1. Field of the Invention
The present invention relates to an image forming apparatus in which an electrophotographic process or an electrostatic recording processing is used and a developing device for use in the image forming apparatus, particularly to image forming apparatuses such as a copying machine, printer, and facsimile machine, and a developing device for use in the image forming apparatus.
2. Related Background Art
In a conventional image forming portion in image forming apparatus such as a copying machine, an image forming process comprising: charging a photosensitive member as an image bearing member by a charging device; exposing an image of an original to light in an exposure position by an exposure optical system to form an electrostatic latent image on a peripheral surface of the photosensitive member; developing the electrostatic latent image formed on the peripheral surface of the photosensitive member by a developing device to form a developer (toner) image; applying a voltage to a transferring device and transferring the toner image to a transferring material; cleaning the photosensitive member with a cleaner after the image is transferred from the photosensitive member; and performing pre-exposure charging to eliminate a remaining charge, is repeated to form the images.
In the aforementioned developing device, a single developer carrying member (hereinafter referred to as a developing sleeve) is disposed at a constant gap from the photosensitive member. In order to regulate the gap, an abutment roller method is generally used in which the gap is determined by a difference between an outer diameter of a rotary regulating member (abutment roller) coaxially disposed with respect to the developing sleeve and an outer diameter of the developing sleeve, and the gap is further ensured by pressing the developing sleeve toward the photosensitive member.
However, the developing device having the single developing sleeve in the conventional image forming portion cannot catch up with a high speed (copy speed-up). In general, for a peripheral speed of the developing sleeve, the developing sleeve rotates at the speed of about 150% of the peripheral speed of the photosensitive member to develop the image. In order to increase the speed, the peripheral speed of the developing sleeve must be set to 200% or more of the peripheral speed of the photosensitive member; otherwise a supply of developer becomes insufficient and a copy density is lowered. However, when the peripheral speed of the developing sleeve is increased, the increased peripheral speed causes fusion bond of the developer by temperature rise of an end of the developing sleeve, and other problems.
Therefore, there has heretofore been proposed a developing device which is provided with a plurality of developing sleeves and used without largely increasing the peripheral speed of the developing sleeve and which can achieve a high speed. In the developing device, positioning means for securing a constant gap between the photosensitive member and each developing sleeve is preferably disposed with high precision in order to maintain developing properties. However, in the conventional developing device, it is difficult to dispose the developing sleeves to be close to one another.
An object of the present invention is to provide a developing device in which a first developer carrying member can be disposed to be as close to a second developer carrying member as possible.
Another object of the present invention is to provide an image forming apparatus in which a first developer carrying member can be disposed to be as close to a second developer carrying member as possible.
Further objects of the present invention will be apparent upon reading the following detailed description.
An embodiment of a developing device to which the present invention is applied and an image forming apparatus provided with the developing device will be described hereinafter with reference to the drawings.
First, a schematic constitution of an image forming portion in the image forming apparatus according to the present invention will briefly be described with reference to
In the image forming portion shown in
After the transferring of the toner image, toner remaining on the photosensitive member 1 is removed by a cleaner 6, and the member is exposed to light by a pre-exposure device 7 so that a remaining charge is eliminated from the photosensitive member 1 and initialization is achieved. The image forming process is repeated to form the image on the subsequent transferring material P.
The developing device to which the present invention is applied will next be described in detail with reference to
A developing step will next be described in which the same electrostatic latent image formed on the photosensitive member 1 is developed by the first and second developing sleeves 23 and 24.
On the side of the first developing sleeve 23, the developer in the developing container is supplied onto the first developing sleeve 23 by the first magnetic field generation means, and a blade 25 regulates a layer thickness of the developer on the first developing sleeve 23. The developer with the regulated layer thickness on the first developing sleeve 23 is carried to the developing portion with rotation of the first developing sleeve 23, and adheres to the electrostatic latent image by a developing electric field (alternating electric field). The developing electric field is formed by applying a vibration voltage constituted of superimposed AC and DC voltages to the first developing sleeve 23.
On the other hand, on the side of the second developing sleeve 24, the developer in the developing container is supplied onto the second developing sleeve 24 by the second magnetic field generation means, and the supplied developer is regulated to have a predetermined layer thickness between the second developing sleeve 24 and the first developing sleeve 23. The developer with the regulated layer thickness on the second developing sleeve 24 is carried to the developing portion with rotation of the second developing sleeve 24, and adheres to the electrostatic latent image by the developing electric field (alternating electric field). Since the first developing sleeve 23 serves to regulate the layer thickness of the developer on the second developing sleeve 24, it is preferable to set a distance between the first developing sleeve 23 and the second developing sleeve 24 to a desired value. The developing electric field is formed by applying the vibration voltage constituted of superimposed AC and DC voltages to the second developing sleeve 24.
Additionally, since the developer is vibrated/moved in a gap (developing portion) between the first and second developing sleeves 23, 24 and photosensitive member 1 during developing, it is important to secure a size of the gap between the first and second developing sleeves 23, 24 and photosensitive member 1.
As described later, an abutment roller (cylindrical member) 29 which abuts on the peripheral surface of the photosensitive member 1 to secure and regulate the size of the gap (distance) between the first developing sleeve 23 and the photosensitive member 1 is disposed on a rotation shaft of the first developing sleeve 23. An abutment roller 30 is similarly disposed on a rotation shaft of the second developing sleeve 24.
Additionally, the abutment rollers 29, 30 are disposed on opposite ends in the longitudinal direction of the first and second developing sleeves 23, 24, respectively. By the abutment rollers 29, 30 being disposed on the opposite ends of the first and second developing sleeves 23, 24, the peripheral surfaces of the photosensitive member 1 and first developing sleeve 23, or the peripheral surfaces of the photosensitive member 1 and second developing sleeve 24 are disposed in parallel with each other in the longitudinal direction of the developing sleeve, and the aforementioned gap becomes constant. Therefore, the longitudinal direction of the photosensitive member 1 is substantially the same as the longitudinal direction of the first and second developing sleeve 23, 24.
As described above, a developing area can be enlarged without largely increasing a peripheral speed of the first and second developing sleeves 23, 24 as compared with the conventional art. Therefore, even when an image forming speed (developer image forming speed) is increased, a problem of the aforementioned fusion bond phenomenon of the developer caused by a temperature rise of the end of the developing sleeve can be solved.
For the aforementioned reason, the first and second developing sleeves 23, 24 are disposed to be close to each other in such a manner that the gap between the opposite sleeves is in a range of 0.4 to 0.8 mm, and is set at 0.4 mm in the present embodiment.
A holding member 26 fixed to the developing container 22, and the developer regulating blade 25, held by the holding member 26, as developer regulation means for regulating the layer thickness of the developer carried by the first developing sleeve are disposed above the first developing sleeve 23.
Moreover, agitating members 27, 28 for agitating the developer in the container and carrying the developer toward the first and second developing sleeves are disposed inside the developing container 22.
In the developing device 21 constituted as described above, the photosensitive member 1 and first developing sleeve 23, or the photosensitive member 1 and second developing sleeve 24 are disposed opposite to and close to each other at a predetermined distance.
For the rocking members 31, 32, bearings 34 are disposed to rotatably support the second developing sleeve 24 in such a manner that the gap between the first developing sleeve 23 and the second developing sleeve 24 forms a predetermined interval. The second developing sleeve 24 rotatably supports the abutment roller 30 as the regulating member.
Here, the abutment roller 29 of the first developing sleeve 23 and the abutment roller 30 of the second developing sleeve 24 are rotatably supported with an interval, indicated by the reference character “a”, formed therebetween as shown in
Moreover, since the abutment rollers 29, 30 are disposed on the first and second developing sleeves 23, 24 without being superposed upon each other, the abutment rollers 29, 30 can be prevented from abutting on the same peripheral surface of the photosensitive member 1. The rollers 29, 30 prevent the same peripheral surface of the photosensitive member 1 from being excessively abraded, and life of the photosensitive member can be lengthened. Since the rollers 29, 30 can prevent the same peripheral surface of the photosensitive member 1 from being excessively abraded, the gap (distance) from the photosensitive member regulated by the rollers 29, 30 can be maintained over a long time. Therefore, a satisfactory developer image can be formed over a long term by the developing device.
In
Moreover, the rocking member 31 is provided with a protrusion 42 for determining a rocking range, and the protrusion meshes with a groove 43 of the developing container 22 and determines upper and lower limit values of a rocking angle. Furthermore, the developing device 21 is supported by a support member 41 of the developing device (developing unit), and pressed toward the photosensitive member 1 by a pressing member 40.
As described above, an abutment portion of the abutment roller 29, 30 to the photosensitive member 1 protrudes from the peripheral surface of the developing sleeve 23, 24. For example, the peripheral surface of the first developing sleeve 23 is in a position apart from the peripheral surface of the photosensitive member 1 by a difference (about 0.23 mm in the present embodiment) between a radius of the abutment roller 29 and a radius of the first developing sleeve 23. On the other hand, the peripheral surface of the second developing sleeve 24 is pressed toward the photosensitive member 1 by the rocking member 31 and pressing member 39 while the interval between the first developing sleeve 23 and the second developing sleeve 24 is maintained at a constant value. Thereby, similarly as the first developing sleeve 23, the peripheral surface of the second developing sleeve 24 is in a position apart from the peripheral surface of the photosensitive member 1 by a difference between a radius of the abutment roller 30 and a radius of the second developing sleeve 24.
According to the present embodiment, the first developing sleeve 23 is disposed to be close to the second developing sleeve 24, the sleeves can integrally be constituted in the developing device 21, and the developing device can therefore be miniaturized.
Moreover, since the abutment rollers 29, 30 are disposed on the first and second developing sleeves 23, 24 without being superimposed upon each other, the abutment rollers 29, 30 do not abut on the same peripheral surface of the photosensitive member 1, which lengthens life of the photosensitive member 1.
Moreover, while the distance between the first developing sleeve 23 and the second developing sleeve 24 is maintained to be constant, one developing sleeve can independently be rocked/pressed. Therefore, the components can highly precisely be positioned with a simple constitution.
In the aforementioned embodiment, the image forming apparatus for forming a monochromatic developer image as shown in
For example, a plurality of image forming portions shown in
Moreover, the present invention can also be applied to another image forming apparatus. In the apparatus, a plurality of developing devices 21 are disposed for the respective toner colors (yellow, magenta, cyan, black) on the photosensitive member. Furthermore, a step of transferring the toner image formed on the photosensitive member to the transferring material P held by a transfer belt or another transferring material bearing member is repeated to form the full color image on the transferring material P. In this case, similarly, the medium to which the toner image is transferred from the photosensitive member may be a so-called known intermediate transfer member. That is, the constitution comprises sequentially superimposing and primarily transferring the toner images of the photosensitive member onto the intermediate transfer member, and collectively and secondarily transferring the full color toner image of the intermediate transfer member to the transferring material P.
Furthermore, the present invention can also be applied to another image forming apparatus. In the apparatus, a plurality of developing devices 21 are disposed for the respective toner colors (yellow, magenta, cyan, black) on the photosensitive member, a developing step is repeatedly performed on the photosensitive member, the full color toner image is thereby formed on the photosensitive member, and subsequently the image is collectively transferred to the transferring material.
Number | Date | Country | Kind |
---|---|---|---|
2000-173546 | Jun 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3575139 | Nuzum | Apr 1971 | A |
4098228 | Ruckdeschel et al. | Jul 1978 | A |
4512658 | Winkelmann | Apr 1985 | A |
4994853 | Fukuchi et al. | Feb 1991 | A |
5229821 | Fujii | Jul 1993 | A |
5300987 | Aoyama et al. | Apr 1994 | A |
5471286 | Tanaka | Nov 1995 | A |
Number | Date | Country |
---|---|---|
58-85461 | May 1983 | JP |
4-340989 | Nov 1992 | JP |
7-13438 | Jan 1995 | JP |
7-160062 | Jun 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20020054773 A1 | May 2002 | US |