This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2010-217871 filed on Sep. 28, 2010.
The present invention relates to a developing device and an image forming apparatus including it.
According to an aspect of the invention, there is provided a developing device including:
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
1 . . . Image holding body; 2 . . . Developer holding body; 3 . . . Development rotary body; 3a . . . Smooth surface; 4 . . . Magnet member; 5 . . . Magnetic poles; 5a . . . Layer regulating magnetic pole; 6 . . . Layer regulating rotary body; 7 . . . Stirring and transporting member; 8 . . . Development container; 9 . . . Latent image forming device; 10 . . . Developing device; 11 . . . Development driving device; 12 . . . Calculating section; 13 . . . Circumferential speed determining section; A . . . Development position; B . . . Layer regulating position; G . . . Developer; vd . . . Circumferential speed of development rotary body; vr . . . Circumferential speed of layer regulating rotary body.
General Exemplary Embodiment
As shown in
In particular, in the general exemplary embodiment, the developing device 10 is equipped with a developer holding body 2, a layer regulating rotary body 6, and a development driving device 11. The developer holding body 2 has a development rotary body 3 and a magnet member 4. The development rotary body 3 is hollow, is opposed to the image holding body 1, and has a smooth surface 3a whose surface roughness is lower than or equal to 5 μm in terms of maximum height. The magnet member 4 is fixedly housed in the development rotary body 3, and plural magnetic poles 5 are arranged alongside the periphery of the magnet member 4. As the development rotary body 3 is rotated, developer G containing toner and carrier is held on the development rotary body 3 by magnetic force produced by the magnetic poles 5 of the magnet member 4. The layer regulating rotary body 6 is opposed to the development rotary body 3 with a non-contact gap TG (see
In
In the above image forming apparatus, the image holding body 1 may have any of various forms as appropriate as long as an electrostatic latent image can be formed thereon and it can hold a toner image. For example, the image holding body 1 may be a photoreceptor body or a dielectric body or may be in such a form that pixel electrodes to which latent image voltages corresponding to an electrostatic latent image are to be applied are arranged in matrix form on the surface of a holding body which circulates.
The latent image forming device 9 may be any of various types as appropriate as long as it can form an electrostatic latent image on the image holding body 1. Where the image holding body 1 is a photoreceptor body or a dielectric body, the latent image forming device 9 may be composed of a charging device and a latent image writing device using light, ions, or the like. Where the image holding body 1 is of such a type as to have pixel electrodes, the latent image forming device 9 may be such as to apply latent image voltages corresponding to an electrostatic latent image to the pixel electrodes.
It suffices that the developing device 10 have the developer holding body 2 for holding and conveying developer. The developer holding body 2 is required to be provided with the development rotary body 3 having the smooth surface 3a and the magnet member 4 which is housed in the development rotary body 3.
In this general exemplary embodiment, the development rotary body 3 may be either a rigid cylindrical body or a flexible thin-film member. The surface roughness of the smooth surface 3a is required to be lower than or equal to 5 μm in terms of maximum height Rz (corresponds to the JIS B0601 2001 standard). The development rotary body 3 is rotated at a preset circumferential speed vd. However, there is another mode in which its circumferential speed is set variably depending on process conditions (e.g., the circumferential speed is set low when a thick sheet (recording medium) is being conveyed).
The magnetic poles 5 are arranged in the magnet member 4. The magnetic poles 5 include conveying magnetic poles for conveying developer, a development magnetic pole disposed adjacent to a development position A so as to face the image holding body 1, a layer regulating magnetic pole 5a disposed adjacent to a layer regulating position B so as to face the layer regulating rotary body 6, an absorption magnetic pole for absorbing and holding developer G at a development and absorption position on the development rotary body 3, and a peeling magnetic pole for peeling developer at a developer peeling position on the development rotary body 3. Each of the magnetic poles 5 does not perform only one function; the magnetic poles 5 are arranged so that each one performs plural functions.
It suffices that the layer regulating rotary body 6 be such that its portion facing the development rotary body 3 is moved at least in the same direction as a corresponding portion of the development rotary body 3, and that a predetermined gap TG (see
It suffices that the development driving device 11 be of such a type as to rotationally drive the development rotary body 3 of the developer holding body 2 and the layer regulating rotary body 6. It is preferable that the development driving device 11 stop rotational driving on the development rotary body 3 when it is not necessary. On the other hand, the development driving device 11 such as to increase or decrease the circumferential speed vr of the layer regulating rotary body 6 in a predetermined range according to an increase or decrease in the thickness of a developer layer to be regulated.
Next, typical or preferable modes of the general exemplary embodiment will be described.
First, whereas the magnetic force distribution of the magnetic poles 5 of the magnet member 4 may be set as appropriate, it is preferable that the magnet member 4 of the developer holding body 2 have the layer restricting magnetic pole 5a which produces a magnetic flux density of 30 to 60 mT in a region where the layer regulating rotary body 6 and the development rotary body 3 are closest to each other.
That is, the magnetic flux density that is produced by the layer restricting magnetic pole 5a in the region where the layer regulating rotary body 6 and the development rotary body 3 are closest to each other is set in a preferable range of 30 to 60 mT. If the magnetic flux density is lower than 30 mT, the degree of height increase of a developer layer is a little too low when the thickness of the developer layer is regulated. On the other hand, if the magnetic flux density is higher than 60 mT, the degree of height increase of a developer layer is so high that high stress is likely imposed on the developer G in regulating the thickness of the developer layer.
Where the peak magnetic flux density position of the layer restricting magnetic pole 5a is located upstream of the region where layer regulating rotary body 6 and the development rotary body 3 are closest to each other in the developer conveying direction, the developer G passes that region as its height decreases and hence the stress on the developer G is low. If the peak magnetic flux density position of the layer restricting magnetic pole 5a are located in the closest region, high stress would likely be imposed on the developer G in regulating the thickness of the developer layer because the height of the developer would be increased very much there. On the other hand, if the peak magnetic flux density position of the layer restricting magnetic pole 5a are located downstream of the closest region in the developer conveying direction, high stress would likely be imposed on the developer G in regulating the thickness of the developer layer because the developer G would pass the closest region as its height increases.
In a preferable mode of the layer regulating rotary body 6, it has a smooth surface whose surface roughness is lower than or equal to 5 μm in terms of maximum height. If the surface roughness of the layer regulating rotary body 6 is set higher than 5 μm, the conveying force produced by the rotation of the layer regulating rotary body 6 would increase because of the high surface roughness, whereby the thickness of a developer layer varies too much when the circumferential speed vr of the layer regulating rotary body 6 is varied. It is therefore preferable that the surface roughness of the layer regulating rotary body 6 be low.
It is preferable that the gap between the layer regulating rotary body 6 and the development rotary body 3 at the layer regulating position B be set to 60 μm to 1 mm. If the gap is smaller than 60 μm, a developer layer would be too dense at the layer regulating position B. On the other hand, if the gap is larger than 1 mm, a developer layer would be too sparse at the layer regulating position B. The range between these two values is thus preferable for the regulation of the thickness of a developer layer.
In a preferable mode of the development driving device 11, whereas it rotationally drives the development rotary body 3, it stops rotational driving of the layer regulating rotary body 6 or rotationally drives the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in the direction opposite to a movement direction of a corresponding portion of the development rotary body 3, whereby the conveyance rate of developer (on the developer holding body 2) that has passed the layer regulating rotary body 6 and is moving toward the development position A between the image holding body 1 and the developer holding body 2 is made approximately equal to zero. In this mode, since the development rotary body 3 is driven rotationally and the layer regulating rotary body 6 is not driven rotationally or is driven rotationally in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in the direction opposite to a movement direction of a corresponding portion of the development rotary body 3, a developer layer that is held by the developer holding body 2 cannot pass the layer regulating position B between the layer regulating rotary body 6 and the developer holding body 2 (i.e., the developer G is stopped there). This phenomenon would be explained as follows. When an upper portion of a developer layer is stopped or pushed back by the layer regulating rotary body 6, a lower portion of the developer layer slips on the smooth surface 3a of the development rotary body 3 and the entire developer layer is thus stopped at the layer regulating position B.
In a typical mode of the development driving device 11, it has a calculating section 12 for calculating a conveyance rate of developer to be used for development according to use conditions of the image forming apparatus and a circumferential speed determining section 13 for determining a circumferential speed of the layer regulating rotary body 6 so that the developer conveyance rate calculated by the calculating section 12 is obtained.
The calculating section 12 may be of a type in which sets of use condition items of the image forming apparatus are correlated with respective developer conveyance rates. The use conditions of the image forming apparatus broadly include the following:
(1) Image information relating to an electrostatic latent image to be developed. With the use of this information, an optimum developer conveyance rate is calculated for each of an image such as a text image in which importance is attached to thin lines and a high-density image, whereby both of a fine image and a high-density image can be increased in image quality.
(2) Use history information (i.e., the number of images formed) and environmental information. Even if the charging characteristic of developer is varied as the image forming apparatus is used for a long time or due to an environmental change, the development characteristics can be corrected by calculating an optimum developer conveyance rate that is suitable for a use history and environmental conditions.
The circumferential speed determining section 13 may be of a type in which developer conveyance rates and circumferential speeds of the layer regulating rotary body 6 are correlated with each other. The circumferential speed determining section 13 determines a circumferential speed of the layer regulating rotary body 6 on the basis of the calculated developer conveyance rate.
Next, a description will be made of how the developing device 10 according to the general exemplary embodiment operates.
For example, when the development rotary body 3 is rotated at a preset circumferential speed vd=vdc (see
If it is assumed that as shown in
Conversely, if the circumferential speed vr of the layer regulating rotary body 6 is decreased from vr1, the conveying force produced by the rotation of the layer regulating rotary body 6 and acting on developer G is weakened and hence the conveyance rate is decreased.
If as shown in
If as shown in
Next, preferable modes of various kinds of image forming apparatus will be described. Each of these image forming apparatus employs the developing device 10 in which whereas the development rotary body 3 is driven rotationally, it stops rotational driving of the layer regulating rotary body 6 or rotationally drives the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3, whereby the conveyance rate of developer held on the developer holding body 2 that has passed the layer regulating rotary body 6 and is moving toward the development position A between the image holding body 1 and the developer holding body 2 is made approximately equal to zero.
First, a description will be made of a preferable mode of an image forming apparatus that employs an image forming method in which a single image holding body 1 is rotated plural times. This image forming apparatus is equipped with an image holding body 1 capable of holding toner images of respective color components; a latent image forming device 9 for forming electrostatic latent images of the respective color components on the image holding body 1; and plural developing devices 10 provided around the image holding body 1, for developing, sequentially, with respective color toners, the electrostatic latent images of the respective color components formed on the image holding body 1. In a developing device 10 that is in a non-operating state, the development driving device 11 shuts out the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3 while rotationally driving the development rotary body 3, and then stops the rotational driving of the development rotary body 3. In this mode, a state that no developer exits at the development position A is established because the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 is shut out by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3.
Next, a description will be made of a preferable mode of an image forming apparatus that employs a tandem image forming method. This image forming apparatus is equipped with plural image holding bodies 1 capable of holding toner images of color components, respectively; a latent image forming device 9 for forming electrostatic latent images of the color components on the image holding bodies 1, respectively; plural developing devices 10 provided for the respective image holding bodies 1, for developing, with color toners, the electrostatic latent images of the color components formed on the image holding bodies 1, respectively; and an image formation control device (not shown) for switching between a multi-color image formation control process for formation of a multi-color image and a monochrome image formation control process for formation of a monochrome image. When the image formation control device switches from the multi-color image formation control process to the monochrome image formation control process, in a developing device 10 that is in a non-operating state, the development driving device 11 shuts out the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3 while rotationally driving the development rotary body 3, and then stops the rotational driving of the development rotary body 3. In this mode, when switching is made from the multi-color image formation control process to the monochrome image formation control process, in a developing device 10 that is in a non-operating state, a state that no developer exits at the development position A is established because the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 is shut out before the rotational driving of the development rotary body 3 is stopped by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3.
Finally, a description will be made of a preferable mode of an image forming apparatus that is equipped with a rotary developing assembly. This image forming apparatus is equipped with an image holding body 1 capable of holding toner images of respective color components; a latent image forming device 9 for forming electrostatic latent images of the respective color components on the image holding body 1; and a rotary developing assembly (not shown) in which plural developing devices 10 for developing, with respective color toners, the electrostatic latent images of the respective color components formed on the image holding body 1 are supported rotatably by a rotary support body (not shown) and which is rotated so that a developing device to be opposed to the image holding body 1 at the development position A is selected. When a developing operation is finished in each developing device 10 of the rotary developing assembly, the development driving device 11 shuts out the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3 while rotationally driving the development rotary body 3, then stops the rotational driving of the development rotary body 3, and then causes rotation of the rotary developing assembly so that a developing device 10 of the next color component is selected. In this mode, the developing device 10 of each color component is selected in such a manner that it is rotated being supported by the rotary support body. When a developing operation is finished in each developing device 10, a state that no developer exits at the development position A is established because the supply of developer to the development position A between the image holding body 1 and the developer holding body 2 is shut out before the rotational driving of the development rotary body 3 is stopped by stopping rotational driving of the layer regulating rotary body 6 or rotationally driving the layer regulating rotary body 6 in such a manner that a portion, facing the development rotary body 3, of the layer regulating rotary body 6 is moved in a direction opposite to a movement direction of a corresponding portion of the development rotary body 3.
The invention will be described below in more detail using specific exemplary embodiments with reference to the accompanying drawings.
Exemplary Embodiment 1
—Entire Configuration of Image Forming Apparatus—
As shown in
In this exemplary embodiment, the transferred image on the recording medium 38 is fused by a fusing device (not shown) and then the recording medium 38 is ejected. Although in this exemplary embodiment the transfer destination medium is a recording medium 38, the invention is not limited to such a case and the transfer destination medium may include an intermediate transfer body which holds a toner image temporarily before it is transferred to a recording medium 38.
For example, the charging device 32 has a charging container 321 and a discharge wire 322 and a grid electrode 323 are provided in the charging container 321 as charging members. However, the structure of the charging device 32 is not limited to it. For example, any of other types of charging devices such as one having a roll-shaped charging member may be employed as appropriate.
The exposing device 33 is a laser scanning device, an LED array, or the like.
The developing device 34 is of a two-component development type which uses two-component developer containing a toner and a carrier. The details of the developing device 34 will be described later.
The transfer device 35 may be of such a type as to be able to produce a transfer electric field for electrostatically transferring a toner image on the photoreceptor body 31 to a recording medium 38, and uses, for example, a roll-shaped transfer member to which a transfer bias is applied. However, the invention is not limited to such a case. Any of other types of transfer devices such as a transfer corotron which uses a discharge wire may be employed as appropriate.
The cleaning device 36 has a cleaning container 360 which is opened on the side of the photoreceptor body 31 and serves to house residual toner. A plate-like cleaning member 361 such as a blade or a scraper is attached to the edge, located on the downstream side in the rotation direction of the photoreceptor body 31, of the opening of the cleaning container 360. A brush-shaped or roll-shaped rotary cleaning member 362 is disposed upstream of the plate-like cleaning member 361 in the rotation direction of the photoreceptor body 31. A sealing member 363 is attached to the edge, located on the upstream side in the rotation direction of the photoreceptor body 31, of the opening of the cleaning container 360. A transport member 364 for transporting cleaned-out residual toner to collect and discard it is disposed below the rotary cleaning member 362 in the cleaning container 360. For example, the transport member 364 is of a type in which a spiral blade is formed around a rotary shaft member.
—Developing Device—
In this exemplary embodiment, the developing device 34 has a development container 40 which is opened on the side of the photoreceptor body 31 and serves to house a two-component developer containing a toner and a carrier. A developing roll 41 capable of holding and conveying developer is disposed in the development container 40 at such a position as to be opposed to the photoreceptor body 31. Stirring and transporting members 42 and 43 for stirring and transporting developer to charge the toner through friction are disposed in the development container 40 behind the developing roll 41 so as to be arranged in the horizontal direction, for example. Developer that has been stirred and transported by the stirring and transporting members 42 and 43 is given to the developing roll 41, the thickness of a developer layer on the developing roll 41 is then regulated by a layer regulating member 44, and developer is finally supplied to the photoreceptor body 31 at a development position A where the developing roll 41 faces the photoreceptor body 31.
As shown in
A sealing member 45 is attached to the top edge of the opening of the development container 40. A collection roll 46 for collecting suspended toner is disposed downstream of the development position A in the rotation direction of the photoreceptor body 31. Suspended toner etc. collected by the collection roll 46 are raked off by a raking member 47 and returned to inside the development container 40.
<Developing Roll>
In this exemplary embodiment, the developing roll 41 is opposed to the photoreceptor body 31 at the development position A with a gap formed between them (i.e., they are not in contact with each other). The gap distance is set so that developer fills the gap between the photoreceptor body 31 and the developing roll 41 when the developer is conveyed, being held on the developing roll 41, to the development position A at a developer conveyance rate (MOS: mass on the sleeve) necessary for development.
As shown in
In this exemplary embodiment, the developing sleeve 61 has a smooth surface 61a. For example, the smooth surface 61a is formed by polishing the surface of a non-magnetic raw pipe of the developing sleeve 61 and its surface roughness is set lower than or equal to 5 μm in terms of maximum height Rz (JIS B0601 2001).
As shown in
The magnetic flux density distribution W of the magnetic poles 64 (64a-64e) of the magnet roll 62 is set so as to be able to hold and convey developer on the developing sleeve 61 by resulting magnetic force when the developing sleeve 61 is rotated.
<Layer Regulating Member>
As shown in
The layer regulating member (rotary trimmer) 44 is opposed to the developing sleeve 61 with a predetermined gap TG formed between them (i.e., they are not in contact with each other). The gap distance TG is set as appropriate in a range of 0.035 to 1.5 mm, for example, so that a proper developer conveyance rate (MOS) is obtained at the development position A.
The layer regulating member (rotary trimmer) 44 is made of a non-magnetic material (e.g., SUS304) or a magnetic material (e.g., SUS416) and has a smooth surface 44a. The smooth surface 44a is formed by polishing the surface of a raw pipe of the layer regulating member (rotary trimmer) 44 and its surface roughness is set lower than or equal to 5 μm in terms of maximum height Rz (JIS B0601 2001).
As shown in
<Drive Power Transmission Systems>
In a drive power transmission system corresponding to the one drive motor (MOT1) 71, a drive gear 74 is attached to a motor drive shaft 73 concentrically. Transmission gears 75-77 are attached concentrically to one end of a rotary shaft of the developing sleeve 61 of the developing roll 41 and one ends of rotary shafts of the stirring and transporting members 42 and 43, respectively, and the transmission gears 76 and 77 are engaged with each other. An intermediate transmission gear 78 is disposed between and engaged with the drive gear 74 and the transmission gear 76, and is engaged with the transmission gear 75.
In a drive power transmission system corresponding to the other drive motor (MOT2) 72, a drive gear 82 is attached to a motor drive shaft 81 concentrically. A transmission gear 83 is attached to a rotary shaft of the layer regulating member (rotary trimmer) 44 concentrically and engaged with the drive gear 82.
Each of the drive motors 71 and 72 is driven rotationally or stopped on the basis of a control signal that is supplied from a control device 100.
In this exemplary embodiment, as shown in
<Drive Control System>
In this exemplary embodiment, the control device 100 is a computer system having a CPU, a RAM, a ROM, and input/output ports. As shown in
In this exemplary embodiment, the circumferential speed vd of the developing sleeve 61 of the developing roll 41 is set at a predetermined constant value and the circumferential speed vr of the layer regulating member (rotary trimmer) 44 is variably set in a range of a predetermined lower limit value vmin and an upper limit value vmax.
—Development Drive Control Processes—
Next, development drive control processes which are execute by the developing device 34 according to this exemplary embodiment will be described. The development drive control processes include the following.
<MOS Control Using Image Information>
In this control, as shown in
In this case, as shown in
When the image information comes under the low image density, a print operation (development operation) is performed by setting the developer conveyance rate at a decreased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 lower than the initial setting value.
In this case, as shown in
When the image information comes under the high image density, a print operation (development operation) is performed by setting the developer conveyance rate at an increased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 higher than the initial setting value.
In this case, as shown in
<MOS Control Using Use History Information>
In this control, as shown in
In this case, as shown in
When the total number of prints is larger than N1 and smaller than or equal to N2, a print operation (development operation) is performed by setting the developer conveyance rate at a decreased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 higher than the initial setting value.
In this case, as shown in
When the total number of prints is larger than N2 and smaller than or equal to N3, a print operation (development operation) is performed by setting the developer conveyance rate at a further increased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 even higher than the initial setting value.
In this case, as shown in
<MOS Control Using Environment Information>
In this control, as shown in
In this case, as shown in
When the environment information comes under the low-temperature/low-humidity environment, a print operation (development operation) is performed by setting the developer conveyance rate at an increased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 higher than the initial setting value.
In this case, as shown in
When the environment information comes under the high-temperature/high-humidity environment, a print operation (development operation) is performed by setting the developer conveyance rate at a decreased MOS value and setting the rotation speed (circumferential speed) vr of the layer regulating member (rotary trimmer) 44 lower than the initial setting value.
In this case, as shown in
—Layer Regulating Member Circumferential Speed Adjustment Process—
In this exemplary embodiment, a MOS variation is measured when the circumferential speed vr of the layer regulating member (rotary trimmer) 44 is varied and a tendency shown in
The horizontal axis of the graph of
Now assume that as shown in
If as shown in
MOS2>MOS1 if vr2>vr1; and
MOS2<MOS1 if vr2<vr1.
Furthermore, as shown in
The conveyance rate becomes zero also when the rotation direction of the rotary trimmer 44 is reversed with the developing roll 41 (more specifically, developing sleeve 61) kept rotating at the constant circumferential speed vd (also see
Exemplary Embodiment 2
In this exemplary embodiment, each developing device 34 has approximately the same configuration as in the first exemplary embodiment. For example, the supply of developer to the development position is shut out by stopping the rotational driving of the layer regulating member (rotary trimmer) 44.
To perform a full-color-mode development operation starting from the state of
Then, as shown in
Then, as shown in
Finally, as shown in
As described above, in this exemplary embodiment, a state that no developer exits at the development position A between the photoreceptor body 31 and the developing roll 41 is maintained while the developing device is in a non-developing state. This prevents a phenomenon that the developing device in a non-developing state deteriorates toner images of respective color components that are already formed on the photoreceptor body 31.
Exemplary Embodiment 3
In this exemplary embodiment, an image formation control device (not shown) is provided with an element for switching between a full-color-mode image forming process and a monochrome (black)-mode image forming process.
When a full-color-mode image forming operation is to be performed, as shown in
To switch from the full-color mode to the monochrome (black) mode, as shown in
In this exemplary embodiment, no developer exits at the development position A when the rotational driving of the developing roll 41 (developing sleeve 61) is stopped in each of the developing devices 34 (34Y, 34M, and 340) to be rendered in a non-developing state. Therefore, even if the developing roll 41 (developing sleeve 61) is stopped suddenly, the probability that developer comes off the developing roll 41 is very low.
Exemplary Embodiment 4
The rotary developing unit 150 has a rotary support frame 151 which is rotatable, and the rotary support frame 151 is mounted with plural developing devices 34 (34Y, 34M, 34C, and 34K) which use toners of respective color components. As the photoreceptor body 31 is rotated plural times, the developing device 34 that is opposed to the photoreceptor body 31 at the development position A is selected from the developing devices 34Y, 34M, 340, and 34K by rotating the rotary support frame 151 intermittently. In this manner, toner images of the respective color components are sequentially formed on the photoreceptor body 31 and then transferred to a recording medium directly or via an intermediate transfer body.
In this exemplary embodiment, a full-color-mode developing operation is performed in the following manner. First, as shown in
Then, as shown in
Then, as shown in
Then, as shown in
As described above, in this exemplary embodiment, the developing device of the next color component is moved to the development position A after a developing operation has completed and the supply of developer to the development position A has been shut out in each developing device 34 (34Y, 34M, 34C, or 34K) of the rotary developing unit 150. Therefore, the probability that developer comes off the developing device 34 used immediately before when switching is made to the next one.
An image forming apparatus according to Example is the same in configuration as the image forming apparatus according to the first exemplary embodiment except that as shown in
Image forming apparatus according to Comparative Examples which are shown in
The developing sleeve 61 used in Example is a smooth sleeve shown in
On the other hand, in Comparative Examples 1 and 2, the developing sleeve 61′ is a blasted sleeve shown in
In each of Example and Comparative Examples, the interval between the layer regulating member and the developing sleeve is set at 240 μm.
To evaluate performance of each of the developing device 34A according to Example and the developing devices 34A′ according to Comparative Examples, developer conveyance rates (MOS values) are measured for various combinations of a layer regulating member (trimmer), a magnetic flux density of a layer regulating magnetic pole, and a developing sleeve surface type. Results are shown in
As seen from
In contrast, in Example, it is confirmed that the combination of the rotary trimmer and the smooth sleeve makes it possible to adjust the developer conveyance rate very easily.
It is understood that layer formation itself is impossible in the case of the combination of the smooth sleeve and the fixed trimmer.
In Example, the developer conveyance rate is appropriate (not too high) when the magnetic flux density of the layer regulating magnetic pole at the layer regulating position is 50 mT. However, when the magnetic flux density of the layer regulating magnetic pole is 80 mT, the developer conveyance rate is high though the developing device is usable. A preferable range of the magnetic flux density of the layer regulating magnetic pole at the layer regulating position is 30 to 60 mT; in this range, the developer conveyance rate can be adjusted to a proper value.
Furthermore, developer conveyance rates (MOS values) are measured for Example 1 (corresponds to the above “Example”) and Example 2 in which the interval between the layer regulating member and the developing sleeve is set at 240 μm and 70 μm, respectively, and Comparative Example 3 in which the rotary trimmer and the blasted sleeve are used in combination.
It is seen that in each of Examples 1 and 2 the developer conveyance rate can be adjusted in its actual use range of 300 to 800 g/m2. In contrast, in Comparative Example 3, the developer conveyance rate exceeds its actual use range when the rotary trimmer circumferential speed ratio is larger than 0.7.
In Examples 1 and 2 the surface roughness of the smooth surface of the developing sleeve is 3 μm in terms of maximum height. Similar experiments are conducted in which the surface roughness of the smooth surface is varied and results are similar to those obtained for Examples 1 and 2 as long as the surface roughness of the smooth surface is lower than or equal to 5 μm in terms of maximum height.
Similar experiments are conducted in which the interval between the layer regulating member and the developing sleeve is varied in its actual use range of 0.035 to 1.5 mm and results are similar to those obtained for Examples 1 and 2. In particular, it is found that the performance is stable in an approximate range of 0.060 to 1.0 mm.
The foregoing description of the embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2010-217871 | Sep 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4487496 | Baier et al. | Dec 1984 | A |
4624559 | Haneda et al. | Nov 1986 | A |
5517286 | Tada et al. | May 1996 | A |
5682585 | Yamaguchi et al. | Oct 1997 | A |
6711372 | Noda et al. | Mar 2004 | B1 |
6775506 | Endoh et al. | Aug 2004 | B2 |
7514196 | Nagai | Apr 2009 | B2 |
20110229216 | Iwamura | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
A-3-118575 | May 1991 | JP |
A-5-19631 | Jan 1993 | JP |
05241436 | Sep 1993 | JP |
A-7-181806 | Jul 1995 | JP |
09090747 | Apr 1997 | JP |
A-11-249424 | Sep 1999 | JP |
2002333769 | Nov 2002 | JP |
2004151350 | May 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20120076540 A1 | Mar 2012 | US |