1. Field of the Invention
The disclosures herein relate to a developing device, an image forming apparatus and an image forming method for developing an image in a hopping developing system by attaching a toner hopping on a surface of a toner carrier to a latent image formed on a latent image carrier.
2. Description of the Related Art
Japanese Patent Application Publication No. 2008-008929 (hereinafter called “Patent Document 1”) discloses one example of an image forming apparatus configured to develop an image in a hopping developing system. The disclosed image forming apparatus includes a developing device that includes a toner carrier roller formed of a rotatable cylindrical base and two or more electrodes adjacently arranged at a predetermined pitch along a periphery of the cylindrical base. In the image forming apparatus, a first periodic pulse voltage and a second periodic pulse voltage respective phases of which are shifted from each other are applied to adjacent electrodes. When such first and second periodic pulse voltages having mutually shifted phases are applied to the adjacent electrodes, alternating fields are formed between the adjacent electrodes, which cause toner on a surface of a toner carrier roller to reciprocate between the adjacent electrodes while exhibiting a hopping behavior. The toner is thus carried to a developing region formed between the toner carrier roller and the photoreceptor where the toner carrier faces a photoreceptor with a rotational movement of the toner carrier roller while reciprocally hopping between the adjacent electrodes. In the developing region, the toner hopping on the surface of the toner carrier is attracted to an electrostatic latent image formed on the photoreceptor. The attracted toner is attached to the electrostatic latent image of the photoreceptor, which is thus developed to form a toner image.
In such a hopping developing system where the electrostatic latent image is developed by attaching the hopping toner to the electrostatic latent image, it may be possible to implement a low voltage development due to an extremely small potential difference between the electrostatic latent image and a bare surface exposed around the electrostatic latent image of the photoreceptor. Further, in the hopping developing system, the potential difference between the electrostatic latent image and the bare surface may be reduced approximately several tens μV, which may not be realized by a one-component developing system in which the development is carried out by utilizing toner attached to a surface of a developing roller, or a two-component developing system where the development is carried out by utilizing toner attached to carrier particles carried on a surface of the developing roller. Thus, the reduction in the potential difference may reduce the load caused by the potential difference on the surface of the photoreceptor to elongate the life of the photoreceptor.
In the hopping developing system, in order to stabilize the amount of toner transferred to the developing region, there is proposed a developing device that is provided with a regulator blade to regulate a thickness of a toner layer on the surface of the toner carrier roller. In this developing device, the amount of toner transferred to the developing region is regulated by bringing the regulator blade into contact with the surface of the toner carrier roller before entering into the developing region. Further, in the development device having the above configuration, the toner layer may be regulated to a certain thickness by applying a direct (DC) voltage having a polarity the same as the polarity of toner charge to the regulator blade.
However, the related art image forming apparatus having the hopping developing system only includes a power supply to generate the above-described periodic pulse voltages as a power supply to generate bias applied to various components and members of the developing device. However, if the image forming apparatus having the hopping developing system is further provided with a direct-current (DC) power supply in addition to the above power supply to generate a periodic pulse voltage, the cost may be increased.
It is a general object of at least one embodiment of the present invention to provide a developing device, an image forming apparatus and an image forming method capable of regulating a toner layer at a predetermined thickness without having a direct-current power supply for supplying a direct voltage specifically to a toner layer thickness regulator member, which substantially eliminate one or more problems caused by the limitations and disadvantages of the related art.
In one embodiment, there is provided an image forming apparatus that includes an electrostatic latent image carrier configured to carry an electrostatic latent image thereon; a developing device including a toner carrier formed of a base carrying toner on an endless surface thereof, first electrodes aligned along a surface direction of the base and to which a first periodic pulse voltage is periodically applied, and second electrodes aligned along the surface direction of the base and to which a second periodic pulse voltage having a phase differing from a phase of the first periodic pulse voltage is periodically applied, the developing device configured to develop the electrostatic latent image carried on the surface of the electrostatic latent image carrier by transferring the toner on the surface of the toner carrier to a developing region formed between the toner carrier and the electrostatic latent image carrier by surface movement of the toner carrier while causing the toner to hop between the first electrodes and the second electrodes on the surface of the toner carrier, and attaching the toner hopping therebetween to the electrostatic latent image carried on the surface of the electrostatic latent image carrier; a pulsed power supply including a first pulse output unit configured to output the first periodic pulse voltage having a mean potential with a polarity the same as a polarity of a normal toner charge, and a second pulse output unit configured to output the second periodic pulse voltage; a smoothing circuit configured to make the first periodic pulse voltage output from the first pulse output unit smooth to generate a smoothed first periodic pulse voltage as a direct voltage; and a toner layer thickness regulator member configured to regulate, on receiving the direct voltage generated from the smoothing circuit, a thickness of the toner layer on the surface of the toner carrier in a region between a toner supply position at which toner is supplied and the developing region formed between the toner carrier and the electrostatic latent image carrier before the toner layer on the surface of the toner carrier enters into the developing region.
In another embodiment, there is provided a method for forming an image in an image forming apparatus having an electrostatic latent image carrier, a developing device having a toner carrier on which first electrodes and second electrodes are formed and a toner supply unit supplying toner to the surface of a toner carrier to form a toner layer thereon, a pulsed power supply having a first pulse output unit outputting a first periodic pulse voltage and a second pulse output unit outputting a second periodic pulse voltage, a toner layer thickness regulator member and a smoothing circuit. The method includes carrying an electrostatic latent image; developing the electrostatic latent image by transferring the toner carried on the surface of the toner carrier by surface movement of the toner carrier to a developing region formed between the toner carrier and the electrostatic latent image carrier while causing the toner on the surface of the toner carrier to hop between the first electrodes aligned along a surface direction of the toner carrier and to which the first periodic pulse voltage is periodically applied and the second electrodes aligned along the surface direction of the toner carrier and to which the second periodic pulse voltage having a phase differing from a phase of the first periodic pulse voltage is periodically applied, and attaching the toner hopping therebetween to the electrostatic latent image carried on the surface of the electrostatic latent image carrier; outputting the first periodic pulse voltage having a mean potential with a polarity the same as a polarity of a normal toner charge; making the first periodic pulse voltage smooth to generate a smoothed first periodic pulse voltage as a direct voltage and applying the generated direct voltage the toner layer thickness regulator member; regulating, on the application of the generated direct voltage to the toner layer thickness regulator member, the thickness of the toner layer on the surface of the toner carrier in a region between a toner supply position at which the toner is supplied and the developing region formed between the toner carrier and the electrostatic latent image carrier before the toner layer on the surface of the toner carrier enters into the developing region.
In another embodiment, there is provided an image forming apparatus that includes an electrostatic latent image carrying means for carrying an electrostatic latent image; a developing means for developing the electrostatic latent image on the electrostatic latent image carrying means by transferring toner carried on a surface of a toner carrier by surface movement of the toner carrier to a developing region formed between the toner carrier and the electrostatic latent image carrying means while causing the toner on the surface of the toner carrier to hop between first electrodes aligned along a surface direction of the toner carrier and to which a first periodic pulse voltage is periodically applied and second electrodes aligned along the surface direction of the toner carrier and to which a second periodic pulse voltage having a phase differing from a phase of the first periodic pulse voltage is periodically applied, and attaching the toner hopping therebetween to the electrostatic latent image carried on the surface of the electrostatic latent image carrying means; a pulsed power supplying means for outputting the first periodic pulse voltage having a mean potential with a polarity the same as a polarity of a normal toner charge and outputting the second periodic pulse voltage; a smoothing means for making the first periodic pulse voltage smooth to generate a smoothed first periodic pulse voltage as a direct voltage; and a toner layer thickness regulating means for regulating, on receiving the applied direct voltage, the thickness of the toner layer on the surface of the toner carrier in a region between a toner supply position at which the toner is supplied and a developing region formed between the toner carrier and the electrostatic latent image carrying means before the toner layer on the surface of the toner carrier enters into the developing region.
Other objects and further features of embodiments will be apparent from the following detailed description when read in conjunction with the accompanying drawings, in which:
In the following, embodiments of the present invention will be described with reference to the accompanying drawings. An image forming apparatus according to an embodiment utilized as a copier employs a hopping developing system.
Subsequently, when a developing device 1 carries out a developing process to attach toner to the electrostatic latent image formed on the surface of the photoreceptor drum 49, a toner image is formed on the surface of the photoreceptor drum 49. The toner image on the surface of the photoreceptor drum 49 is carried to a transfer position facing a transfer charger 60 with a rotational movement of the photoreceptor drum 49. Meanwhile, a recording sheet P is fed into the transfer position by a first sheet feeder 70 having a first sheet feeder roller 70a or by a second sheet feeder 71 having a second sheet feeder roller 71a such that a position of the recording sheet P matches a position of the toner image on carried the surface of the photoreceptor drum 49 at the transfer position. The toner image on the surface of the photoreceptor drum 49 is then transferred onto the recording sheet P by corona discharge of the transfer charger 60.
The toner image transferred onto the recording sheet P is detached from the surface of the photoreceptor drum 49 by corona discharge of a separation charger 61, and the detached recording sheet P on which the toner image is transferred is carried by a transfer belt 75 toward a fixing device 76. In the fixing device 76, the recording sheet P is sandwiched in a fixing nip formed of a fixing roller 76a having a heater source such as a halogen lamp and a pressure roller 76b pressing against the fixing roller 76a. The toner image is fixed on a surface of the recording sheet P by the application of pressure and heat while being sandwiched in the fixing nip, and the recording sheet P on which the toner image is fixed is discharged to a discharge tray 77 arranged outside of the copier.
Thereafter, residual toner remains attached on the surface of the photoreceptor drum 49 after being passed through the transfer position is removed by a cleaner device 45. The surface of the photoreceptor drum 49 from which the residual toner is removed is then statically discharged for a next latent image formation.
The developing device 1 includes the toner carrier roller 2, a toner supply roller 18, a mixing paddle 19 and a toner layer thickness regulator blade 22. The toner supply roller 18 scoops toner from a toner container within the developing device 1 and carries the scooped toner on its spongy roller surface while being rotationally driven by a (not-illustrated) drive unit in a clockwise direction in
The toner carried on the surface of the toner supply roller 18 is supplied to the toner carrier roller 2 at the contact position between the toner supply roller 18 and the toner carrier roller 2. The amount of toner supplied to the toner carrier roller 2 may be adjusted by the amount of a supply bias applied to a cored bar of the toner supply roller 18. Note that the supply bias may be a direct (DC) voltage, an alternating voltage, or a bias obtained by superimposing the alternating voltage on the DC voltage. The copier according to an embodiment employs a periodic pulse voltage that is the alternating voltage.
The toner supplied on the surface of the toner carrier roller 2 rotationally travels with the rotation of the toner carrier roller 2 in the clockwise direction in
A free end of a cantilever toner layer thickness regulator blade 22 is brought into contact with a region of the surface of the toner carrier roller 2 having passed through the contact position with the toner supply roller 18 and not having entered the developing region facing the photoreceptor drum 49. While the toner hopping on the surface of the toner carrier roller 2 rotationally travels with the rotation of the toner carrier roller 2 in the clockwise direction in
As illustrated in
When the toner hopping on the surface of the toner carrier roller 2 passes through the developing region, residual toner not used for the development and remaining on the surface of the toner carrier roller 2 return to the developing region with the rotation of the toner carrier roller 2.
Next, a specific configuration of the toner carrier roller 2 utilized in the copier according to an embodiment is described.
The second pulse electrodes 5 formed on the surface of the base layer 3 are made of metal such as aluminum, copper, silver, and the like. Various methods may be employed for forming such second pulse electrodes 5. For example, the second pulse electrodes 5 may be formed by forming a metallic film on the base layer 3 by plating or vacuum deposition and then forming the metallic film in a ladder-like shape (see
Examples of the insulator material forming the surface layer 4, which covers the base layer 3 and the second pulse electrodes 5, include silicone, nylon (registered trade mark), urethane, melamine alkyd, polycarbonate, and the like. The surface layer 4 may be formed by spraying or dipping.
The first metallic flange 9 is attached to one ends of the second pulse electrodes 5. The first flange 9 is connected to a second pulse output unit 110. Accordingly, a second periodic pulse voltage output from the second pulse output unit 110 is applied to the respective second pulse electrodes 5 via the first flange 9.
The rotational shaft 8b of the cored bar 8 is connected to a first pulse output unit 120. Accordingly, a first periodic pulse voltage output from the first pulse output unit 120 is applied to the cored bar 8.
By the application of the first and second periodic pulse voltages to the cored bar 8 (i.e., first pulse electrode) and the second pulse electrodes 5, the toner carried on the surface of the toner carrier roller 2 reciprocally moves between the second pulse electrodes 5 and the cored bar 8 while hopping in the circumferential direction as illustrated in
Next, a configuration of the copier according to an embodiment is described. As illustrated in
Inventors of the present application have made a prototype developing device 1 illustrated in
In a third experiment, the thickness of the toner layer was adjusted by applying a negative direct (DC) voltage having the same polarity as the polarity of toner charge to the metallic plate of the toner layer thickness regulator blade 22. The result indicated that the thickness of the toner was uniformly adjusted without contaminating the bare surface of the photoreceptor drum 49 after the thickness of the toner layer had been regulated.
Thus, in the third experiment, the amount of the toner was successfully stabilized by applying the blade voltage made up of the negative DC voltage to the toner layer thickness regulator blade 22. However, if a specific power supply for applying the blade bias is additionally provided, the cost may be increased. Thus, to overcome such cost increase, the copier according to an embodiment is configured such that the blade bias formed of the negative DC voltage may be applied to the toner layer thickness regulator blade 22 without having the specific power supply for applying the blade voltage formed of the DC voltage.
The image intensity sensor 151 is configured to detect image intensity of a patchy standard toner image formed on the (not-illustrated) photoreceptor drum and output the detected result to the controller 150. The temperature-humidity sensor 152 provided as an environment detector is configured to detect the temperature inside the copier and output the detected result as a temperature signal to the controller 150, or detect the humidity inside the copier and output the detected result as a humidity signal to the controller 150.
The pulsed power supply 100 includes a base voltage power supply 102, a superimposing voltage power supply 103, a reference clock pulse output unit circuit 104, a second pulse output unit 110, a first pulse output unit 120 and a smoothing circuit 130. The base voltage power supply 102 is configured to generate a base voltage formed of a DC voltage having the same value as the low potential peak value of the first periodic pulse voltage or the second periodic pulse voltage. The superimposing voltage power supply 103 is configured to generate a DC voltage having the same value as the peak-to-peak voltage (see Vpp in
The reference clock pulse generator circuit 104 accurately outputs a reference clock pulse signal to the first pulse output unit 120 at a predetermined period. The first pulse output unit 120 may send the base voltage without change to an output side based on the reference clock pulse signal, or may superimpose the superimposing voltage to the base voltage based on the reference clock pulse signal and send the superimposed voltage to the output side. Accordingly, the first pulse output unit 120 outputs the first periodic pulse voltage having the base voltage as the low potential peak value and a voltage obtained by superimposing the superimposing voltage to the base voltage as the high potential peak value. The first pulse output unit 120 also outputs a timing signal to the second pulse output unit 110 every time the pulse of the first periodic pulse voltage output by itself is raised.
Similar to the first pulse output unit 120, the second pulse output unit 110 may also send the base voltage without change to the output side, or may superimpose the superimposing voltage to the base voltage and output the superimposed voltage to the output side. Accordingly, the second pulse output unit 110 outputs the second periodic pulse voltage having the base voltage as the low potential peak value and the voltage obtained by superimposing the superimposing voltage to the base voltage as the high potential peak value. The second pulse output unit 110 determines a timing of switching on or off of superimposing the superimposing voltage based on the timing signal sent from the first pulse output unit 120 to allow the second periodic pulse voltage has a phase opposite to that of the first periodic pulse voltage. The second periodic pulse voltage output from the second pulse output unit 110 is applied to the respective second pulse electrodes 5 of the toner carrier roller 2.
The output side of the first pulse output unit 120 is connected to the cored bar 8 of the toner carrier roller 2, a cored bar of the toner supply roller 18, and smoothing circuit 130. The first periodic pulse voltage output from the first pulse output unit 120 is applied to the cored bar 8 of the toner carrier roller 2 or the cored bar of the toner supply roller 18 without any change. The first periodic pulse voltage is smoothed and converted into a DC voltage by the smoothing circuit 130 having a resistor 131 and a capacitor 133, and the converted DC voltage is then applied as the blade voltage to the toner layer thickness regulator blade 22.
With this configuration, the smoothing circuit 130 makes the first periodic pulse voltage smooth, which is the negative mean voltage having the same polarity as the toner charge, to generate a smoothed first periodic pulse voltage as a negative DC voltage. The generated negative DC voltage is then applied to the toner layer thickness regulator blade 22 to regulate the toner layer in a predetermined thickness without separately having a specific DC power supply for applying the DC voltage to the toner layer thickness regulator blade 22.
When the first periodic pulse voltage passes through the smoothing circuit 130 illustrated in
In the developing performance adjusting process, a patchy standard toner image is formed on the surface of the photoreceptor drum 49, and the image intensity sensor 151 detects image intensity (the amount of toner attached per unit area) of the patchy standard toner image output. If the detected result indicates the intensity lower or higher than the target intensity, the low potential peak value and the high potential peak value may be shifted. Accordingly, a target image intensity may be obtained by changing the developing potential that is the difference between the mean potential of the periodic pulse voltage and the electrostatic latent image potential.
The high potential peak value and low potential peak value of the periodic pulse voltage are changed as follows. That is, the base voltage power supply 102 may change the output value of the base voltage based on a base voltage adjusting signal transmitted from the controller 150. If the image intensity of the standard toner image is lower than the target image intensity, the controller 150 shifts the output value of the base voltage to the negative side by changing the base voltage adjusting signal. Thus, the image intensity is lowered by shifting the central value between the two peak potentials (central potential between the peak-to-peak voltage) of the first periodic pulse voltage or the second periodic pulse voltage to the negative side to increase the developing potential. In this manner, the image intensity of the standard toner image approaches the target image intensity. By contrast, if the image density of the standard toner image is higher than the target image density, the controller 150 shifts the output value of the base voltage to the positive side by changing the base voltage adjusting signal. Thus, the image intensity is increased by shifting the central value between the two peak potentials of the first periodic pulse voltage or the second periodic pulse voltage to the positive side to lower the developing potential. In this manner, the image intensity of the standard toner image approaches the target image intensity.
The image intensity may be stabilized by regularly conducting the above-described developing performance adjusting process. However, if the printing operation is successively conducted, in a drastic environmental change (i.e., temperature and humidity change) may occur inside the copier. Thus, the image intensity may change due to the change in the amount of toner charge (Q/M) inside the developing device. That is, the change in the amount of toner charge changes may change the thickness of the toner layer of the toner thickness regulator blade 22 has passed through the surface of the toner layer. Since the amount of toner transferred into the developing region per unit time is changed, the developing intensity may be changed accordingly.
To overcome such an effect, the capability of regulating the toner layer thickness held by the toner layer thickness regulator blade 22 may be changed by changing the blade bias applied to the toner layer thickness regulator blade 22 based on a detected result of a temperature-humidity degrees detected by the temperature-humidity sensor 152 (i.e., environment detector). Thus, the amount of change in the thickness of the toner layer caused by the change in the amount of toner charge may be offset by the change in the capability of regulating the toner layer thickness held by the toner layer thickness regulator blade 22. Accordingly, the thickness of the toner layer may be stabilized.
The blade bias may be changed in the following manner. The first pulse output unit 120 may change the duty ratio of the first periodic pulse voltage based on a duty ratio adjusting signal transmitted from the controller 150. The controller 150 may change the duty ratio of the first periodic pulse voltage by changing the duty ratio adjusting signal transmitted from the controller 150 based on a detected result of the temperature-humidity degrees detected by the temperature-humidity sensor 152. Accordingly, since the blade bias has the same potential as the mean potential of the first periodic pulse voltage, the blade bias may be changed by changing the mean potential of the first periodic pulse voltage. For example, the mean potential (=blade bias) of the first periodic pulse voltage may be adjusted to the same value as the central value (i.e., −400 V in
The belt unit 202 included an endless belt-type photoreceptor 49 that is looped over plural rollers such that the endless belt-type photoreceptor 49 is elongated in a vertical direction rather than in a horizontal direction as illustrated in
The M, C, Y and K process units are arranged in the vertical direction on the left hand side of the tensioned left surface of the endless belt-type photoreceptor 49 such that the M, C, Y and K process units face the tensioned left surface of the endless belt-type photoreceptor 49. The M, C, Y and K process units respectively include developing devices 1M, 1C, 1Y and K, and chargers 50M, 50C, 50Y and 50K configured to uniformly charge the endless belt-type photoreceptor 49. The M, C, Y and K process units are supported by a (not-illustrated) common supporting unit. Each of the M, C, Y and K process units having the corresponding developing device and charger is attached into or detached from the printer case as a unit.
Among the developing devices 1M, 1C, 1Y and 1K, the developing device 1K (black) is arranged at a lowermost side in the vertical direction, and the charger 50K is arranged above the developing device 1K such that the charger 50K faces the tensioned left surface of the endless belt-type photoreceptor 49. Likewise, the developing device 1Y (yellow) is arranged directly above the developing device 1K, and the charger 50Y is arranged above the developing device 1Y such that the charger 50Y faces the tensioned left surface of the endless belt-type photoreceptor 49. Similarly, the developing device 10 (cyan) is arranged directly above the developing device 1Y, and the charger 50C is arranged above the developing device 10 such that the charger 50C faces the tensioned left surface of the endless belt-type photoreceptor 49. Moreover, the developing device 1M (magenta) is arranged directly above the developing device 1C, and the charger 50M is arranged above the developing device 1M such that the charger 50M faces the tensioned left surface of the endless belt-type photoreceptor 49.
The four optical writer units 200M, 200C, 200Y and 200K are arranged in the vertical direction on the left hand side of the developing devices 1M, 1C, 1Y and 1K that are also arranged in the vertical direction. The optical writer units 200M, 200C, 200Y and 200K drive (not-illustrated) four semiconductor lasers to emit respective optical writer laser beams Lm, Lc, Ly and Lk of M, C, Y and K colors based on image information transmitted from an externally arranged (not-illustrated) personal computer (PC) or scanner. The endless belt-type photoreceptor 49 is scanned while the optical writer laser beams Lm, Lc, Ly and Lk emitted from the four semiconductor lasers are deflected by a (not-illustrated) polygon mirror such that the deflected light beams are reflected off a (not-illustrated) reflector mirrors or are passed through (not-illustrated) optical lenses. Note that the optical scanning may be carried out by an LED array. Note also that the optical scanning may be carried out in darkness.
The endless belt-type photoreceptor 49 moves directly from upstream to downstream in the approximately vertical direction between the driving roller 204 arranged at the lowermost position and the tension roller 206 arrange at the uppermost position in the vertical direction. For example, the endless belt-type photoreceptor 49 may be uniformly charged with the negative polarity when the endless belt-type photoreceptor 49 passes through a position facing the charger 50M. The endless belt-type photoreceptor 49 is scanned by the optical writer laser beams Lm (Magenta), the endless belt-type photoreceptor 49 carries an electrostatic latent image of M color (hereinafter simply called an “M latent image”) and then passes through a position facing the developing device 1M. At this moment, the M latent image optically written on the surface of the endless belt-type photoreceptor 49 is developed by the developing device 1M, thereby forming an M toner image.
The surface of the endless belt-type photoreceptor 49 now carrying the M toner image is uniformly charged again by the charger 50C and is then scanned by the optical writer laser beams Lc (Cyan), such that the endless belt-type photoreceptor 49 carries an electrostatic latent image of C color (hereinafter simply called a “C latent image”) while traveling from upstream to downstream in the vertical direction. The C latent image optically written on the surface of the endless belt-type photoreceptor 49 is developed by the developing device 10, thereby forming a C toner image. At this moment, the entire region or partial region of the C toner image is developed while being superimposed on the M toner image already formed on the surface of the endless belt-type photoreceptor 49. The superimposed region includes a secondary color region composed of M and C colors.
The surface of the endless belt-type photoreceptor 49 now carrying the C toner image is uniformly charged again by the charger 50Y and is then scanned by the optical writer laser beams Ly (Yellow), such that the endless belt-type photoreceptor 49 carries an electrostatic latent image of Y color (hereinafter simply called a “Y latent image”) while traveling from upstream to downstream in the vertical direction. The Y latent image optically written on the surface of the endless belt-type photoreceptor 49 is developed by the developing device 1Y, thereby forming a Y toner image. At this moment, the entire region or partial region of the Y toner image is developed while being superimposed on the M toner image, the C toner image, or the MC secondary color region already formed on the surface of the endless belt-type photoreceptor 49. The superimposed region includes an MY secondary color region, an CY secondary color region, or an MCY tertiary color region.
The surface of the endless belt-type photoreceptor 49 now carrying the Y toner image is uniformly charged again by the charger 50K and is then scanned by the optical writer laser beams Lk (Black), such that the endless belt-type photoreceptor 49 carries an electrostatic latent image of K color (hereinafter simply called a “K latent image”) while traveling from upstream to downstream in the vertical direction. The K latent image optically written on the surface of the endless belt-type photoreceptor 49 is developed by the developing device 1Y, thereby forming a K toner image.
Thus, with the development by superimposing the M, C, Y and K toner images, a superimposed four color toner image is formed on an outer surface (outer surface of the loop) of the endless belt-type photoreceptor 49. Note that the chargers 50M, 50C, 50Y and 50K utilized in this embodiment are configured to uniformly charge the endless belt-type photoreceptor 49 by corona discharge.
When the endless belt-type photoreceptor 49 that has passed through a position facing the developing device 1K passes through a looped portion of the driving roller 204, the endless belt-type photoreceptor 49 relatively moves directly from downstream to upstream in the vertical direction between the driving roller 204 arranged at the lowermost position and the tension roller 206 arranged at the uppermost position. Then, the endless belt-type photoreceptor 49 moves further to enter a transfer nip between the transfer backup roller 205 and the transfer roller 207 (i.e., a looped portion of the transfer backup roller 205). In the looped portion of the transfer backup roller 205, the transfer roller 207 is brought into contact with the outer surface of the endless belt-type photoreceptor 49 to form the transfer nip between the transfer backup roller 205 and the transfer roller 207. The transfer backup roller 205 is grounded while the conductive transfer roller 207 is supplied with a transfer bias by a (not-illustrated) a bias application unit. Accordingly, transfer electric fields are formed at the nip between the transfer backup roller 205 and the transfer roller 207, which may electrostatically transfer the toner image from the transfer backup roller 205 side to the transfer roller 207 side.
Meanwhile, the paper feeder cassette 201 is configured to feed a recording sheet P contained in the cassette toward a paper-feeding path by rotationally driving a paper feed roller 201a at a predetermined timing. The recording sheet P fed from the paper feeder cassette 201 is sandwiched between the resist roller pair 208 arranged beneath the transfer nip between the transfer backup roller 205 and the transfer roller 207 as illustrated in
The superimposed four color toner image closely attached to the recording sheet P at the transfer nip is transferred from the endless belt-type photoreceptor 49 to the recording sheet P all at once by the effects of nip pressure and the transfer electric fields. The superimposed four color toner image transferred onto the recording sheet P forms a full-color image in combination with white color of the recording sheet P. The recording sheet P on which the full-color image is thus formed is transferred from the transfer nip to the fixing device 76, and is then, after the full-color image being fixed, discharged outside the copier.
As illustrated in
Accordingly, a second periodic pulse voltage generated from a second pulse output unit 110 is applied to the second pulse electrodes 5 via the first flange 9. Further, a first periodic pulse voltage generated from a first pulse output unit 120 is applied to the first pulse electrodes 6 via the second flange 10. Thus, the toner on the toner carrier roller 2 (or cylindrical base 7) reciprocally moves between the first pulse electrodes 6 and the second pulse electrodes 5 while exhibiting a hopping behavior.
The above description has given an example of the toner carrier roller to which two types of electrodes are formed; namely, the first pulse electrodes to which the first periodic pulse voltage is applied and the second pulse electrodes to which the second periodic pulse voltage is applied. However, the toner carrier roller 2 may be provided with three or more types of electrodes to which the dedicated respective (e.g., first, second and third) periodic pulse voltages are applied.
In the copier according to an embodiment and modification, the first pulse output unit 120 is configured to carry out a duty ratio changing process to change the duty ratio of the first periodic pulse voltage based on the duty ratio adjusting signal transmitted from the controller 150. With such a configuration, the blade bias, which is composed of the DC voltage having the same polarity as that of the toner and is utilized for applying the voltage to the toner thickness regulator blade 22, may be changed by changing the duty ratio of the first periodic pulse voltage.
Further, in the copier according to an embodiment and modification, the controller 150 includes the temperature-humidity sensor 152 provided as an environment detector to detect the temperature and humidity inside the copier, such that the controller may carry out a duty ratio adjusting signal changing process based on the detected result by the temperature-humidity sensor. With such a configuration, the amount of change in the thickness of the toner layer caused by the change in the amount of toner charge may be offset by the change in the capability of regulating the toner layer thickness held by the toner layer thickness regulator blade 22. Accordingly, the thickness of the toner layer may be stabilized.
Moreover, in the copier according to an embodiment, the controller 150, the photoreceptor 49 and the developing device 1 may serve as a developing capability measuring unit configured to measure developing capability of the developing device 1 by carrying out a developing performance adjusting process. The controller 150 is configured to carry out a process of changing the central potential of the peak-to-peak voltage of the first periodic pulse voltage and the central potential of the peak-to-peak voltage of the second periodic pulse voltage based on the measured result of the developing capability (i.e., detected result of the image intensity of the standard toner image). With this configuration, the developing potential may be adjusted to achieve the target image intensity by changing the central potential of the peak-to-peak voltage of the first periodic pulse voltage and the central potential of the peak-to-peak voltage of the second periodic pulse voltage.
Further, in the copier according to an embodiment and modification, the pulsed power supply 100 is provided with the base voltage power supply 102 configured to output, as the base voltage, the DC voltage having the same value as the low potential peak value of the periodic pulse voltage, and the superimposing voltage power supply 103 is configured to output, as the superimposing voltage to be superimposed on the base voltage, the DC voltage having the same value as the peak-to-peak voltage of the periodic pulse voltage. Accordingly, in the copier according to an embodiment and modification, the first pulse output unit 120 and the second pulse output unit 110 are configured to carry out a process for periodically generating pulses by switching on or off of the application of the superimposing voltage generated from the superimposing voltage power supply 103 onto the base voltage. With this configuration, since the base voltage power supply 102 and the superimposing voltage power supply 103 are shared between the first pulse output unit 120 and the second pulse output unit 110, the cost reduction may be achieved.
Moreover, in the copier according to an embodiment and modification, since the central potential of the peak-to-peak voltage of the first periodic pulse voltage and the central potential of the peak-to-peak voltage of the second periodic pulse voltage may be changed based on the measured result of the developing capability (i.e., detected result of the image intensity of the standard toner image). With this configuration, the respective mean potentials of the first and the second periodic voltages may be simultaneously changed by changing the base voltage.
In the copier according to an embodiment and modification, the smoothing circuit makes the first periodic pulse voltage smooth, which is the negative mean voltage having the same polarity as the toner charge, to generate a smoothed first periodic pulse voltage as a negative DC voltage having the same polarity as the toner charge. The generated negative DC voltage having the same polarity as the toner charge is then applied to the toner layer thickness regulator member to regulate the toner layer in a predetermined thickness without separately having a specific DC power supply for applying the DC voltage to the toner layer thickness regulator member.
Embodiments of the present invention have been described heretofore for the purpose of illustration. The present invention is not limited to these embodiments, but various variations and modifications may be made without departing from the scope of the present invention. The present invention should not be interpreted as being limited to an embodiments that are described in the specification and illustrated in the drawings.
The present application is based on Japanese Priority Application No. 2010-202865 filed on Sep. 10, 2010, with the Japanese Patent Office, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-202865 | Sep 2010 | JP | national |