This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Application No. 2016-197805 filed on Oct. 6, 2016, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a developing device which supplies developer to an image carrier, and an electro-photographic image forming apparatus including the same.
An electro-photographic image forming apparatus forms an electrostatic latent image by irradiating a photosensitive layer formed on a surface of a photosensitive drum (image carrier) with light based on image information read from an original document, or image information obtained, by transmission and so on, from an external device such as a computer. The image forming apparatus supplies toner from the developing device to the electrostatic latent image to form a toner image, and then transfers the toner image onto a sheet (recording medium). The sheet that has gone through the transfer process is then subjected to toner-image fixing process, to be then discharged to outside.
As a developing method using a dry toner for image forming apparatuses using an electro-photographic process, there has been proposed a development method in which, when, by using a magnetic roller (toner supply roller), developer is transferred onto a developing roller disposed out of contact with a photosensitive drum (image carrier), a thin toner layer is formed by transferring only non-magnetic toner particles onto the developing roller, leaving magnetic carrier particles on the magnetic roller, and, in an opposing region (developing region) where the developing roller and the photosensitive drum face each other, toner particles are caused to jump to, and adhere to, an electrostatic latent image on the photosensitive drum by an AC electric field.
In recent years, more and more complicated configurations have come to be adopted in image forming apparatuses along with the progress in color printing and high-speed processing. In addition, for higher-speed processing, it is indispensable to achieve higher-speed rotation of a toner stirring member within the developing device. In particular, according to a developing method described above in which a two-component developer containing magnetic carrier and toner is used, and in which a magnetic roller which carries the developer and a developing roller which carries only the toner are used, in an opposing portion of the developing roller and the magnetic roller, a magnetic brush is formed on the magnetic roller, and by the magnetic brush, only the toner is caused to be carried on the developing roller, and further, the toner left unused for development is peeled off from the developing roller. Thus, with this method, toner particles are apt to float in the vicinity of the opposing portion of the developing roller and the magnetic roller, and such floating toner particles accumulate around a trimming blade (a regulation blade). If the accumulated toner particles adhere to the developing roller in a condensed manner, they may eventually fall and cause an image defect.
There is known a developing device using a two-component developer containing magnetic carrier and toner, and using a magnetic roller carrying the developer and a developing roller carrying only the toner, the developing device including, as a solution to the above-described problem, a toner receiver support member facing the developing or magnetic roller, a toner receiver member disposed along a longitudinal direction of the toner receiver support member to receive toner fallen from the developing roller, and vibration generating means for vibrating the toner receiver member.
There is also known a developing device having a film member fitted to an inner wall portion (sleeve cover) of a developing container, the inner wall portion opposed to a developing roller, such that, when a drive gear train for driving the developing device is rotated, a link member is caused by a link member drive mechanism to intermittently pull the film member to cause the film member to longitudinally reciprocate to thereby shake off toner particles accumulated on the film member.
According to an aspect of the present disclosure, a developing device includes a developing roller, a toner supply roller, a regulation blade, a casing, a film member, a biasing member, a link member, a link member drive mechanism, and an oscillation mechanism. The developing roller is disposed opposite an image carrier on which an electrostatic latent image is formed, and, in an opposing region where the developing roller and the image carrier face each other, the developing roller supplies developer to the image carrier. The toner supply roller is disposed opposite the developing roller, and, in an opposing region where the toner supply roller and the developing roller face each other, the toner supply roller supplies toner to the developing roller. The regulation blade is disposed opposite the toner supply roller with a predetermined space therebetween. The casing holds therein the developing roller, the toner supply roller, and the regulation blade, and has an inner wall portion that is opposed to the developing roller between the regulation blade and the image carrier. The film member is flexible, and disposed on an upper surface of the inner wall portion. The biasing member is coupled to one longitudinal end of the film member to give tension to the film member. The link member is coupled to the other longitudinal end of the film member. The link member drive mechanism drives the link member. The link member drive mechanism makes the link member intermittently pull the film member to thereby cause reciprocation of the film member in a longitudinal direction. The oscillation mechanism causes an upper end portion of the film member to oscillate in a direction orthogonal to the upper surface of the inner wall portion along with the reciprocation of the film member.
Further features and specific advantages of the present disclosure will become apparent from the following descriptions of preferred embodiments.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
These image forming portions Pa, Pb, Pc, and Pd are provided with photosensitive drums 1a, 1b, 1c, and 1d, respectively, which each carry a visible image (toner image) of a corresponding color, and further, an intermediate transfer belt 8 which rotates in a clockwise direction in
When image data is inputted from a host device such as a personal computer, chargers 2a to 2d first charge surfaces of the photosensitive drums 1a to 1d uniformly. Then, an exposure device 5 irradiates the photosensitive drums 1a to 1d with light in accordance with the image data, to thereby form an electrostatic latent image on each of the photosensitive drums 1a to 1d in accordance with the image data. The developing devices 3a to 3d are each filled, by toner containers 4a to 4d, with a predetermined amount of two-component developer (which hereinafter may be referred to simply as developer) containing a toner of a corresponding one of the four colors of cyan, magenta, yellow and black, and toners contained in the developers are supplied by the developing devices 3a to 3d, and electrostatically adhere, to the photosensitive drums 1a to 1d. Thereby, toner images are formed corresponding to the electrostatic latent images formed by the exposure to the light emitted from the exposure device 5.
Then, by primary transfer rollers 6a to 6d, an electric field is applied at a predetermined transfer voltage between the primary transfer rollers 6a, 6b, 6c, and 6d and the photosensitive drums 1a, 1b, 1c, and 1d, respectively, and the toner images of cyan, magenta, yellow, and black on the photosensitive drums 1a to 1d are primarily transferred onto the intermediate transfer belt 8. After the primary transfer, residual toner and the like left on the surfaces of the photosensitive drums 1a to 1d are removed by cleaning devices 7a to 7d.
A transfer sheet P onto which the toner images are to be transferred is accommodated in a sheet cassette 16 disposed in a lower portion inside the color printer 100, and the transfer sheet P is conveyed at a predetermined timing via a sheet feeding roller 12a and a registration roller pair 12b to a nip portion (secondary transfer nip portion) between the intermediate transfer belt 8 and a secondary transfer roller 9 provided adjacent to the intermediate transfer belt 8. The transfer sheet P onto which the toner images have been transferred is then conveyed to a fixing portion 13.
The transfer sheet P, which has been conveyed to the fixing portion 13, is heated and pressurized by a fixing roller pair 13a, whereby the toner images are fixed on a surface of the transfer sheet P, and thus a predetermined full-color image is formed. The transfer sheet P, on which the full-color image has been formed, is discharged onto a discharge tray 17 by a discharge roller pair 15 as it is (or after being directed by a branching portion 14 into a reverse conveyance path 18 and having an image formed on the other side, too).
As shown in
The developer is conveyed in an axial direction (direction perpendicular to a surface of the sheet on which
The developing container 20 extends obliquely right upward in
In the stirring-conveyance chamber 21, there is provided an unillustrated toner concentration sensor facing the stirring-conveyance screw 25a. Based on a detection result from the toner concentration sensor, toner is supplied from the toner container 4a to the stirring-conveyance chamber 21 via an unillustrated toner supply port. Used as the toner concentration sensor is, for example, a magnetic permeability sensor which detects the magnetic permeability of the two-component developer containing toner and magnetic carrier in the developing container 20.
The toner supply roller 30 is a magnetic roller composed of a non-magnetic rotary sleeve that rotates in the counterclockwise direction in
The developing roller 31 is composed of a cylindrical developing sleeve which rotates in the counterclockwise direction in
To the developing container 20, a trimming blade (regulation blade) 33 is fitted along a longitudinal direction of the toner supply roller 30 (direction perpendicular to the surface of the sheet on which
A direct-current voltage (hereinafter, called Vslv (DC)) and an alternating-current voltage (hereinafter, called Vslv (AC)) are applied to the developing roller 31. A direct-current voltage (hereinafter, referred to as Vmag (DC)) and an alternating-current voltage (hereinafter, referred to as Vmag (AC)) are applied to the toner supply roller 30. These direct-current voltages and alternating-current voltages are applied to the developing roller 31 and the toner supply roller 30 from a developing bias power source via a bias control circuit (neither of which is shown).
As described above, the developer is stirred by the stirring-conveyance screw 25a and the supply-conveyance screw 25b and circulates in the stirring-conveyance chamber 21 and the supply-conveyance chamber 22 in the developing container 20, whereby toner particles in the developer are charged. The developer in the supply-conveyance chamber 22 is conveyed to the toner supply roller 30 by the supply-conveyance screw 25b. And, a magnetic brush (not shown) is formed on the toner supply roller 30. Layer thickness of the magnetic brush on the toner supply roller 30 is adjusted by the trimming blade 33, then the magnetic brush is conveyed, by rotation of the toner supply roller 30, to an opposing region of the toner supply roller 30 and the developing roller 31. And, a thin toner layer is formed on the developing roller 31 by using a potential difference ΔV between Vmag (DC) applied to the toner supplying roller 30 and Vslv (DC) applied to the developing roller 31, and a magnetic field.
Although thickness of the toner layer on the developing roller 31 varies depending on factors such as resistance of the developer, difference in rotation speed between the toner supply roller 30 and the developing roller 31, and the like, it is controllable by means of ΔV. The toner layer on the developing roller 31 becomes thicker as ΔV is increased, while it becomes thinner as ΔV is reduced. An appropriate range of ΔV during development is generally from approximately 100 V to 350 V.
The thin toner layer formed on the developing roller 31 through contact with the magnetic brush formed on the toner supply roller 30 is conveyed by the rotation of the developing roller 31 to an opposing region of the photosensitive drum 1a and the developing roller 31. Since Vslv (DC) and Vslv (AC) are applied to the developing roller 31, the toner particles are caused to jump from the developing roller 31 to the photosensitive drum 1a by potential difference between the developing roller 31 and the photosensitive drum 1a, whereby the electrostatic latent image on the photosensitive drum 1a is developed.
Toner particles remaining without being used for development is conveyed back to the opposing portion of the developing roller 31 and the toner supply roller 30, and is collected by the magnetic brush formed on the toner supply roller 30. Then, the magnetic brush is peeled off from the toner supply roller 30 at a homopolar portion of the stationary magnet body, and falls into the supply-conveyance chamber 22.
Thereafter, based on a detection result from the toner concentration sensor (not shown), a predetermined amount of toner is supplied via the toner supply port (not shown) into the developing container 20 to be circulated in the supply-conveyance chamber 22 and the stirring-conveyance chamber 21, whereby the two-component developer is uniformly charged again and the concentration of toner therein is recovered to an appropriate value. This developer is supplied again onto the toner supply roller 30 by the supply-conveyance screw 25b to form a magnetic brush, which is conveyed to the trimming blade 33.
On a right-side wall of the developing container 20 in
A sheet-shaped seal member 39 is disposed at an upper end of the sleeve cover 37. The seal member 39 extends in a longitudinal direction of the sleeve cover 37 (direction perpendicular to the surface of the sheet on which
Formed at end portions on a front side (right side in
In an upper end portion of the film member 40, three rectangular cut portions 60 are formed, one at each of three positions in the vicinities of a center and both ends in the longitudinal direction. Further, the sleeve cover 37 is provided with engagement projection portions 61 disposed opposite the cut portions 60. The cut portions 60 and the engagement projection portions 61 constitute an oscillation mechanism which causes the upper end portion of the film member 40 to oscillate along with later-described reciprocation of the film member 40.
As shown in
With this configuration, one end (front-side end portion) of the film member 40 is biased by the coil spring 43 toward the front side, while the other end (rear-side end portion) of the film member 40 is restricted in movement by the engagement between the engagement hole 40b and the link member 45. As a result, a predetermined tensile force (tension) is given to the film member 40 in the longitudinal direction.
The link member 45 has a support portion 45a formed in a cylindrical shape, a hook portion 45b extending from the support portion 45a, and a trigger 45c. The support portion 45a is rotatably mounted around a boss portion 37e formed on the sleeve cover 37, such that the link member 45 is oscillatably supported with respect to the sleeve cover 37, with the support portion 45a serving as a fulcrum. The hook portion 45b engages in the engagement hole 40b of the film member 40. The trigger 45c is opposed to an outer peripheral surface of a cylindrical portion 41a, which is integrally formed on a side surface of the idle gear 41, the side surface being opposed to the film member 40. The link member 45 receives a biasing force from the coil spring 43 via the film member 40, such that the hook portion 45b is biased in a direction (counterclockwise direction in
On the outer peripheral surface of the cylindrical portion 41a, there is formed a mountain-shaped projection 50. The projection 50 can be put in contact with the trigger 45c by rotation of the cylindrical portion 41a caused when the idle gear 41 rotates.
In image formation, when the toner supply roller 30 and the developing roller 31 are driven to rotate, the idle gear 41, which transmits a drive force to a drive input gear (not shown) of the developing roller 31, also rotates in an arrow A direction in
As a result, the link member 45 oscillates, with the support portion 45a serving as a fulcrum, so that the one end (rear-side end portion) of the film member 40 is intermittently pulled by the hook portion 45b. Thereby, the film member 40 is caused to longitudinally reciprocate (slide) quickly, expanding and contracting the coil spring 43, which is coupled to the other end (the end portion on the front side).
In this manner, during its longitudinal reciprocation, the film member 40 alternately takes the states shown in
Thereby, even in a case where the toner supply roller 30 and the developing roller 31 in the developing device 3a rotate at high rates and a large amount of toner particles float inside the developing container 20, it is possible to reduce accumulation of toner particles on the upper surface 37a of the sleeve cover 37. As a result, without relying on linear velocities of the toner supply roller 30 and the developing roller 31, it is possible to effectively reduce image defects, such as toner dropping and the like, caused by toner particles accumulating on the upper surface 37a of the sleeve cover 37 to aggregate into a block (blocking) adhering to the toner supply roller 30 or the developing roller 31.
Here, the entire film member 40 reciprocates along the longitudinal direction, and further, the oscillation mechanism composed of the cut portion 60 and the engagement projection portion 61 is formed one at each of a plurality of (here, three) positions in the film member 40 along its longitudinal direction. The provision of the plurality of oscillation mechanisms helps achieve the effect of uniformly shaking off toner particles accumulated on the film member 40 in the longitudinal direction of the film member 40, and thus, wherever on the film member toner particles may accumulate, they can be equally shaken off from the film member 40. For easy falling of toner particles from the film member 40, it is preferable for the film member 40 to be inclined by an inclination angle δ of 55° or larger with respect to a horizontal plane.
Further, the toner particles thrown up toward the toner supply roller 30 are partly collected by the magnetic brush formed on the outer peripheral surface of the toner supply roller 30. According to the present embodiment, when the developing device 3a is driven, the film member 40 reciprocates, and further, the upper end portion of the film member 40 oscillates, as a result of which toner particles fallen from the developing roller 31 are quickly shaken off without being allowed to accumulate on the film member 40. Here, toner particles immediately after falling from the developing roller 31 have not lost anything of their charge amount, and hence, even if such toner particles are supplied again onto the developing roller 31 after being collected by the magnetic brush of the toner supply roller 30, there is no risk of negative effects on a developing operation.
Further, since the accumulation of toner particles is prevented by the reciprocation of the film member 40, there is no need of additionally providing a toner removing member such as a brush member to remove toner particles from the sleeve cover 37, and thus, a compact and space-saving configuration is obtained. Furthermore, there is no risk of foreign matter attributable to a toner removing member circulating together with the developer in the developing container 20, and this helps effectively prevent foreign matter from clogging the gap between the trimming blade 33 and the toner supply roller 30 to cause image defects such as a void image and the like.
Moreover, the film member 40 is reciprocated by using the rotation of the idle gear 41 which is used to drive the toner supply roller 30 and the developing roller 31 to rotate, and thus, there is no need of additionally providing a dedicated motor, an actuator, and the like for giving vibration to the film member 40, and thus, it is also possible to simplify an internal configuration of the developing device 3a.
Here, to return toner particles fallen into the region R back into the supply-conveyance chamber 22, it is preferable to rotate the toner supply roller 30 during non-image formation in a direction (clockwise direction in
As for timing of the reverse rotation of the toner supply roller 30, the timing may be set as necessary to a time when the image forming apparatus 100 is started up (when the power is turned on), a time when the image forming apparatus 100 is recovered from a power saving (sleep) mode or a time when printing on a predetermined number of sheets is finished, and the like, in accordance with the extent of the accumulation of toner particles on the film member 40.
Note that, in a case where the toner supply roller 30 is rotated in the direction reverse to the direction in which it is rotated during image formation, the idle gear 41 also rotates in a direction (arrow A′ direction in
Since the film member 40 is configured to be made to reciprocate by the contact between the projection 50 formed in the cylindrical portion 41a of the idle gear 41 and the trigger 45c of the link member 45, an amplitude and a cycle of the reciprocation of the film member 40 can be changed by changing a projection amount of the projection 50 or a number of projections formed as the projection 50 as necessary.
In the present embodiment, the engagement projection portion 61 includes the inclined surface 61a, and the upstream-side edge 60a of the cut portion 60 moves up along the inclined surface 61a onto the engagement projection portion 61; instead, for example, as shown in
Or, a window portion 63 as shown in
It should be understood that the present disclosure is not limited to the above embodiments, and various modifications are possible within the scope of the present disclosure. For example, the shapes and the configurations of the sleeve cover 37 and the film member 40 dealt with in the above embodiments are not meant as limitations but are merely examples, and the shapes and the configurations can be appropriately set in accordance with, for example, the configuration of the developing device 3a.
Specifically, in the above embodiments, the film member 40 is made to reciprocate by means of the trigger 45c provided on the link member 45 side and the projection 50 provided on the idle gear 41 side, but instead, the projection 50 may be provided on another gear in a drive gear train for driving the toner supply roller 30 or the developing roller 31 so as to intermittently come into contact with the trigger 45c to make the film member 40 reciprocate.
In the above embodiments, the present disclosure is applied to the developing devices 3a to 3d which each use a two-component developer, form a magnetic brush on the toner supply roller 30, transfer only toner from the toner supply roller 30 to the developing roller 31, and supply toner from the developing roller 31 to a corresponding one of the photosensitive drums 1a to 1d; the present disclosure is further applicable to developing devices configured otherwise, such as one as shown in
The above embodiments have been described dealing with the tandem-type color printer 100 as an example, but needless to say, the present disclosure is applicable to other types of image forming apparatuses, such as monochrome and color copiers, digital multifunction peripherals, monochrome printers, and facsimile machines.
The present disclosure is usable in developing devices having an inner wall portion that is opposed to a developing roller between a blade and an image carrier inside a casing. By use of the present disclosure, it is possible to effectively reduce accumulation of toner on the inner wall portion inside the developing device. By providing such a developing device, it is possible to achieve an image forming apparatus capable of effectively preventing image defects, such as toner dropping and the like caused by toner accumulation.
Number | Date | Country | Kind |
---|---|---|---|
2016-197805 | Oct 2016 | JP | national |