This application claims priority based on 35 U.S.C. §119 from prior Japanese Patent Application No. P 2010-049290, filed on Mar. 5, 2010, the entire contents of which are incorporated herein by reference.
This application relates to a developing device that develops an electrostatic latent image formed on an image bearing body. This application also relates to an image forming apparatus that includes the developing device.
A developing device includes a developing roller, a toner supply roller, and an agitator. The developing roller, which serves as a developer bearing body, develops an electrostatic latent image on a photosensitive drum, which serves as an image bearing body, with toner, or a developer. The toner supply roller, which serves as a developer supply member, supplies the toner to the developing roller. The agitator, which serves as a developer agitation member, agitates the toner so that the toner is efficiently moved to the toner supply roller. Japanese Laid-Open Patent No. 2005-172842 discloses one such developing device.
In such a developing device, however, toner may not be stably supplied to the developing roller as the amount of toner decreases, resulting in the occurrence of image defects such as image blurring.
An object of this application is to disclose a developing device and an image forming apparatus that are capable of providing a steady supply of a developer to a developer bearing body.
According to one aspect, a developing device includes a developer bearing body, a first developer supply member, a second developer supply member, and a compression member. The developer bearing body bears a developer. The first developer supply member supplies the developer to the developer bearing body. The second developer supply member moves the developer in the vicinity of the first developer supply member to the first developer supply member. The compression member opposes, and is out of contact with, the first developer supply member. The compression member also directs the developer moved by the second developer supply member to the first developer supply member, and compresses the developer between the first developer supply member and the compression member.
According to another aspect, an image forming unit includes a developing unit, a transfer unit, and a fixing unit. The developing unit develops an electrostatic latent image on an image bearing body with a developer to form a developed image, and includes a developer bearing body, a first developer supply member, a second developer supply member, and a compression member. The developer bearing body bears the developer. The first developer supply member supplies the developer to the developer bearing body. The second developer supply member moves the developer in the vicinity of the first developer supply member to the first developer supply member. The compression member opposes, and is out of contact with, the first developer supply member. The compression member also directs the developer moved by the second developer supply member to the first developer supply member, and compresses the developer between the first developer supply member and the compression member. The transfer unit transfers the developed image to a medium. The fixing unit fixes the developed image onto the medium.
The full scope of applicability of the developing device and the image forming apparatus will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The developing device and the image forming apparatus will be more fully understood from the following detailed description with reference to the accompanying drawings, which are given by way of illustration only, and should not limit the invention, wherein:
Preferred embodiments of a developing device and an image forming apparatus according to various embodiments will be described in detail with reference to the accompanying drawings. In each embodiment, the description will be given with reference to an electrophotographic color printer as an image forming apparatus.
The sheet cassette 1 is disposed in the lower part of the printer 100, and accommodates a stack of sheets S. The pick-up roller 2 feeds the sheets S one-by-one from the sheet cassette 1. The registration roller 3 and the pinch roller 4 sandwich a sheet S fed by the pick-up roller 2 therebetween, and transport the sheet S toward the image-forming units 10K, 10Y, 10M, and 10C. The registration roller 3 and the pinch roller 4 also correct skewed feeding of the sheet S.
The image-forming units 10K, 10Y, 10M, and 10C, which serve as developing devices, respectively form a black toner image, a yellow toner image, a magenta toner image, and a cyan toner image. The image-forming units 10K, 10Y, 10M, and 10C are arranged in this order from upstream to downstream in the transport direction F of the sheet S. The exposure heads 5K, 5Y, 5M, and 5C are respectively provided corresponding to the image-forming units 10K, 10Y, 10M, and 10C. Each of the exposure heads 5K, 5Y, 5M, and 5C may be an LED (Light-Emitting Diode) head.
The transfer unit 30, which is disposed below the image-forming units 10K, 10Y, 10M, and 10C, may include a transfer belt 31, a drive roller 32, a tension roller 33, transfer rollers 34K, 34Y, 34M, and 34C, and a belt cleaning blade 35. The transfer belt 31 is entrained about the drive roller 32 and the tension roller 33, and transports the sheet S in the transport direction F while electrostatically adhering it. The transfer rollers 34K, 34Y, 34M, and 34C respectively oppose the image-forming units 10K, 10Y, 10M, and 10C through the transfer belt 31. The transfer roller 34K transfers the black toner image formed by the image-forming unit 10K to the sheet S. The transfer roller 34Y transfers the yellow toner image formed by the image-forming unit 10Y to the sheet S. The transfer roller 34M transfers the magenta toner image formed by the image-forming unit 10M to the sheet S. The transfer roller 34C transfers the cyan toner image formed by the image-forming unit 10C to the sheet S. The belt cleaning blade 35 removes toner on the transfer belt 31.
The fixing unit 40, which is disposed downstream of the image-forming units 10K, 10Y, 10M, and 10C in the transport direction F, may include a heat roller 41 and a backup roller 42. The fixing unit 40 fixes the transferred toner images onto the sheet S with heat and pressure. The transport rollers 6, which are disposed downstream of the fixing unit 40, deliver the sheet S with the fixed toner images thereon to the stacker 7. The stacker 7 holds the sheet S delivered by the transport rollers 6 thereon.
In
Next, the image-forming units 10K, 10Y, 10M, and 10C will be described in detail. Because the image-forming units 10K, 10Y, 10M, and 10C have the same structure, except for toner colors, the image-forming unit 10K, which forms a black toner image, will be described by way of example here.
The photosensitive drum 11, which serves as an image bearing body, bears an electrostatic latent image formed by the exposure head 5K on its surface. The photosensitive drum 11 may be composed of an aluminum cylinder coated with an organic photosensitive layer. The photosensitive drum 11 rotates in the direction shown in
The charging roller 12, which serves as a charging member, rotates while being in contact with the surface of photosensitive drum 11 to uniformly charge the surface. The charging roller 12 may be composed of a metallic shaft coated with semi-conductive epichlorohydrin rubber. In the first embodiment, this shaft has a major diameter of 6 mm, and the charging roller 12 including the epichlorohydrin rubber has a major diameter of 12 mm.
The developing roller 13, which serves as a developer bearing body, develops the electrostatic latent image on the photosensitive drum 11 with toner 24, or a developer. The developing roller 13 may be composed of a metallic shaft coated with semi-conductive urethane rubber. In the first embodiment, this shaft has a major diameter of 10 mm, and the developing roller 13 including the urethane rubber has a major diameter of 16 mm. The developing roller 13 is disposed so that the photosensitive drum 11 bites 0.1 mm into the developing roller 13. That is to say, the distance between centers of a rotational axis of the photosensitive drum 11 and a rotational axis of the developing roller 13 is 0.1 mm less than the sum of their radii. The developing roller 13 rotates in the direction shown in
The toner supply roller 14, which serves as a first developer supply member, supplies the toner 24 to the developing roller 13. The toner supply roller 14 may be composed of a metallic shaft coated with semi-conductive foamed silicone rubber. In the first embodiment, this shaft has a major diameter of 6 mm, and the toner supply roller 14 including the silicone rubber has a major diameter of 15.5 mm. The toner supply roller 14 is disposed so that the developing roller 13 bites 1 mm into the toner supply roller 14. That is to say, the distance between centers of a rotational axis of the developing roller 13 and a rotational axis of the toner supply roller 14 is 1 mm less than the sum of their radii.
The agitators 15 and 16, which serve as second developer supply members, are disposed above and in the vicinity of the toner supply roller 14. The agitators 15 and 16 agitate the toner 24 in the toner storage portion 19.
Returning to
The compression member 17 lies downstream of the agitator 15 in the rotational direction of the toner supply roller 14. That is to say, the compression member 17 is disposed between the agitator 15 and the developing roller 13. The compression member 17 directs toner 24 sent forth by the agitator 15 to the toner supply roller 14, and compresses the toner 24 between the toner supply roller 14 and the compression member 17, thereby making the toner 24 dense.
Multiple compression members 17 may be provided in the image-forming unit 10K. For instance, in
The developing blade 18, which serves as a layer thickness adjusting member, adjusts a thickness of a layer of toner 24 on the developing roller 13 to a predetermined thickness. The developing blade 18 is made of stainless steel and has a thickness of 0.08 mm. The developing blade 18 has a bent portion at one end. The bent portion has a predetermined radius of curvature, and is pressed toward the developing roller 13.
The toner storage portion 19, which serves as a developer storage portion, stores the toner 24 supplied from a toner cartridge mounted over the toner storage portion 19. The toner storage portion 19 incorporates the developing roller 13, the toner supply roller 14, the agitators 15 and 16, the compression member 17, and the developing blade 18 therein.
The cleaning blade 20, which serves as a cleaning member, scrapes toner that remains on the photosensitive drum 11 after the toner image has been transferred to the sheet S or the transfer belt 31, off the photosensitive drum 11. The cleaning blade 20 may be composed of a metallic plate to which urethane rubber formed to predetermined dimensions has been attached.
The spiral conveyer 21, which is made of metal, is disposed under the cleaning blade 20. The spiral conveyer 21 rotates with a driving force from a driving source through a gear attached to its one end, and conveys the scraped off toner, i.e., waste toner, to a waste toner chamber, not shown.
The sealing member 22, which has a film shape, is provided in the vicinity of the spiral conveyer 21 to prevent the waste toner conveyed by the spiral conveyer 21 from leaking out of the image-forming unit 10K. The sealing member 23, which has a film shape, is provided under the developing roller 13 to prevent the toner 24 in the toner storage portion 19 from leaking out of the image-forming unit 10K.
The toner 24 is nonmagnetic one-component toner, and has an average particle size of 5.5 μm. The toner 24 may be made by a grinding technique. The toner 24 contains fine particles of silica or oxidized titanium, which serve as additives, for controlling toner flowability and chargeability. Each of the particles has a particle size on the order of a few nanometers. In the first embodiment, the toner 24 is negatively chargeable, i.e., a polarity of the toner 24 is to be negative when it is triboelectrically charged.
The image-forming unit 10K also has a molded cover 25. The cover 25 protects the above-described elements of the image-forming unit 10K, and prevents the toner 24 from leaking out of the image-forming unit 10K.
Next, a control system of the printer 100 will be described.
The print controller 50 may be composed of a microprocessor, memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory), an input/output (I/O) port, and a timer. The print controller 50 receives print data and control commands from a host device such as a personal computer, not shown, through the interface 51, and controls the entire printer 100 according to control programs stored in the memories, thereby performing a printing operation. The receive memory 52 temporarily stores the print data received through the interface 51. The image data memory 53 sequentially stores the print data temporarily stored in the receive memory 52. The image data memory 53 also stores image data generated by the print controller 50 based on the print data. The operation section 54 may include an LED, a switch, and a display. The LED notifies a user of the status of the printer 100. The user can provide instructions to the printer 100 through the switch and the display. The sensors 55 are various sensors, such a medium sensor, a hygrothermal sensor, and a print density sensor, to monitor the status of the printer 100.
The electric power supplies 12p, 13p, 14p, and 34p respectively apply predetermined voltages to the charging roller 12, the developing roller 13, the toner supply roller 14, and the transfer roller 34, according to commands from the print controller 50.
The exposure head controller 5c sends the image data stored in the image data memory 53 to the exposure head 5, and drives the exposure head 5 based on the image data, according to commands from the print controller 50. The fixing controller 40c applies a voltage to the fixing unit 40, and causes the fixing unit 40 to fix a toner image transferred to the sheet S onto the sheet S, according to commands from the print controller 50. The transport motor controller 8c controls a transport motor 8, which rotates the pick-up roller 2, the drive roller 32, and the like, to transport the sheet S. That is to say, the transport motor controller 8c initiates and stops the transportation of the sheet S with predetermined timing according to commands from the print controller 50. The drum motor controller 9c controls a drum motor 9 to rotate the photosensitive drum 11. When the drum motor controller 9c drives the drum motor 9, the photosensitive drum 11 rotates in the direction shown in
Next, a printing operation of the printer 100 will be described with reference to
Next, an internal operation of the image-forming unit 10K in the printing operation will be described with reference to
The developing roller 13 develops the electrostatic latent image on the photosensitive drum 11 with toner 24. The toner 24 on the developing roller 13 is being negatively charged, and the electric power supply 13p applies a direct voltage of −200 Volts to the developing roller 13. This allows the toner 24 to move from the developing roller 13 to the exposed surface of the photosensitive drum 11, thereby forming a toner image on the photosensitive drum 11.
The transfer roller 34K transfers the toner image to the sheet S on the transfer belt 31 (See, e.g.,
Next, an operation for supplying the toner 24 from the toner supply roller 14 to the developing roller 13 will be described.
Referring to
The toner supply roller 14 rotates in the same direction as the developing roller 13 while in contact with the developing roller 13. At this time, the cell 14a is pressed toward the developing roller 13 while moving. Therefore, the cell 14a is deformed and thereby discharges the toner 24 therein to the developing roller 13.
As described above, in the first embodiment, the toner 24 in the toner storage portion 19 is supplied to the cell 14a of the toner supply roller 14 through the three paths. That is to say, the toner 24 is supplied to the cell 14a through the path A along which the toner 24 moves toward the toner supply roller 14 under the force of gravity, the path B along which the toner 24 is moved toward the toner supply roller 14 by the agitator 15, and the path C along with the toner 24 moves toward the toner supply roller 14 after its direction of travel has been changed by the compression member 17. Therefore, the toner supply roller 14 can hold more toner 24 in the cell 14a, thereby providing a steady supply of the toner 24 to the developing roller 13.
Next, advantages of the first embodiment will be described by comparison with a first comparative example and a second comparative example, based on an evaluation test of performance for supplying the toner 24 from the toner supply roller 14 to the developing roller 13.
As described above, in the image-forming unit 10K of the first embodiment, the compression member 17 is a round bar that has a major diameter of 2 mm, and the distance between the toner supply roller 14 and the compression member 17 is 1 mm. As shown in
In this test, no-image printing was continuously performed on 7,500 sheets with a color printer (C710: OKI Data Corp.) for each of the image-forming units 10K, 10Ka, and 10Kb. Each time a total of 0, 2,000, 4,000, 6,500, and 7,500 no-image prints were obtained, a solid image pattern (print density 100%) was printed on a sheet, and the presence or absence of image defects on the solid image pattern was evaluated. The solid image pattern was printed in color with four image-forming units (e.g., the image-forming units 10K, 10Y, 10M, and 10C). In this test, the no-image printing was performed so as to accelerate the deterioration of the toner 24 by repeatedly applying pressure to the toner 24 between the developing roller 13 and the toner supply roller 14 without consuming the toner 24.
As shown in
In the image-forming unit 10Ka of the first comparative example (See, e.g.,
In the image-forming unit 10Ka, the toner 24 in the toner storage portion 19 is supplied to the cell 14a of the toner supply roller 14 through only two paths, i.e., the paths A and B in
In the image-forming unit 10Kb of the second comparative example (See, e.g.,
In the image-forming unit 10Kb, because the compression member 26 is in contact with the toner supply roller 14, the toner 24 is scraped off the cell 14a by the compression member 26 before being supplied to the developing roller 13. This causes a decrease in the amount of the toner 24 in the cell 14a, resulting in the occurrence of the image blurring on the solid image pattern.
As described above, in the first embodiment, the image-forming unit 10K has the compression member 17 between the developing roller 13 and the agitator 15. The compression member 17 directs toner 24 sent forth by the agitator 15 to the toner supply roller 14, and compresses the toner 24 between the toner supply roller 14 and the compression member 17. Therefore, the image-forming unit 10K is capable of increasing the amount of the toner 24 in the cell 14a of the toner supply roller 14, thereby providing a steady supply of the toner 24 from the toner supply roller 14 to the developing roller 13. Thus, the image-forming unit 10K is capable of preventing the occurrence of image defects such as image blurring.
In addition, in the image-forming unit 10K, because the compression member 17 is out of contact with the toner supply roller 14, the toner 24 is not scraped off the cell 14a by the compression member 17.
Moreover, in the image-forming unit 10K, the compression member 17 lies downstream of the agitator 15 in the rotational direction of the toner supply roller 14. Therefore, the image-forming unit 10K is capable of increasing the amount of the toner 24 in the cell 14a, in the vicinity of a contact region of the toner supply roller 14 that is in contact with the developing roller 13. Thus, the image-forming unit 10K is capable of supplying the toner 24 more effectively from the toner supply roller 14 to the developing roller 13.
Furthermore, in the image-forming unit 10K, because the agitators 15 and 16 are arranged side-by-side in the rotational direction of the toner supply roller 14, the amount of the toner 24 in the cell 14a further increases.
On the other hand, toner 24 that comes into contact with an upper portion of the compression member 17 goes over the compression member 17, and moves toward the developing roller 13, i.e., in the Y-axis direction. As shown in
In general, because an image-forming unit consumes less toner in its internal end regions than in its internal central region in the X-axis direction, deteriorated toner is liable to accumulate in the end regions of the image-forming unit. The deteriorated toner is poorly movable due to its decreased flowability. Therefore, the amount of toner supplied to the cell 14a of the toner supply roller 14 decreases in the end regions of the image-forming unit, resulting in the occurrence of image defects such as image blurring at end portions of the sheet S in the X-axis direction.
In the image-forming unit 210K of the second embodiment, however, the barrier plate 27 directs the deteriorated toner from the end regions to the central region in the X-axis direction. Therefore, the deteriorated toner is less likely to accumulate in the end regions of the image-forming unit 210K, thereby preventing the occurrence of image defects at end portions of the sheet S in the X-axis direction.
As described above, in the second embodiment, the image-forming unit 210K has the barrier plate 27 that directs the toner 24 from the end regions to the central region in the longitudinal direction of the compression member 17, in addition to the compression member 17. Therefore, the image-forming unit 210K is capable of preventing deteriorated toner from accumulating in end regions of the image-forming unit 210K in the X-axis direction, thereby preventing the occurrence of image defects at end portions of the sheet S.
While each of the embodiments has been described with respect to an electrophotographic color printer, the disclosed systems may also be applicable to a facsimile machine, a copier, or a multifunction peripheral (MFP).
The developing device and the image forming apparatus being thus described, it will be apparent that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be apparent to one of ordinary skill in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-049290 | Mar 2010 | JP | national |