pivotable about the rotation axis A1 with respect to the casing 10. More specifically, the second end portion 62 is pivotable about the rotation axis A1 with respect to the first end portion 61.
The first bearing 60 serves as an electrically conductive member which, because it provides electrical connection to the developing roller shaft 32, is described herein as a developing electrode. The first bearing 60 is made of, for example, a conductive resin. However, the first bearing 60 may be made of metal. The first end portion 61 of the first bearing 60 is in contact with the one end of the developing roller shaft 32 in the first direction. Consequently, the first end portion 61 of the first bearing 60 is electrically connected to the developing roller shaft 32. Alternatively, the first bearing 60 may be a pivotable member. The pivotable member may be configured to electrically connected to the developing roller shaft (32). Preferably, the first pivotable member may be a pivotable lever.
As illustrated in
In addition, the first bearing 60 has a first hole 67. The first hole 67 extends in the second direction between the first end portion 61 and the second end portion 62. Furthermore, the first hole 67 passes completely through the first bearing 60 in a pivotal direction about the rotation axis A1. However, the first hole 67 need not pass completely through the first bearing 60. When the developing cartridge 1 is mounted on the drum cartridge 2, the first hole 67 allows a first lever 97 (described below) of the drum cartridge 2 to be inserted thereinto.
As illustrated in
The second bearing 70 includes a third arm 73 and a fourth arm 74. The fourth arm 74 is farther away from the developing roller shaft 32 than the third arm 73. In addition, the fourth arm 74 is farther away in the second direction from the one end 10a of the casing 10 in the second direction than the third arm 73 is to the one end 10a of the casing 10 in the second direction. The third arm 73 has the third end portion 71 described above. The fourth arm 74 has the fourth end portion 72 described above. The third arm 73 extends along the second outer surface 12 of the casing 10, for example, linearly. The fourth arm 74 extends along the second outer surface 12 of the casing 10, for example, linearly. However, the third arm 73 is at an angle to the fourth arm 74. The angle formed by the third arm 73 and the fourth arm 74 is an obtuse angle.
According to the present embodiment, the third arm 73 and the fourth arm 74 are integrally formed. However, the third arm 73 and the fourth arm 74 may be separate parts. In this case, it is only required that the third arm 73 and the fourth arm 74 are fixed to each other.
The second bearing 70 has a second shaft hole 75. The second shaft hole 75 extends in the first direction in the third end portion 71 of the second bearing 70. The second shaft hole 75 may be a through-hole passing through the third end portion 71 in the first direction. Alternatively, the second shaft hole 75 may be a hole that does not pass through the third end portion 71. The second shaft hole 75 has a cylindrical inner circumferential surface. The other end of the developing roller shaft 32 in the first direction is inserted into the second shaft hole 75. In this manner, the other end of the developing roller shaft 32 in the first direction is supported in a rotatable manner about a rotation axis (a first axis) A1 extending in the first direction. In addition, the second bearing 70 is also pivotable about the rotation axis A1 with respect to the casing 10. More specifically, the fourth end portion 72 is pivotable about the rotation axis A1 with respect to the third end portion 71.
As illustrated in
The second bearing 70 is pivotable about the rotation axis A1 between the third position and the fourth position. When the second bearing 70 is located at the third position, the third restricting surface 761 of the second bearing 70 is in contact with the gear cover projection 550. In contrast, when the second bearing 70 is located at the fourth position, the fourth restricting surface 762 of the second bearing 70 is in contact with the gear cover projection 550. In this manner, the rotation range of the second bearing 70 is restricted.
In addition, the second bearing 70 has a third hole 77. The third hole 77 extends in the second direction between the third end portion 71 and the fourth end portion 72. Furthermore, the third hole 77 passes completely through the second bearing 70 in a pivotal direction about the rotation axis A1. However, the third hole 77 need not pass completely through the second bearing 70. When the developing cartridge 1 is mounted on the drum cartridge 2, the third hole 77 allows a second lever (described below) of the drum cartridge 2 to be inserted thereinto. The first hole 67 of the first bearing 60 and the third hole 77 of the second bearing 70 are located so as to overlap each other, as viewed in the first direction.
As illustrated in
Furthermore, as illustrated in
In addition, the drum cartridge 2 includes a second movable member (not illustrated) and a second coil spring (not illustrated). The second movable member and the second coil spring are located at the other end of the drum frame 91 in the first direction. With the developing cartridge 1 mounted on the drum cartridge 2, the second movable member applies a pressure to the fourth end portion 72 of the second bearing 70 toward the photosensitive drum 92 by the resilience force of the second coil spring.
Note that instead of using the first coil spring 96 and the second coil spring, other types of resilient members may be used for the drum cartridge 2. For example, the drum cartridge 2 may be provided with a spring other than a coil spring (e.g., a torsion spring or a leaf spring), rubber, or the like) as the resilient member.
In addition, as illustrated in
In addition, the drum cartridge 2 includes a second lever (not illustrated). The second lever is located at the other end of the drum frame 91 in the first direction. The second lever is located between the second movable member and the photosensitive drum 92. The second lever is pivotable about a rotation shaft extending in the first direction. When the developing cartridge 1 is mounted on the drum cartridge 2, the second lever is inserted into, and so located in, the third hole 77 of the second bearing 70.
As illustrated in
As described above, when the developing cartridge 1 is mounted on the drum cartridge 2, the first bearing 60 and the second bearing 70 pivot about the rotation axis A1 of the developing roller 30. As a result, without rotating the casing 10 with respect to the drum frame 91, the first bearing 60 can be placed between the photosensitive drum 92 and the first movable member 95. In addition, the second bearing 70 can be placed between the photosensitive drum 92 and the second movable member. Consequently, a user of the cartridges and the image forming apparatus can move the developing roller 30 close to the photosensitive drum 92 without performing the operation to rotate the casing 10.
With the first bearing 60 placed between the photosensitive drum 92 and the first movable member 95, the first movable member 95 is in contact with the second end portion 62 of the first bearing 60. At this time, the first movable member 95 applies pressure to the second end portion 62 of the first bearing 60 toward the photosensitive drum 92 by the resilience force of the first coil spring 96. Then, as illustrated in
Similarly, the second movable member applies pressure to the fourth end portion 72 of the second bearing 70 toward the photosensitive drum 92. At this time, the third end portion 71 of the second bearing 70 is brought into contact with the third guide surface, and the fourth end portion 72 of the second bearing 70 is brought into contact with the fourth guide surface. In this manner, the position of the second bearing 70 relative to the drum frame 91 is fixed.
Furthermore, the first movable member 95 applies pressure to the first bearing 60 with the positions of the first bearing 60 and the second bearing 70 relative to the drum frame 91 fixed. In addition, the second movable member applies pressure to the second bearing 70. Thus, the outer peripheral surface of the developing roller 30 is brought into contact with the outer peripheral surface of the photosensitive drum 92. In this manner, the developing roller 30 is urged against the photosensitive drum 92.
As described above, according to the present embodiment, the first bearing 60 has the first end portion 61 and the second end portion 62, and the second end portion 62 is pivotable with respect to the first end portion 61. In addition, the second bearing 70 has the third end portion 71 and the fourth end portion 72, and the fourth end portion 72 is pivotable with respect to the third end portion 71. Consequently, the positioning of the developing roller 30 relative to the photosensitive drum 92 can be achieved by using the first end portion 61 and the second end portion 62 of the first bearing 60 and the third end portion 71 and the fourth end portion 72 of the second bearing 70.
Furthermore, according to the present embodiment, when the developing cartridge 1 is being mounted on the drum cartridge 2, the first bearing 60 and the second bearing 70 pivot about the rotation axis A1. In addition, when the developing cartridge 1 is being removed from the drum cartridge 2, the first bearing 60 and the second bearing 70 pivot about the rotation axis A1 in the same manner. For this reason, the developing cartridge 1 can be smoothly mounted on or removed from the drum cartridge 2 by causing the first bearing 60 and the second bearing 70 to pivot without rotating the casing 10.
The first movable member 95 and the first coil spring 96 are electrically conductive. The first movable member 95 is made of, for example, a conductive resin. The first coil spring 96 is made of, for example, metal. In addition, as illustrated in
When the developing cartridge 1 mounted on the drum cartridge 2 is mounted in the image forming apparatus, the electrode terminal of the image forming apparatus is in contact with the electrode terminal 98 of the drum cartridge 2. Thus, a bias voltage is supplied from the image forming apparatus to the developing roller shaft 32 via the electrode terminal 98, the first coil spring 96, the first movable member 95, and the first bearing 60. As a result, the developer material is attracted to the outer peripheral surface of the developing roller main body 31 by the electrostatic force generated by the bias voltage.
As described above, according to the present embodiment, the bias voltage is supplied to the first bearing 60 of the developing cartridge 1 via the first movable member 95 of the drum cartridge 2. In this way, the number of parts of the drum cartridge 2 can be reduced as compared with the case where a conductive part for supplying a voltage to the first bearing 60 is provided separately from the first movable member 95. Therefore, the size of the drum cartridge 2 can be reduced.
In addition, the first bearing 60 according to the present embodiment has (1) the capability of serving as a bearing for rotatably supporting the developing roller shaft 32 and (2) the capability of serving as a positioning member that determines the position of the developing roller 30 relative to the photosensitive drum 92 when the developing cartridge 1 is mounted on the drum cartridge 2 and (3) the capability of serving as a developing electrode for supplying a bias voltage to the developing roller shaft 32. For this reason, the number of parts in the developing cartridge 1 can be reduced as compared with the case where these capabilities are provided by using different members. In addition, the size of the developing cartridge 1 can be reduced.
After the developing cartridge 1 mounted on the drum cartridge 2 is mounted in the image forming apparatus, the developing cartridge 1 can perform a separating operation by the driving force supplied from the image forming apparatus. As used herein, the term “separating operation” refers to an operation to temporarily separate the developing roller 30 from the photosensitive drum 92. For example, when monochrome printing is performed in the image forming apparatus, the developing cartridges 1 of colors other than black perform the separating operation. Note that the developing cartridge 1 of black color may perform the separating operation.
As illustrated in
Thus, the casing 10 and the developing roller 30 move in the direction away from the photosensitive drum 92 together with the first bearing 60 and the second bearing 70. As a result, the outer peripheral surface of the developing roller 30 is separated from the outer peripheral surface of the photosensitive drum 92. That is, the developing cartridge 1 moves from the above-described contact position to the separated position with respect to the drum cartridge 2.
As described above, according to the present embodiment, the developing cartridge 1 can be moved from the contact position to the separated position by pressing the first bearing 60 and the second bearing 70. For this reason, the number of parts of the developing cartridge 1 can be reduced as compared with the case where a member that receives a pressing force at the time of the separation operation is provided separately from the first bearing 60 and the second bearing 70. Consequently, the size of the developing cartridge 1 can be reduced more.
In addition, the first bearing 60 is pivotable about the rotation axis A1. Therefore, the first lever 97 can press the inner surface 670 of the first hole 67 of the first bearing 60 in an optimum direction without rotating the casing 10. Similarly, the second bearing 70 is pivotable about the rotation axis A1. Therefore, the second lever can press the inner surface of the third hole 77 of the second bearing 70 in an optimum direction without rotating the casing 10.
In addition, when the developing cartridge 1 moves from the contact position to the separated position, the first bearing 60 moves along the second guide surface 94. Furthermore, the second bearing 70 moves along the fourth guide surface. In this manner, the first lever 97 can press the first bearing 60 while maintaining the position of the first bearing 60 relative to the rotation axis A1 serving as the central point. Furthermore, the second lever can press the second bearing 70 while maintaining the position of the second bearing 70 relative to the rotation axis A1 serving as the central point.
While an embodiment of the present disclosure has been described above, the present disclosure is not limited to the above-described embodiment. A variety of modifications are described below, focusing on differences between the modifications and the above-described embodiment.
The first modification is a modification relating to a mechanism for operating the first lever 97 of the drum cartridge 2.
The second modification is another modification relating to a structure for restricting the rotation range of the first bearing 60.
In addition, in the example of
As illustrated in
Like the above-described embodiment, the first bearing 60 is pivotable about the rotation axis A1 between a first position (the position denoted by a two-dot chain line illustrated in
According to the above-described embodiment, the developing cartridge 1 includes the first bearing and the second bearing. The first bearing and the second bearing have the same shape, and both are pivotable with respect to the casing 10. However, the second bearing may have a shape that differs from that of the first bearing. In addition, the second bearing may be non-pivotable with respect to the casing 10. Furthermore, the developing cartridge 1 does not necessarily have to include the second bearing. In this case, the first bearing can be placed at either one of the ends of the casing 10 in the first direction.
According to the above-described embodiment, the developing cartridge 1 is mounted on the drum cartridge 2 including only one photosensitive drum 92. However, the developing cartridge 1 may be mounted on a drum cartridge including a plurality of photosensitive drums 92.
Furthermore, the shape of the detail of the developing cartridge 1 may differ from the shape illustrated in any one of the drawings of the present application. In addition, the elements appearing in the above-described embodiment and modifications may be combined in any way as long as no conflicts occurs.
Number | Date | Country | Kind |
---|---|---|---|
2019-058547 | Mar 2019 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 17/869,917 filed Jul. 21, 2022, which is a continuation of U.S. patent application Ser. No. 17/235,014 filed Apr. 20, 2021, now U.S. Pat. No. 11,402,763, which is a continuation of U.S. patent application Ser. No. 16/825,141, filed Mar. 20, 2020, now U.S. Pat. No. 11,003,107, which claims priority from Japanese Patent Application No. 2019-058547 filed on Mar. 26, 2019. The content of the aforementioned applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
11754941 | Itabashi | Sep 2023 | B2 |
20070071480 | Ishikawa | Mar 2007 | A1 |
20070071481 | Kamimura | Mar 2007 | A1 |
20070077093 | Okabe et al. | Apr 2007 | A1 |
20070147888 | Igarashi et al. | Jun 2007 | A1 |
20070166070 | Sato | Jul 2007 | A1 |
20100067947 | Yuzawa | Mar 2010 | A1 |
20100111562 | Okabe et al. | May 2010 | A1 |
20110236066 | Takagi | Sep 2011 | A1 |
20120308259 | Abe | Dec 2012 | A1 |
20130051849 | Itabashi et al. | Feb 2013 | A1 |
20130251402 | Yamashita et al. | Sep 2013 | A1 |
20170261927 | Sato et al. | Sep 2017 | A1 |
20170269546 | Yokoi | Sep 2017 | A1 |
20170285570 | Sakata et al. | Oct 2017 | A1 |
20170336754 | Itabashi | Nov 2017 | A1 |
20180017928 | Ichikawa et al. | Jan 2018 | A1 |
20180095416 | Nishiyama et al. | Apr 2018 | A1 |
20180299823 | Uyama et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1940744 | Apr 2007 | CN |
1991622 | Jul 2007 | CN |
201229468 | Apr 2009 | CN |
101833262 | Sep 2010 | CN |
102200726 | Sep 2011 | CN |
202748592 | Feb 2013 | CN |
103324072 | Sep 2013 | CN |
104412173 | Mar 2015 | CN |
107229202 | Oct 2017 | CN |
206594453 | Oct 2017 | CN |
107402510 | Nov 2017 | CN |
107861349 | Mar 2018 | CN |
108241269 | Jul 2018 | CN |
5-46019 | Feb 1993 | JP |
2003-186300 | Jul 2003 | JP |
2009-58560 | Mar 2009 | JP |
2013-54058 | Mar 2013 | JP |
2015-11318 | Jan 2015 | JP |
2014141447 | Sep 2014 | WO |
Entry |
---|
Office Action with Search Report issued in corresponding Chinese Patent Application No. 202080023316.6, Jan. 11, 2024. |
International Search Report with a Written Opinion issued by the International Searching Authority in corresponding International Patent Application No. PCT/JP2020/012278, Jun. 23, 2020. |
International Search Report with a Written Opinion issued by the International Searching Authority in corresponding International Patent Application No. PCT/JP2020/012279, Jun. 23, 2020. |
International Search Report with a Written Opinion issued by the International Searching Authority in corresponding International Patent Application No. PCT/JP2020/012280, Jul. 7, 2020. |
International Search Report with a Written Opinion issued by the International Searching Authority in corresponding International Patent Application No. PCT/JP2020/012281, Jun. 23, 2020. |
Extended European Search Report issued in corresponding European Patent Application No. 20710757.4, Aug. 2, 2021. |
Extended European Search Report issued in corresponding European Patent Application No. 20710756.6, Oct. 21, 2021. |
Notification of First Office Action with Search Report issued in corresponding Chinese Patent Application No. 202080023200.2, Sep. 27, 2023. |
Extended European Search Report issued in European Patent Application No. 20710758.2, Jul. 6, 2021. |
Extended European Search Report issued in European Patent Application No. 20710755.8, Jul. 6, 2021. |
Examination Report issued in Australian Patent Application No. 2020246265 on Mar. 22, 2022. |
Examiner's Requisition issued in Canadian Patent Application No. 3,114,158, Apr. 27, 2022. |
Number | Date | Country | |
---|---|---|---|
20230384708 A1 | Nov 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17869917 | Jul 2022 | US |
Child | 18447392 | US | |
Parent | 17235014 | Apr 2021 | US |
Child | 17869917 | US | |
Parent | 16825141 | Mar 2020 | US |
Child | 17235014 | US |