The present invention relates to a developing device in which an electrostatic latent image formed on an image bearing member by an electrophotographic process, an electrostatic recording process or the like is developed to form a visible image.
As a dry development type applied to the electrophotographic process, a one-component development type using only toner particles and a two-component development type using a developer consisting of toner particles and carrier particles have been known. In a developing device of such a one-component development type, for example, the toner is carried on a surface of a developing roller as a developer carrying member by a toner supplying roller formed of a foam material and then the electrostatic latent image on the image bearing member is developed with the toner. The toner remaining on the developing roller surface after the development is peeled off by the toner supplying roller.
As the developing device having such a constitution, also a structure in which the surface of the developing roller is provided with a plurality of recessed portions and a uniform toner is carried on the surface of the developing roller has been proposed (Japanese Laid-Open Patent Application (JP-A) 2007-108350).
In the case of a developing device of the one-component development type as disclosed in JP-A 2007-108350, there is a possibility that improper replacement of the toner on the developing roller generates. That is, the toner remaining on the developing roller after the development is peeled off by the toner supplying roller. At this time, a fresh (new) toner is supplied from a toner supplying member (roller) to the developing roller, so that the residual toner on the developing roller is replaced (substituted) with the fresh toner. However, in the case of the constitution in which the developing roller is provided with the plurality of recessed portions as described above, the residual toner in the recessed portions is not readily peeled off by the toner supplying roller. This is because the toner supplying member (roller) cannot sufficiently contact the residual toner coated in the recessed portions and thus a force necessary to peel off the toner is not readily applied to the toner.
On the other hand, it would be considered that a surface layer shape of the toner supplying roller is devised to improve a contact property with the residual toner in the recessed portions and thus the toner is easily peeled off. However, due to a lowering in rigidity and durability with the device of the surface layer of the toner supplying roller, it is difficult to realize and continue a desired peeling-off property. Even if the toner peeling-off property can be enhanced, in order to supply the new toner to an associated space with reliability, there is a limitation in toner supply amount by the toner supplying roller, and therefore it is difficult to ensure a desired toner supply amount.
For the reason described above, in the case of the developing device disclosed in JP-A 2007-108350, improper replacement of the toner is liable to generate. When such an improper replacement of the toner generates, the same toner is liable to remain on the developing roller, so that a ghost image generated due to a difference in characteristic between new and old toners and a lowering in image quality due to filming or the like of the developing roller are liable to be caused.
In view of these circumstances, the present invention has been accomplished in order to realize a constitution in which replacement of the toner carried on a developer carrying member is satisfactorily made in a state in which the surface of the developer carrying member is provided with the plurality of the recessed portions.
According to an aspect of the present invention, there is provided a developing device comprising: a developing container for accommodating a developer containing non magnetic toner particles and magnetic carrier particles; a feeding member for feeding the developer in the developing container; a developer carrying member, provided opposed to an image bearing member for bearing an electrostatic latent image, for carrying and feeding the developer fed to a surface thereof by the feeding member; and a collecting device for collecting a part of the developer carried on the developer carrying member, wherein the collecting device is provided upstream of a developing portion where the developer carrying member opposes the image bearing member and downstream of a supplying portion where the developer fed by the feeding member is supplied to the developer carrying member with respect to a developer feeding direction of the developer carrying member, and the collecting device is disposed opposed to the developer carrying member, wherein a coverage which is a percentage of coating of surfaces of the carrier particles with the toner particles is 100% or more and 200% or less, wherein the developer carrying member has a plurality of recessed portions formed on a surface thereof so that at least the toner particles having an average particle size are contactable with inner surfaces of the recessed portions and the carrier particles having an average particle size are not contactable with the inner surfaces of the recessed portions, and wherein, the recessed portions are formed so that not less than half of the toner particles having the average particle size are exposed from the recessed portions when the toner particles having the average particle size enter the recessed portions.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
<First Embodiment>
First Embodiment of the present invention will be described using
[Image Forming Apparatus]
An image forming apparatus 100 in this embodiment is of an electrophotographic type, and includes a photosensitive drum 1 as an image bearing member. The photosensitive drum 1 is a drum shaped photosensitive member constituted by applying a photoconductive layer onto an electroconductive substrate, and is rotatably provided on an unshown frame. The photosensitive drum 1 is rotationally driven in an arrow direction in
[Developing Device]
The developing device 20 in this embodiment will be described. First, a general structure of the developing device 20 will be described using
In this embodiment, the non-magnetic toner is a positive-polarity toner which is manufactured by a polymerization method and which is 7.8 μm in number-average particle size (D40) rt and 0.97 in average circularity. The average circularity may preferably be 0.95 or more in order to sufficiently replace easily the toner in the recessed portion with a fresh toner. As the magnetic carrier, a standard carrier P-02 (manufactured by the Imaging Society of Japan) of 90 μm in number-average particle size rc was used. Measuring methods of the number-average particle sizes of the toner and the carrier and the average circularity of the toner will be described later. The two-component developer was obtained by mixing the toner with the carrier so that a ratio of a toner weight to an entire weight of the developer (hereinafter referred to as a TD ratio q) was 10%.
The developing container 21 is open at a portion (opening) opposing the photosensitive drum 1, and at this opening, a cylindrical developing roller 22 as a developer carrying member is rotatably supported. The developing roller 22 is rotationally driven in an arrow h direction in
The developing container 21 is provided with feeding members 24a, 24b such as screws as a feeding means for feeding the developer in the developing container 21. The developer supplied into the developing container 21 and the developer collected by a developer collecting device 23 described subsequently are fed to the neighborhood of the developing roller 22 while being stirred by the feeding members 24a, 24b. In this feeding process, the toner and the carrier are charged to different polarities, respectively. The fed developer is carried on the developing roller 22 by a magnetic force of the developing magnet 222 disposed in the developing roller 22 at a supplying portion W. That is, the magnetic carrier is attracted to and carried on the developing roller 22 by the magnetic force of the developing magnet 222. At this time, on the surface of the carrier, the toner charged to the different (opposite) polarity is electrostatically deposited, and therefore the toner and the carrier are carried on the surface of the developing roller 22. Accordingly, the developer containing the toner and the carrier fed by the feeding members 24a, 24b is supplied to the developing roller 22 at the supplying portion W.
Inside the developing container 21, the developer collecting device 23 as a collecting means for collecting a part of the developer carried on the developing roller 22 is disposed. The developer collecting device 23 is disposed upstream of the developing portion T and downstream of the supplying portion W with respect to a developer feeding direction (rotational direction h) of the developing roller 22 so as to oppose the developing roller 22 with a gap (spacing) with the developing roller 22. The developer collecting device 23 includes a collecting roller 231 rotatably supported by the developing container 21 and a collecting magnet (permanent magnet) which are fixedly provided inside the collecting roller 231 and which has a plurality of magnetic poles. The collecting roller 231 is rotationally driven by an unshown driving means so as to move in an opposite direction to the rotational direction of the developing roller 22 at a collecting portion U where the collecting roller 231 opposes the developing roller 22. The collecting roller 231, the developing roller 22 and the feeding members 24a, 24b and driven by distributing a driving force from a single driving motor as a driving means by a gear train. However, each or some of these members may also be driven by a separate driving motor.
The developer collecting device 23 constituted as described above collects a part of the developer carried on the developing roller 22 by the magnetic force by forming a magnetic field by a cooperation between the developing magnet 222 disposed in the developing roller 22 and the collecting magnet 232 disposed therein. Specifically, by a magnet field formed by N22 pole of the developing magnet 222 and S23 pole of the collecting magnet 232, a part of the developer is carried on the surface of the collecting roller 231. At this time, the developer collecting device 23 is positioned downstream of the supplying portion W and upstream of the developing portion T with respect to the rotational direction of the developing roller 22, and therefore a part of the developer supplied to the developing roller 22 is collected before being fed to the developing portion T.
The developer carried on the developer collecting device 231 is moved in an arrow i direction and is peeled off from the developer collecting device 231 by a repelling magnetic field of two N poles (repelling poles), and thus is fed into a developer feeding path by the feeding members 24a, 24b. Incidentally, a collecting blade 25 is provided in contact with or closely to the surface of the collecting roller 231 so as to oppose the repelling poles (N poles), so that the developer on the collecting roller 231 is peeled off also by the collecting blade 25 and thus is fed to the feeding path.
[Structure of Recessed Portions of Developing Roller]
A structure (projection-recess structure) of the plurality of recessed portions 221 formed on the surface of the developing roller 22 will be described using
The elastic layer 221b uses a rubber material having proper elasticity as a base material, and electroconductivity is imparted to the base material by adding electroconductive fine particles into the base material. As the base material, it is possible to use silicone rubber, acrylic rubber, nitrile rubber, urethane rubber, ethylene propylene rubber, isopropylene rubber, styrene-butadiene rubber, and the like. As the electroconductive fine particles, it is possible to use carbon black fine particles, titanium oxide fine particles, metal fine particles and the like. In the elastic layer 221b, in addition to the electroconductive fine particles, spherical resin particles may also be dispersed in order to adjust surface roughness. In this embodiment, the developing roller 22 is constituted by the base layer 221a formed of stainless steel, the elastic layer 221b formed on the base layer 221a by dispersing carbon black fine particles in silicone rubber and urethane rubber, and a coating layer 221c, formed on the elastic layer 221b, including the plurality of recessed portions 221.
Specifically, the coating layer 221c formed of the resin material is provided on the elastic layer 221b and is provided with the plurality of recessed portions 221. The coating layer 221c is formed of a fluorine-containing UV-curable resin material and the plurality of recessed portions 221 are formed by UV curing.
At this time, in order to enhance an adhesive property between the elastic layer 221b and the coating layer 221c, a primer layer may also be provided therebetween. In this embodiment, the projection-recess structure is formed on the coating layer 221c on the elastic layer 221b, but may also be formed on the elastic layer 221b. At this time, on the elastic layer, the coating layer may be formed or not formed.
The developing roller 22 may be provided or not provided with the elastic layer 221b. Specifically, the coating layer 221c of resin or metal is formed on the base layer 221a, the projection-recess structure may be formed on the coating layer 221c or may also be directly formed on the base layer 221a. On each of the coating layer, the elastic layer and the base layer provided with the projection-recess structure, a high-hardness material or an insulating material may also be coated in order to prevent abrasion or to perform an insulation process. At this time, there is a need to form a thin coating layer to the extent that the projection-recess structure sufficiently remains.
Each of the plurality of recessed portions 221 has the bottom surface 220 which is substantially unchanged in depth d with respect to the developer feeding direction of the developing roller 22. Such a projection-recess structure is grooves which are regularly arranged with a period E in the rotational direction h and which have a minimum opening width L. In this embodiment, each recessed portion 221 is 9 μm in period E, 8 μm in minimum opening width L, 2 μm in depth d, and the coating layer 221c is 5 μm in thickness D. In this embodiment, the grooves are disposed in parallel to the rotational axis j but may also have an inclination relative to the rotational axis j.
[Behavior of Developer in Developing Device]
A behavior of the two-component developer in the developing device 20 during feeding in this embodiment will be described using
Here, the two-component developer 10 from which the coated toner 11 is removed is collected at the collecting portion U by the developer collecting device 23 by the action of the magnetic force, and then is sent along a path of an arrow C to be fed again to the feeding path by the feeding members 24. Thereafter, the two-component developer 10 is stirred and fed by the feeding members 24. Subsequently, this operation is repeated.
On the other hand, the toner 11 coated uniformly in the thin layer on the developing roller 22 without being collected by the developer collecting device 23 contacts the photosensitive drum 1 at the developing portion T. Then, by a potential difference generated between a voltage applied to the developing roller 22 by a voltage applying portion 26 and a latent image potential of the photosensitive drum 1, an image portion Im of the electrostatic latent image on the photosensitive drum 1 is developed with a toner 11a.
At this time, by properly setting a moving speed ratio v22/v1 defined by a moving speed v22 of the developing roller 22 and a moving speed v1 of the photosensitive drum 1, the electrostatic latent image can be developed on the photosensitive drum 1 using a desired toner amount. In this embodiment, the moving speed ratio was set to 1.05. A residual toner 11b remaining on the developing roller 22 without contributing to development is fed to the supplying portion W by rotation of the developing roller 22 is supplied with the developer again, so that the residual toner 11b is replaced with the new toner. Thereafter, this operation is repeated. In this embodiment, the developing roller 22 and the developer collecting device 23 are made equipotential by the voltage applying portion 26, but the developer collecting device 23 may also be in a floating structure in which no voltage is applied thereto.
[Coating of Toner on Developing Roller and Replacement of Toner]
Coating of the toner on the developing roller 22 and replacement of the toner will be described in detail. First, the toner coating on the developing roller 22 will be described. As described above, the two-component developer 10 fed to the supplying portion W is supplied to the developing roller 22 by a magnetic field formed by the developing magnet 222 disposed fixedly inside the developing roller 22. The supplied two-component developer 10 is magnetically formed in a chain by the influence of a magnetic field formed by rotation of the developing roller 22 and the developing magnet 222, and then is fed in the rotational direction h.
At this time, the magnetic chain comes under the influence of the magnetic force in addition to the feeding force by the developing roller 22, and therefore compared with the moving speed of the developing roller 22, the moving speed of the magnetic chain is easily increased. That is, in the feeding process, in order to feed the two-component developer 10 with a speed difference relative to the developing roller 22, there is a need to dispose the developing magnet 222 having a plurality of magnetic poles, i.e., at least two magnetic poles in the developing roller 22.
As a result, the non magnetic toner 11 is detached from the magnetic carrier and is moved to the recessed portion 221. The toner 11 moved to the recessed portion 221 contacts the magnetic chain which is subsequently fed, so that peeling off by the magnetic chain and movement to the magnetic chain are repeated. At this time, when a probability x of movement of the toner to the recessed portion 221 is sufficiently larger than a probability y of peeling off of the toner from the recessed portion 221 by the magnetic chain, an amount of the toner moved to the recessed portion 221 is increased with an increase in toner contact frequency in the feeding process.
As a result, after passing through the collecting portion U, the toner is selectively coated uniformly in the thin layer on the recessed portion 221 on the developing roller 22. That is, in order to uniformly coat the toner on the recessed portion 221 in the feeding process, the toner is made easy to be confined by the recessed portion 221 and the toner which is not confined by the recessed portion 221 is mad easy to be peeled off by the subsequent carrier. For this purpose, in this embodiment, at least the plurality of recessed portions 221 formed on the surface of the developing roller 22 are formed so that at least the toner having the average particle size is contactable with the inner surface of the recessed portion 221 and the carrier having the average particle size is not contactable with the inner surface of the recessed portion 221. In this embodiment, as described above, in order to feed the two-component developer 10 by the developing roller 22, the developing magnet 222 having the plurality of (two or more) magnetic poles is disposed inside the developing roller 22.
Replacement of the toner will be described in detail.
That is, in order to satisfactorily perform the replacement of the toner in the feeding process, it is preferable that the plurality of recessed portions 221 are formed so that the depth d of the recessed portions 221 is not more than a half of the average particle size rt of the toner. Further, it is preferable that the plurality of recessed portions 221 are formed so that the top of the recessed portion 221 is at least lower than a position of the center of gravity of the toner which contacts the bottom surface of the recessed portion 221 and which has the average particle size rt. By forming the recessed portion 221 in this manner, the toner 11b rotates and easily gets over the top of the recessed portion 221, so that a toner peeling(-off) property is improved.
Here, in the illustrated example, in order to detach the toner 11b from the recessed portion 221, the recessed portions 221 are formed so that the toner 11b rotates and gets over the top of the recessed portion 221. However, depending on a shape or inclination of the side surface 220a of the recessed portion 221 in a downstream side with respect to the developer feeding direction (rotational direction h) of the developing roller 22, the toner contacting the bottom surface 220 does not contact the top but contacts a part of the side surface 220a in some cases. For example, in the case where the side surface 220a is inclined so that the side surface 220a is spaced from the bottom surface 220 toward the downstream side, the toner contacting the bottom surface 220 does not contact the top but contacts a part of the side surface 220a in some cases. However, even the recessed portion 221 having such a shape is required to get over the top in order to be detached from the recessed portion 221, and therefore a relationship between the top and the toner having the average particle size is defined as described above.
On the other hand, in order to improve the degree of the toner peeling-off, when the depth d of the plurality of recessed portions 221 is made shallow, a probability y that the toner is peeled off from the recessed portion by the magnetic chain becomes large. For this reason, finally, after the toner passes through the collecting portion U, the new toner in a sufficient amount cannot be coated on the recessed portions 221. For this reason, in order to coat the recessed portions 221 with the new toner in the sufficient amount, there is a need to move, to the recessed portions 221, the new toner in the sufficient amount relative to the amount of the toner to be peeled off.
In the formula 1, ρc represents a true density (4.8 g/cm3) of the carrier and pt is a true density (1.1 g/cm3) of the toner. In the neighborhood of the coverage S of 90%, the covering degree of the new toner abruptly changes. The reason for this would be considered as follows. In order to move the new toner in a sufficient amount to the recessed portions 221 in the feeding process, there is a need that a frequency of contact between the toner and the recessed portions 221 is increased and that a probability x of movement of the toner to the recessed portions 221 is made sufficiently larger than a probability of peeling-off of the toner from the recessed portions 221 by the magnetic chain. When the coverage S of the two-component developer 10 is high, the number of the toner particles contacting the recessed portions 221 increases and thus not only the above-described contact frequency is increased but also the magnetic carrier surface is not readily exposed by coating the magnetic carrier surface with the toner, so that the probability x is liable to become larger than the probability. For this reason, in the case where the coverage S is 90% or more at which the surface of the magnetic carrier is not substantially exposed, it would be considered that the covering degree described above is remarkably improved.
On the other hand, if the coverage S is less than 90%, even when the residual toner can be peeled off, the new toner in a sufficient amount cannot be coated on the developing roller 22. When the coverage S exceeds 200%, of the toner to be coated on the developing roller 22, a percentage of the toner deposited on a single layer of the toner contacting the recessed portions 221 abruptly increases, so that the coating amount becomes unstable. This would be considered because it is difficult to coat the magnetic carrier with the toner in three or more layers and thus the amount of the toner cannot be completely controlled by the magnetic carrier increases. Accordingly, in order to coat the developing roller 22 with the new toner in a sufficient amount, the coverage which is the percentage of the coating of the carrier surface with the toner may preferably be 90% or more and 200% or less.
In summary, in order to improve a degree of the toner replacement by peeling off the residual toner and then by coating the recessed portions 221 with the new toner in a sufficient amount in the feeding process, the following requirements are satisfied. First, the plurality of recessed portions 221 are formed so that the depth d of the recessed portions 221 is not more than a half of the average particle size rt of the toner. Or, the plurality of recessed portions 221 are formed so that the tops of the recessed portions 221 are at least lower than the position of the center of gravity of the toner which contacts the bottom surface 220 of each recessed portion 221 and which has the average particle size rt. In addition, the coverage which is the percentage of the coating of the carrier surface with the toner is 90% or more and 200% or less.
In
As a result, it is possible to suppress adverse effects such as fog by an uncharged toner and toner scattering which are liable to generate due to a high TD ratio (coverage). Further, as in this embodiment, even when coarse powder of the toner which cannot contact the recessed portion 221, the toner is not coated on the developing roller 22, but the toner having a sharp particle size distribution is selectively coated as in this embodiment. However, as described above, when the toner is selectively coated, the toner such as the coarse powder, which does not contribute to the coating is liable to stagnate in the developing container, and therefore the particle size distribution may preferably be optimized. Details thereof will be described later.
[Verification Experiment of Replacement of Toner]
An experiment in which the replacement of the toner as described above is verified will be described. In this experiment, the replacement of the toner on the developing roller was verified with respect to a developing device A (Embodiment 1) as shown in
The developing container 321 accommodates only the non-magnetic toner, as the developer, which is the same as that in the developing device A. Similarly as in the developing device A, the developing roller 322 rotates in the same direction as the rotational direction of the photosensitive drum 1 at the contact portion while contacting the photosensitive drum 1. On the other hand, the toner supplying member 330 rotates in an opposite direction to the rotational direction of the developing roller 322 at a contact portion therebetween while contacting the developing roller 322. The regulating member 332 is disposed in contact with the developing roller 322 in a downstream side of the toner supplying member 330 with respect to the rotational direction of the developing roller 322.
The developing roller 322 is a roller consisting of a base layer formed of stainless steel, an elastic layer formed, on the base layer, of silicone rubber or urethane rubber in which carbon black is dispersed, and a coating layer, formed on the elastic layer, on which the same projection-recess structure as that in the developing device A is formed. The toner supplying member 330 is an elastic sponge roller which has a foam skeleton structure formed on a core metal and which is formed with a relatively low hardness polyurethane foam in a thickness of 4 mm, and a penetration amount thereof into the toner (developer) carrying member is 1.2 mm. The regulating member 332 uses a 1.2 mm-thick iron plate fixed to the developing container as a supporting metal plate and uses a 80 μm-thick SUS plate as a thin plate-like elastic member. The elastic member is supported by the supporting metal plate at one end portion. A distance from the one end portion where the thin plate-like elastic member is supported to the contact portion with the developing roller 322 is 10 mm, and a contact pressure of the regulating member 332 against the developing roller 322 is 30 g/cm in terms of a linear pressure.
The thus-constituted developing device B is operated as follows. First, the toner in the developing container 321 is stirred by the toner stirring member 331 and is fed to the toner supplying member 330. The toner fed by the toner stirring member 331 is filled in a foam material at a surface of the toner supplying member 330, and then is fed to the contact portion with the developing roller 322. At the contact portion, the filled toner is electrically charged by contact with the developing roller 322 and then is moved (transferred) onto the developing roller 322. The toner supplying member 330 also has the function of peeling off the residual toner remaining on the developing roller 322 after the development. The toner supplied onto the developing roller 322 by the toner supplying member 330 is regulated by the regulating member 332 and is adjusted so as to have a desired toner amount and a desired charge amount. Then the toner is fed to the developing portion, where the electrostatic latent image on the photosensitive drum 1 is developed.
The verification experiment of the replacement of the toner in the developing device B as described above and the developing device A having the constitution in this embodiment will be described. In order to differentiate the development residual toner and the new toner, the following verification experiment was conducted using two toners different in color. In the developing device A, the two component developer described above is accommodated, and in the developing device B, only the non-magnetic toner which is the same as that in the developing device A. At first, each of the developing devices A and B was mounted in the image forming apparatus, and a normal developing operation was performed using a cyan toner, and during the developing operation, a power source was forcedly turned off.
In
Then, each of the developing devices A and B was demounted from the image forming apparatus, and then the developer in the developing container of each of the developing devices A and B was collected. Thereafter, the developer containing yellow toner was newly accommodated in the developing container. Then, using an external driving motor, the same operation as the above described developing operation was performed outside the image forming apparatus, each of the developing rollers 22 and 322 was rotated one turn and then the drive thereof was stopped. In
Here, the toner indicated by a hollow white circle represents the residual toner 11b of cyan, and the toner indicated by a solid black circle represents the yellow toner 11 newly coated. As shown in (a) of
Next, in order to convert a peeling(-off) property of the residual toner and a coating property of the new toner into numericals, a peeling degree and a covering degree were employed. Specific measuring methods will be described.
[Measuring Method of Peeling Degree]
The peeling degree was measured in the following manner. First, as shown in (b) of
(Peeling degree)=[(H1−H2)/H1]×100 formula 2
[Measuring Method of Covering Degree]
The covering degree was measured in the following manner. Similarly as in the measurement of the peeling degree described above, the same region on the developing roller 22, 322 (
As described above, in the developing device B in the comparison example, both of the peeling degree and the covering degree were low, so that the degree of the toner replacement was not good. On the other hand, in the developing device A in this embodiment, both of the peeling degree and the covering degree were high, so that it was confirmed that the degree of the toner replacement was good.
Next, using the developing device A in this embodiment, each of the peeling degree and the covering degree was measured when the depth d of the recessed portions 221 and the TD ratio q of the two-component developer were adjusted to variably change the coverage S.
As is apparent from
As is apparent from
[Projection-Recess Structure Forming Method]
The projection-recess structure at the surface of the developing roller 22 in this embodiment can be formed by the following method. That is, the projection-recess structure can be formed by a photo-nanoimprinting method using a photo-curable resin material, a thermal-nanoimprinting method using a thermoplastic resin material, a laser edging method in which edging is made by scanning with laser light, a diamond edging method in which the developing roller surface is abraded mechanically with a diamond blade, or the like method. Further, the projection-recess structure can also be formed by duplication from a mold for the above methods through electroplating.
In the photo nanoimprinting method, the photo curable resin material is coated on the surface of the developing roller 22 and then is subjected to UV irradiation using a UV light source provided in place of the halogen heater, so that the projection recess structure is formed. In this embodiment, the developing roller 22 used is formed by the photo nanoimprinting method. In order to enhance the adhesive property, a primer layer of several nm in thickness was formed on a 2 mm thick elastic layer 221b, and thereon, a fluorine containing photo curable resin material was coated, so that the projection recess structure was formed by the photo nanoimprinting method.
[Discriminating Method of Projection-Recess Structure]
Discrimination of the projection-recess structure on the developing roller 22 was made using an AFM (“Nano-I”, manufactured by Pacific Nanotechnology, Inc.) as a measuring device, and measurement was made in accordance with an operation manual of this measuring device. In the following, a discriminating method will be described. In
The measurement using the AFM is made by scanning the developing roller surface with a probe in an arrow s direction in (b) of
In
In the measurement through the AFM, a free end position of the probe is measured with respect to the scanning direction, so that the above-described shape is obtained. At this time, a resolution with respect to the scanning direction is sufficiently ensured for a free end diameter rt of the probe 51 and then the measurement is made. Specifically, the resolution may preferably be not more than 1/10 of the free end diameter rt. A difference (J2−J1) between the obtained shapes is calculated. If there is a region of |J2−J1|>0, the region can be discriminated as the recessed portion where the toner having the average particle size is contactable and the magnetic carrier having the average particle size is not contactable.
Here, a width L of the region is taken as a minimum opening width of the recessed portion 221. In the region of |J2−J1|>0, when a maximum of |J2−J1| is rt/2 or less, the top of the recessed portion 221 is discriminated as being lower than the center of gravity of the toner contacting the recessed portion 221, so that the region is discriminated as the projection-recess structure in this embodiment. In the scanning area described above, whether or not there are a plurality of projection-recess structures is discriminated. Without using the AFM, by using the structural shape J3 measured by the non-contact surface/layer cross-section shaping system, the shapes J1 and J2 may also be predicted by moving a circle corresponding to the average particle size rt of the toner and a circle corresponding to the average particle size rc of the carrier so as to contact the shape J3. However, in that case, there is a need to consider whether or not spheres corresponding to the toner and the magnetic carrier are three dimensionally contactable.
The developing roller 22 in this embodiment is provided at the surface thereof with a plurality of projection recess structures determined by the above discriminating method. Incidentally, a minute structure and a short period structure for which the probe 51 cannot follow and a long period structure in which the probe 52 can enter have no influence on the problem to be solved by the present invention, so that the developing roller 22 surface may contain the above structure.
[Particle Size Measuring Method]
A particle size measuring method of the toner and the carrier will be described. The particle size of the toner is measured using a measuring device (“Coulter Multisizer III”, manufactured by Beckman Coulter K. K.) in accordance with an operation manual of the measuring device. Specifically, in 100 ml of an electrolytic solution (“ISOTON”), 0.1 g of a surfactant is added as a dispersing agent and then 5 mg of a measuring sample (toner) is added. The electrolytic solution in which the sample is suspended is dispersed for about 2 minutes by an ultrasonic dispersing device to obtain a sample for measurement. As an aperture, a 100 μm aperture is used, and the number of particles of the sample is measured every channel to calculate a median diameter d50, 10%-diameter d10 and 90%-diameter d90 in a cumulative particle size distribution as number-average particle sizes rt, rt10 and rt90, respectively.
The particle size of the carrier is measured using a laser diffraction particle size distribution measuring device (“SALD-3000”, manufactured by Shimadzu Corp.) in accordance with the operation manual of the measuring device. Specifically, 0.1 g of the magnetic carrier (sample) is placed in the measuring device and then the measurement is made. The number of particles of the sample is measured every channel to calculate a median diameter d50 as a number-average particle size rc of the sample.
[Circularity Measuring Method]
A circularity measuring method of the toner will be described. An equivalent circle diameter, circularity and frequency distributions of these are measured using a measuring device (“FPIA-2100”, manufactured by Symex Corp.) in accordance with an operation manual of the measuring device, and are calculated using the following formulas 3 and 4.
(Equivalent circle diameter)=(Projected particle area/π)1/2×2 formula 3
(Circularity)=(Circumferential length of circle having the same area as projected particle area)/(Circumferential length of projected particle image) formula 4
Here, “Projected particle area” is defined as an area of a binarized toner particle image, and “Circumferential length of projected particle image” is defined as a length of a contour line obtained by connecting edge points of the toner particle image.
The circularity in this embodiment is an index showing a degree of unevenness of the toner particle, and in the case where the toner particle is a complete spherical, the circularity is 1.00. With an increasing degree of complexity of the surface shape, the circularity is a smaller value. Further, average circularity C which means an average of a circularity frequency distribution is calculated by the following formula 5 when circularity (center value) at a division point i of the particle size distribution is ci and the frequency is fci.
C=Σi=1m(Ci×fci)/Σi=1m(fci) formula 5
As a specific measuring method, 100 ml of ion exchanged water from which an impure solid matter is removed is prepared in a container, and therein, as a dispersing agent, a surfactant, preferably alkylbenzenesulfonate is added and then 0.02 g of a measuring sample is added, followed by uniform stirring. As a dispersing means, an ultrasonic dispersing device (“Tetora 150”, manufactured by Nikkaki Bios Co., Ltd.) is used, and a dispersing process is performed for 2 minutes to obtain a dispersion for measurement. At that time, the dispersion is cooled appropriately so that a temperature of the dispersion does not reach 40° C. or more.
For measurement of the shape of the toner particles, the above-described measuring device (“FPIA-2100”) is used. A concentration of the dispersion is adjusted so that a concentration of the toner particles during the measurement is 3,000-10,000 particles/μl, and 1,000 or more toner particles are subjected to the measurement. After the measurement, using data obtained, the average circularity of the toner particles is obtained.
[True Density Measuring Method]
A true density measuring method of the toner and the carrier will be described. The true density is measured using an automatic dry-type density meter (“Accupyc”, manufactured by Shimadzu Corp.) as a measuring device in accordance with an operation manual of the measuring device. At this time, a measuring cell of 10 cm3 is used to automatically measure the true density. An average of fine measured values is used as each of a true density pt for the toner and a true density ρc for the carrier.
[Covering Measuring Method]
The coverage which is a percentage of coating of the carrier surface with the toner will be described. About 0.3 g of the two-component developer sufficiently stirred in the developing container 21 is mixed with a mixture liquid of water and a surfactant (e.g., coconut detergent), so that the toner and the carrier are separated from each other and then the weight of each of the toner and the carrier is measured to obtain a TD ratio q of the two-component developer. Using the TD ratio q, a coverage S is calculated by the formula 1 described above.
[Effect of this Embodiment]
According to this embodiment, in a state in which the plurality of recessed portions 221 are provided at the surface of the developing roller 22, the replacement of the toner carried on the developing roller 22 can be satisfactorily performed. First, the developer supplied onto the developing roller 22 provided at the surface with the plurality of recessed portions 221 is principally fed by the magnetic force. In this process, the toner contacting the recessed portions 221 is uniformly coated on the recessed portions 221. Thereafter, the developer carried on the developing roller 22 is collected by the developer collecting device 23 except for the toner coated on the recessed portions 221. The toner remaining on the recessed portions 221 is fed to the developing portion T opposing the photosensitive drum 1, thus developing the electrostatic latent image on the photosensitive drum 1.
On the other hand, the residual toner remaining on the developing roller 22 without contributing to the development is fed to the supplying portion W where the developer is fed again to the developing roller 22. At this time, in the projection-recess structure formed at the surface of the developing roller 22, not only at least the toner having the average particle size is contactable with the inner surface of the recessed portion 221 but also the top of the recessed portion 221 is lower than the center of gravity of the toner contacting the inner surface of the recessed portion 221. Or, the depth d of the recessed portion 221 is not more than the half of the average particle size rt of the toner. For this reason, the residual toner contacting the developer newly supplied in the feeding process is easily peeled off by the developer.
Further, the coverage obtained as a total cross-sectional area of the toner per the surface area of the carrier in the developer is 90% or more and 200% or less, and therefore the surface of the carrier is not substantially exposed. For this reason, a probability that the toner contacting the recessed portions 221 is coated on the recessed portions 221 is sufficiently larger than a probability that the toner is peeled off.
In the feeding process, by the developing magnet 222 which is disposed inside the developing roller 22 and which as the plurality of magnetic poles, contact and slide between the developer and the recessed portions 221 are sufficiently made. For this reason, in the feeding process, the residual toner is peeled off and the new toner is uniformly coated on the recessed portions 221, so that the degree of replacement of the toner carried on the developing roller 22 can be improved. As a result, it is possible to suppress a lowering in image quality with improper replacement.
<Second Embodiment>
A Second Embodiment of the present invention will be described using
First, developing devices including developing rollers which are different in toner (A, B, C), carrier (A, B, C) and structural shape (A, B, C, D) were used and subjected to evaluation of the degree of the replacement of the toner.
Toner A: rt=7.8 μm, ρt=1.1 g/cm3, Average circularity=0.97
Toner B: rt=5.5 μm, ρt=1.1 g/cm3, Average circularity=0.97
Toner C: rt=3.0 μm, ρt=1.1 g/cm3, Average circularity=0.97
Magnetic carrier A: rc=90 μm, ρc=4.8 g/cm3
Magnetic carrier B: rc=60 μm, ρc=4.8 g/cm3
Magnetic carrier C: rc=30 μm, ρc=4.8 g/cm3
Structure A: L=8 μm, d=0.7 μm
Structure B: L=8 μm, d=1.0 μm
Structure C: L=8 μm, d=2.0 μm
Structure D: L=8 μm, d=3.9 μm
Each of the toners in this embodiment is a positive(polarity) toner which is manufactured by the polymerization method and which is subjected to adjustment of a particle size by variably changing a polymerization condition and a classifying condition. Each of the carriers is a spherical carrier obtained by surface treating a ferrite core and is subjected to adjustment of particle size by variably changing a calcining condition and a classifying condition, so that charge control is effected depending on a species and an amount of a coating material. The two component developer consisting of the toner and the carrier is subjected to adjustment of the TD ratio so that the coverage S is 120%. Each of the structural shapes was formed using an associated film mold on the developing roller by the same method as the method employed in the first Embodiment. The evaluation of the degree of replacement of the toner was made in accordance with the same evaluation criterion as in the first Embodiment.
o: Not less than a reference value.
x: Less than the reference value.
The reference value is 80% for the peeling(-off) degree and 0.9 w for the covering degree.
The results are shown in Table 1.
The reason for the above evaluation results would be considered as follows. First, as shown in
As shown in the figure, in the case where the second phantom line k2 passes through the top Pn or the inner surface of the recessed portion 221, a force acting on the toner is directed toward the recessed portion 221, so that the toner is not readily detached from the recessed portion 221. On the other hand, in the case where the second phantom line k2 does not pass through the top Pn or the inner surface of the recessed portion 221, the force acting on the toner is directed toward an outside of the recessed portion 221, so that the toner is liable to detach from the recessed portion 221 more than necessary and therefore it would be considered that the covering degree is liable to lower.
In
As shown in (b) of
[Defining Method of Toner Particle Size in Projection-Recess Structure]
Similarly as in the discriminating method of the projection-recess structure described above, using the AFM or the like, the shape difference (J2−J1) is calculated. In the region |J2-J−J1|>0 sandwiched between the two tops (Pn, Pn+1), a maximum of |J2−J1| is obtained, and then Rtn which is twice the maximum is calculated. On the other hand, from the obtained shape and the carrier particle size rc, the toner particle size Rtx when the toner contacting the top Pn and the inner surface of the recessed portion 221 contacts the carrier contacting the first phantom line k1 and the second phantom line k2 connecting the centers of gravity Ot and Oc passes through the top Pn is geometrically calculated. The toner particle size rt is defined within a range of Rtn or more and Rtx or less.
Here, it is further preferable that the 10%-particle size rt10 in the cumulative particle size distribution of the non-magnetic toner is Rtn or more and the 90%-particle size rt90 in the cumulative particle size distribution is Rtx or less. That is, the particle size of the non-magnetic toner may preferably satisfy: Rtn≦10≦rt90≦Rtx. As a result, it is possible to suppress adverse effects such that fine power toner accumulates in the recessed portion 221 and thus causes melt sticking and that coarse powder toner accumulates in the developing container and thus lowers a degree of charge stability. Here, as described above, rt10 represents the 10%-particle size in the cumulative particle size distribution, and rt90 represents the 90%-particle size in the cumulative particle size distribution.
[Relationship Between Toner Particle Size and Minimum Opening Width of Recessed Portion]
Further, the toner particle size may preferably be defined also by a relationship with the minimum opening width L of the recessed portion 221.
Incidentally, the minimum opening width L is a width of the region of the difference |J2−J1|>0 as described above with reference to
[Relationship of Electrostatically Depositing Force Between Toner and Recessed Portion]
A relationship of an electrostatically depositing force between the toner 11 and the recessed portion 221 will be described. In order to further improve the degree of stability in coating amount of the toner on the recessed portion 221, an increase in electrostatically depositing force at a point of contact between the toner 11 and the recessed portion 221 is effective. That is, when the depositing force is large, the toner 11 is easily confined further by the recessed portion 221, so that the degree of stability of coating amount is improved. In the feeding process of the two-component developer 10, there is no need to excessively impart a contact frequency and friction between the developing roller 22 and the toner 11, so that a deterioration of the two-component developer 10 can be suppressed.
In order to enhance the electrostatically depositing force between the toner 11 and the recessed portion 221, a charging series among the toner 11, the carrier 12 and the surface of the developing roller 22 provided with the projection-recess structure may preferably be created as follows. That is, the carrier 12 may preferably be positioned between the toner 11 and the surface (e.g., the coating layer 221c) of the developing roller 22. In
In this condition, a difference in charging series between the toner 11 (Z) and the surface material (V) for the developing roller 22 is larger than a difference in charging series between the toner (Z) and the carrier 12 (X). For this reason, when the toner 11 and the developing roller 22 are contacted to and triboelectrically charged with each other, compared with the electrostatically depositing force between the toner 11 and the carrier 12, a strong electrostatically depositing force generates, so that the toner 11 detaches from the carrier 12 and is easily deposited on the surface of the developing roller 22.
On the other hand, also in the order of a charging series shown in
For the reason described above, in the charging series among the toner 11, the carrier 12 and the surface material for the developing roller 22 provided with the projection-recess structure, it is preferable that the carrier 12 is positioned between the toner 11 and the surface material for the developing roller 22.
[Charging Series Determining Method]
A specific charging series determining method will be described while making reference to
<Third Embodiment>
A Third Embodiment of the present invention will be described using
A structure (projection-recess structure) of a plurality of recessed portions 221A formed on the surface of the developing roller 22A will be described using
In this embodiment, each recessed portion 221A refers to a recessed shape formed in a region between adjacent tops (Pn and Pn+1), and an inner surface thereof refers to a structural surface, between the tops Pn and Pn+1, from which the tops Pn and Pn+1 are removed. Such a projection-recess structure is grooves which are regularly arranged with a period L in the rotational direction h and which have a depth d, a minimum opening width L and a width xL of the gentle inclined surface (slope) SL. In this embodiment, each recessed portion 221 is 1.9 μm in depth d, 8 μm in minimum opening width L, 7.3 μm in width xL of the gentle slope SL. Incidentally, the depth d is an interval between a line which is parallel to the developer feeding direction and which passes through the top Pn and a line which is parallel to the developer feeding direction and which passes through the bottom Qn. The minimum opening width L is an interval between adjacent tops (Pn, Pn+1).
Also in this embodiment, the plurality of recessed portions 221A are formed so that at least the toner having the average particle size is contactable with the inner surface of the recessed portion 221A and the carrier having the average particle size is not contactable with the inner surface of the recessed portion 221A. Further, the recessed portions 221A are formed so that the top Pn of the recessed portion 221A is lower than the position of the center of gravity of the toner, having the average particle size, contacting the bottom surface 220A of the recessed portion 221A. As shown in
In
As shown in (a) of
Further, as shown in (b) of
In
On the other hand, as shown in (b) of
For this reason, at the developing portion T, when the arrow z direction along which the toner 11 ascends the steep slope SR and then descends the gentle slope SL via the top Pn is positive, the following condition is preferred. That is, the relative speed of the surface movement speed v22 of the developing roller 22A to the surface movement speed V1 of the photosensitive drum 1 may preferably be set to be positive with respect to the arrow z direction.
[Modified Embodiment of Third Embodiment]
A Modified embodiment of this embodiment will be described using
As shown in
<Fourth Embodiment>
A Fourth Embodiment of the present invention will be described using
A structure (projection-recess structure) of a plurality of recessed portions 221A formed on the surface of the developing roller 22A will be described using
In
In this embodiment, the recessed portion 221E is 1.5 μm in depth d, 8 μm in minimum opening width L and 9.5 μm in pattern width E. Incidentally, the bottom surface 220D may be inclined as in the third Embodiment and may also be shaped as shown in
The plurality of recessed portions in the present invention are not limited to the structures described above, but may only be required to satisfy the following requirements. That is, when at least the toner having the average particle size is contactable with the inner surface of the recessed portion and the magnetic carrier having the average particle size is not contactable with the inner surface of the recessed portion and the recessed portion has the structure in which the top thereof is lower than the center of gravity of the toner contacting of the recessed portion inner surface. For example, also with respect to the bottom surface of the recessed portion, in addition to the flat surface and the inclined surface as described above, the bottom surface may also be a surface which is curved at least at a part thereof. Further, also with respect to the side surface of the recessed portion, the side surface may be surfaces which are perpendicular to, inclined relative to and curved relative to the bottom surface.
[Proportion (Percentage) of Recessed Portions]
As described above, the projection recess structure of the developing roller surface in the present invention can have various shapes, but in order to uniformly coat the developing roller with the toner in a necessary amount, a proportion (percentage) and arrangement of the recessed portions at the developing roller surface may preferably satisfy conditions described below. In
Here, the toner coated on the recessed portions is transferred onto the photosensitive drum for development of the electrostatic latent image and then is transferred and fixed on the recording material, but there is a need that at least a fixed toner image covers the recording material by adhesion between the toner particles with no influence of the gap between the recessed portions. Specifically, in the minimum unit region described above, a total volume of the toner coated on the recessed portions in the region is not less than a volume of a triangular prism determined by the product of the area STn of the minimum unit region and a limit toner layer thickness dt after the fixing, i.e., is represented by the following formula 7. In the formula 7, STn is the area (cm2) of the minimum unit region, SPn is the total area (cm2) of the recessed portions in the minimum unit region, pt is the true specific gravity (g/cm3) of the toner, dt is the limit toner layer thickness (cm) after the fixing, and κ is an amount per unit area (g/cm2) of the toner at the recessed portions.
The toner amount per unit area κ at the recessed portions can be approximated by the following formula 8 since the toner is filled in the recessed portions in a substantially closest structure. In the formula 8, rt is the toner particle size (μm).
The limit toner layer thickness dt after the fixing can be approximated from the formula 7 by the following formula 9 since the toner can be pressed to about ⅓ of the toner particle size rt under a general-purpose fixing condition.
When the formula 9 is satisfied, in a microscopic region (minimum unit region described above), the toner image can be fixed by the toner coated on the adjacent recessed portions. In other words, at least in a carrying region in which the developer is capable of being carried (toner carrying region) of the developing roller surface, when a proportion (percentage) of the recessed portions occupying the developing roller surface per unit area is 55% or more in average, the toner image can be fixed using the toner.
Here, the projection-recess structure in the present invention is the structure discriminated by the above-described projection-recess structure discriminating method as being that at least the toner having the average particle size is contactable with the recessed portion inner surface and the carrier having the average particle size is not contactable with the recessed portion inner surface and that the top of the recessed portion is lower than the center of gravity of the toner contacting the recessed portion. Naturally, it is possible to suppress the influence of the gap between the recessed portions by supplying the toner to the photosensitive drum in a large amount using the peripheral speed difference between the developing roller and the photosensitive drum. However, when the peripheral speed difference is excessively provided, adverse effects such as image defect which is called sweeping by which an image density at a trailing end portion of the image increases, and acceleration of a degree of deterioration undesirably generate. That is, even under a condition that the peripheral speed difference is small, by satisfying at least the formula 9, the influence of the gap between the recessed portions can be suppressed.
On the other hand, a fluctuation degree of the proportion (percentage) of the recessed portions occupying the developing roller surface per unit area in the toner carrying region of the developing roller may preferably be suppressed to within ±10%.
In order to suppress the coating amount fluctuation degree Δ to within ±10%, there is a need that a fluctuation in percentage of the recessed portions occupying the developing roller surface per unit area in the toner carrying region of the developing roller is suppressed to within ±10%. That is, at least in the toner carrying region of the developing roller, the percentage of the recessed portions occupying the developing roller surface per unit area is 55% or more in average. The fluctuation in percentage of the recessed portions occupying the developing roller surface per unit area is made within ±10%, preferably within ±6%, more preferably within ±5%, further preferably within ±3%. Specific measuring methods of the proportion (percentage) of the recessed portions and the fluctuation in proportion (percentage) will be described.
[Measuring Method of Proportion of Recessed Portions]
The proportion of the recessed portions occupying the developing roller surface in the toner carrying degree of the developing roller is obtained in the following manner.
[Measuring Method of Fluctuation Degree in Proportion of Recessed Portions]
At each of the measuring points (α, β, γ, δ, ε) obtained in the measuring method of the proportion of the recessed portions, a minimum Mn and a maximum Mx of the recessed portion proportion (percentage) are obtained. A proportion (=(±Δ/Av)×100%) of a fluctuation Δ (=Mx−Av), from an average Av (=(Mn+Mx)/2), to the average Av is determined as a fluctuation degree.
<Fifth Embodiment>
A Fifth Embodiment of the present invention will be described using
The developing roller 22 is provided and supported rotatably in the rotational direction h, and the developing magnet 222 having the plurality of magnetic poles is fixedly disposed inside the developing roller 22. On the surface of the developing roller 22, the projection-recess structure having the constitution in any one of the above-described embodiments, and the developing roller 22 and the photosensitive drum 1 are disposed in non-contact with each other. The developing roller 22 may also be disposed in contact with the photosensitive drum 1. Inside the developing container 21, the feeding members 24a, 24b for feeding the developer to the developing roller 22 and the developer collecting member 230 for collecting the part of the developer on the developing roller 22 are disposed opposed to the developing roller 22 with gaps. The feeding members 24a, 24b feeds the developer in the developing container 21 to the supplying portion W where the developing roller 22 and the feeding member 24b oppose to each other while stirring the developer collected by the developer collecting member 230 described later. The developer is supplied to the developing roller 22 by the action of the magnetic force acting on the developer by the developing magnet 222 in the developing roller 22.
The developer collecting member 230 is formed in a plate-like shape with a magnet material or a metal material having a permeability higher in amount than a predetermined amount. The developing magnet 222 and the developer collecting member 230 form a magnetic field in cooperation, so that the developer is collected by the developer collecting member 230 by the action of the magnetic force. At the collecting portion U, the developer confined by the developer collecting member 230 finally drops in the developing container 21 by gravitation, and then is fed again to the supplying portion W by the feeding members 24a, 24b. The developer collecting member 230 is disposed at a position upstream of the developing portion T and downstream of the supplying portion W with respect to the rotational direction h of the developing roller 22. At an opening of the developing container 21, in order to suppress scattering of the toner to the outside of the developing container 21, a scattering preventing sheet 28 is provided.
In this embodiment, the developing roller 22 is formed with an Al (aluminum) bare tube, and on the bare tube, the projection recess structure is formed by the diamond edging method or the laser edging method, and then the negative (polarity) toner is coated. As another example, on a bare tube of Al or SUS, a metal layer of Ni P or the like having a low permeability by electroplating or the like, and then the projection recess structure may also be formed on the metal layer by subjecting the metal layer to the diamond edging method. Further, on the base material, a coating layer of thermoplastic resin material or a photo curable resin material is provided, and on the coating layer, the projection recess structure may also be formed by the nanoimprinting method. Further, in the case where the developing roller 22 and the photosensitive drum 1 are disposed in contact with each other, similarly as in the first Embodiment, the projection recess structure is formed on the elastic layer or the coating layer formed on the elastic layer. In the developing device 20A in this embodiment, the developer collecting member 230 has a simple constitution, and therefore the developing device 20A can be downsized.
<Sixth Embodiment>
A Sixth Embodiment of the present invention will be described using
Inside the developing belt 60, a developing magnet (permanent magnet) 62 which is fixedly disposed and which has a plurality of magnetic poles, a plurality of rollers 63 for stretching the developing belt 60, and an elastic roller 64 are disposed. Any one of the plurality of rollers 63 is a driving roller for being driven by an unshown motor, and this driving roller is rotated, so that the developing belt 60 is rotated in the arrow h direction. The developing belt 60 is disposed so that the surface thereof has openings facing the surface of the photosensitive drum 1. The elastic roller 64 is disposed so as to sandwich the developing belt 60 between itself and the photosensitive drum 1, so that the surface of the developing belt 60 is contacted to the photosensitive drum 1. Then, by applying a voltage to the elastic roller 64 by the voltage applying portion 26, the electrostatic latent image on the photosensitive drum 1 is developed with the toner carried on the developing belt 60.
Inside the developing container 21, the feeding members 24a, 24b for feeding the developer to the developing belt 60 are disposed opposed to the developing belt 60 with gaps. In a constitution shown in (a) of
The developer collecting device 23A shown in (a) of
The developer collecting member 230 shown in (b) of
The developer collecting device 23A and the developer collecting member 230 is disposed at a position upstream of the developing portion T and downstream of the supplying portion W with respect to the rotational direction h of the developing belt 60. At an opening of the developing container 21, in order to suppress scattering of the toner to the outside of the developing container 21, a scattering preventing sheet 28 is provided.
In this embodiment, the developing roller 22 is formed with a nylon base material on which the projection-recess structure as described in the above embodiments is formed directly by the thermal nanoimprinting method, and then the negative(-polarity) toner is coated. As another example, the projection-recess structure may also be formed on the base material of polyimide or PMMA. Further, on the base material, a coating layer of thermoplastic resin material or a photo-curable resin material is provided, and on the coating layer, the projection-recess structure may also be formed by the nanoimprinting method. Further, on the base material of SUS or the like, the metal layer of Ni—P or the like having a low permeability by electroplating or the like, and then the projection-recess structure may also be formed on the metal layer by subjecting the metal layer to the diamond edging method.
Further, in order to prevent abrasion or to perform an insulating process, the projection-recess structure may also be coated with a high-hardness material or an insulating material. At this time, there is a need to form a thin coating layer to the extent that the projection-recess structure is sufficiently left. Further, in this embodiment, electric power is supplied to the elastic roller 64 disposed inside the developing belt 60, but may also be supplied directly to the base material for the developing belt 60. In place of the elastic roller 64, an elastic layer may also be formed on the developing belt 60. In the developing devices 20B, 20C in this embodiment, a feeding distance from the supplying portion W to the collecting portion U can be arbitrarily changed variably using the developing belt 60, and therefore the developing devices are not readily subjected to the constraint of a space and thus the feeding distance is easily ensured. Other constitutions and actions are similar to those in any one of the embodiments described above.
<Seventh Embodiment>
A Seventh Embodiment of the present invention will be described using
The developing belt 60A is rotatably supported by the developing container 21 and an endless belt provided at the surface thereof with a plurality of recessed portions 61. The plurality of recessed portions 61 and the projection-recess structure described in any one of the above-described embodiments. Inside the developing belt 60A, a developing magnet (permanent magnet) 62A which has a plurality of magnetic poles, a plurality of rollers 63 for stretching the developing belt 60A, and an elastic roller 64 are disposed.
The developing magnet 60A is formed in a cylindrical shape at a peripheral surface thereof and is rotationally driven in an arrow p direction by an unshown motor. The developing belt 60 is stretched by the developing magnet 62 and the plurality of rollers 63. Any one of the plurality of rollers 63 is a driving roller for being driven by an unshown motor, and this driving roller is rotated, so that the developing belt 60 is rotated in the arrow h direction. In this embodiment, the rotational direction of the developing belt 60A and the rotational direction of the developing magnet 62A are opposite to each other.
Inside the developing container 21, the feeding members 24a, 24b for feeding the developer to the developing belt 60A and the developer collecting member 230 for collecting a part of the developer on the developing belt 60A are disposed opposed to the developing belt 60A with gaps. The feeding members 24a, 24b feeds the developer in the developing container 21 to the supplying portion W where the developing belt 60A and the feeding member 24b oppose to each other while stirring the developer collected by the developer collecting member 230. The developer is supplied to the developing belt 60A by the action of the magnetic force acting on the developer by the developing magnet 62A inside the developing belt 60A. The developer collecting member 230 is formed of a metal material such as iron having a high permeability.
In this embodiment, the developer collecting member 230 is fixedly disposed similarly as in the constitution shown in (b) of
In the developing device 20 in this embodiment, the magnetic chain is fed on the developing belt 60A while being rotated by rotation of the developing magnet 62A disposed inside the developing belt 60A. For this reason, the contact frequency between the developing belt 60A and the toner can be enhanced in a short feeding distance and in a short time. Further, by controlling the rotational speed of the developing magnet 60A, it is possible to suppress the fluctuation in coating amount of the toner on the developing belt 60A without having the influence on other constitutions.
According to the present invention, the replacement of the toner carried on the developer carrying member can be satisfactorily performed by the structure in which the plurality of recessed portions are provided on the surface of the developer carrying member.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purpose of the improvements or the scope of the following claims.
This application claims the benefit of Japanese Patent Application No. 2014-233149 filed on Nov. 17, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-233149 | Nov 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5799234 | Furuya et al. | Aug 1998 | A |
9104142 | Kubo et al. | Aug 2015 | B2 |
20080279592 | Matsumoto | Nov 2008 | A1 |
20100158578 | Kojima et al. | Jun 2010 | A1 |
20140161493 | Kubo | Jun 2014 | A1 |
20150227077 | Kubo et al. | Aug 2015 | A1 |
20150227078 | Kubo et al. | Aug 2015 | A1 |
20150227087 | Kubo et al. | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1 162 516 | Dec 2001 | EP |
2 743 776 | Jun 2014 | EP |
2 940 529 | Apr 2015 | EP |
H06-236113 | Aug 1994 | JP |
H08-137243 | May 1996 | JP |
10312105 | Nov 1998 | JP |
2003-167441 | Jun 2003 | JP |
2004-157458 | Jun 2004 | JP |
2007-108350 | Apr 2007 | JP |
2014-115518 | Jun 2015 | JP |
Entry |
---|
European Search Report dated Mar. 16, 2016, in corresponding European Patent Application No. 15192888.4. |
Number | Date | Country | |
---|---|---|---|
20160139539 A1 | May 2016 | US |