Information
-
Patent Grant
-
6681093
-
Patent Number
6,681,093
-
Date Filed
Friday, January 4, 200222 years ago
-
Date Issued
Tuesday, January 20, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 399 279
- 399 285
- 399 286
- 399 284
- 492 18
- 492 56
-
International Classifications
-
Abstract
A developing device of monocomponent development system for developing a latent image formed on an image bearing member according to the present invention includes a toner carrying member disposed opposite the image bearing member via a gap of 50 to 250 μm therebetween, and including a conductive substrate and an elastic layer having a rubber hardness of not more than 70 degrees and a thickness in the range of 7 to 50 μm, and a regulating member pressed against a surface of the toner carrying member for regulating the amount of toner on the toner carrying member.
Description
RELATED APPLICATION
The present invention is based on Japanese Patent Application Nos.2001-000,931 and 2001-000,932, each content of which is incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a developing device of monocomponent development system which is used for developing a latent image formed on an image bearing member in image forming apparatuses, such as copying machines, printers and the like.
2. Description of the Related Art
Heretofore, the image forming apparatuses, such as copying machines, printers and the like, have employed a variety of developing devices for developing the latent image formed on the image bearing member.
As such a developing device, there have been known a developing device of two-component development system using a developer containing a carrier and a toner, and that of monocomponent development system using a developer free from the carrier.
The developing device of monocomponent development system is arranged as follows. Generally at some place in the course of transportation of a toner on a surface of a toner carrying member to a development region opposite to an image bearing member, a regulating member having a spring resilience or rubber elasticity is pressed against the surface of the toner carrying member thereby ensuring a proper amount of toner carried on the toner carrying member to the development region and triboelectrically charging the toner in a predetermined polarity.
The conventional toner carrying member generally comprises a metallic roller or a metallic roller formed with an elastic layer on its surface.
However, in the arrangement wherein the regulating member is pressed against the surface of the toner carrying member, such as formed of the metallic roller, for regulating the amount of toner transported to the development region, the toner is subjected to such a great load originating in a contact pressure from the regulating member that the toner particles on the surface of the toner carrying member are fractured to produce fine particles. Particularly when the development speed is increased for high-speed image forming process, there occurs severe toner fracture to produce a great amount of fine particles which will be gradually accumulated on the surface of the toner carrying member and fused thereto. As a result, the images so formed suffer density variations.
In the conventional toner carrying member wherein the metallic roller is formed with the elastic layer on its surface, as described above, the thickness of the elastic layer over the surface of the metallic roller is increased in order to prevent the toner fracture caused by the pressure contact by the regulating member.
Unfortunately in the case where the elastic layer over the surface of the metallic roller has a great thickness, the forming precisions of the toner carrying member is lowered. Particularly in an arrangement designed for an enhanced durability of the toner carrying member and for high-speed development, wherein the toner carrying member opposes the image bearing member in the development region via a required gap therebetween so as to provide for a develop process with the toner carrying member maintained in non-contact relation with the image bearing member, the gap between the toner carrying member and the image bearing member is so varied that the images cannot be developed in a stable manner. Hence, the resultant images suffer density variations or noises due to electrical leakage.
OBJECT AND SUMMARY
It is an object of the invention to solve the aforementioned problems encountered by the developing device of monocomponent development system.
More specifically, the object of the invention is to provide a developing device of monocomponent development system adapted to prevent the toner fracture caused by the pressure contact by the regulating member.
It is another object of the invention to provide a developing device of monocomponent development system adapted to avoid the degradation of the forming precisions of the toner carrying member.
It is still another object of the invention to provide a developing device of monocomponent development system in which the toner carrying member opposes the image bearing member in the development region via a required gap therebetween so as to provide for the development process with the toner carrying member maintained in non-contact relation with the image bearing member, the device adapted to develop images in a stable manner thereby ensuring a stable formation of favorable images over an extended period of time.
A first developing device according to the invention comprises a toner carrying member disposed opposite an image bearing member via a gap of 50 to 250 μm therebetween, and including a conductive substrate and an elastic layer having a rubber hardness of not more than 70 degrees and a thickness of 7 to 50 μm; and a regulating member pressed against a surface of the toner carrying member for regulating the amount of toner carried on the toner carrying member.
A second developing device according to the invention comprises a toner carrying member disposed opposite an image bearing member via a gap of 50 to 250 μm therebetween, and including a conductive substrate and an elastic layer having a rubber hardness of not more than 70 degrees and a thickness of 7 to 50 μm; a regulating member pressed against a surface of the toner carrying member for regulating the amount of toner carried on the toner carrying member; and a power source member for applying an electric field of 1×10
6
to 3×10
7
V/m between the toner carrying member and the regulating member in a direction to charge the toner in a predetermined polarity.
These and other objects, advantages and features of the invention will become apparent from the following description thereof taken in conjunction with the accompanying drawings which illustrate specific embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic diagram illustrating a developing device according to one embodiment of the invention;
FIG. 2
is a sectional view of the developing device of the above embodiment for illustrating a state in which a toner carrying member opposes an image bearing member in a development region via a required gap therebetween; and
FIG. 3
is a graph showing the results of Experiment A for evaluation of images which were developed with varied gaps ‘d’ between the toner carrying member and the image bearing member and varied developing biases applied to the toner carrying member by a developing bias source.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A developing device according an embodiment of the invention will be specifically described as below with reference to the accompanying drawings.
As shown in
FIG. 1
, the developing device of the embodiment comprises a toner carrying member
11
including a metallic conductive substrate
11
a
shaped like a roller, and an elastic layer
11
b
provided over an outer periphery of the conductive substrate
11
a
and having a rubber hardness of not more than 70 degrees and a thickness of 7 to 50 μm. The toner carrying member
11
is disposed in a main body
10
of the developing device in a manner to oppose an image bearing member
1
in a development region via a required gap ‘d’ therebetween. The gap ‘d’ between the toner carrying member
11
and the image bearing member
1
is defined to range from 50 to 250 μm.
The following arrangement is made such that the toner carrying member
11
opposes the image bearing member
1
in the development region via the gap ‘d’ of 50 to 250 μm therebetween. As shown in
FIG. 2
, the conductive substrate
11
a
of the toner carrying member
11
is formed with the elastic layer
11
b
on its outer periphery except for axially opposite ends thereof. A spacer member
12
is attached to each of the outer peripheries of the axially opposite ends of the conductive substrate
11
a
and is abutted against an outer periphery of the image bearing member
1
, so as to permit the adjustment of the gap ‘d’ between the toner carrying member
11
and the image bearing member
1
.
While the toner carrying member
11
is rotated, a toner feed member
13
in the device body
10
is rotated so as to feed a toner t stored in the device body
10
to a surface of the rotated toner carrying member
11
.
At some place in the course in which the toner t thus fed to the surface of the toner carrying member
11
is transported to the development region where the toner carrying member opposes the image bearing member
1
via the required gap ‘d’ therebetween, a regulating member
14
, disposed in the device body
10
, is pressed against the surface of the toner carrying member
11
. On the other hand, a predetermined voltage from a regulating bias source
15
is applied to the regulating member
14
for applying an electric field of 1×10
6
to 3×10
7
V/m between the regulating member
14
and the toner carrying member
11
in a direction to charge the toner t in a predetermined polarity. Thus, the regulating member
14
is adapted to regulate the amount of toner t carried on the toner carrying member
11
to the development region as well as to charge the toner t on the surface of the toner carrying member
11
in the predetermined polarity.
The following effect may be obtained by applying the electric field of 1×10
6
to 3×10
6
V/m between the regulating member
14
and the toner carrying member
11
in the direction to charge the toner t in the predetermined polarity. That is, electrical leakage between the toner carrying member
11
and the regulating member
14
is suppressed so that the elastic layer
11
b
does not suffer electrical breakdown. Hence, the regulating member
14
is able to charge the toner t properly.
The regulated amount of properly charged toner t is transported by the toner carrying member
11
to the development region where the toner carrying member
11
opposes the image bearing member
1
via the required gap ‘d’. On the other hand, a developing bias source
16
applies a developing bias to the toner carrying member
11
for producing an alternating electric field between the toner carrying member
11
and the image bearing member
1
, the developing bias obtained by superimposing an AC voltage on a DC voltage. The alternating electric field causes the toner t, transported to the development region by the toner carrying member
11
, to jump from the toner carrying member
11
to the image bearing member
1
, thus supplying the toner t to a latent image formed on the image bearing member
1
for developing the image.
The developing device of the embodiment is designed such that the gap ‘d’ between the image bearing member
1
and the toner carrying member
11
opposing each other in the development region is limited to 250 μm or less. Therefore, the device is adapted to develop an image in a stable manner despite the variations of the gap ‘d’ between the toner carrying member
11
and the image bearing member
1
. As a result, favorable images suffering little density variations or the like are provided. Furthermore, the above device is designed to limit the gap ‘d’ to 50 μm or more such that the toner carrying member
11
in the development region is less liable to release insufficiently or inversely charged toner particles therefrom. This results in the prevention of scattered toner or fog. The above gap ‘d’ preferably ranges from 60 to 200 μm or more preferably from 70 to 180 μm.
In the toner carrying member
11
, the thickness of the elastic layer
11
b
over the outer periphery of the conductive substrate
11
a
is limited to 50 μm or less, such that the elastic layer
11
b
may not suffer thickness variations, which will lead to the variations of the gap ‘d’ between the toner carrying member
11
and the image bearing member
1
. As a result, a stable electric filed is produced between the toner carrying member
11
and the image bearing member
1
.
In the above arrangement, the elastic layer
11
b
of the toner carrying member
11
has a rubber hardness of not more than 70 degrees and a thickness of not less than 7 μm. Therefore, when the regulating member
14
is pressed against the surface of the toner carrying member
11
for regulation of the amount of toner t transported to the development region, the toner t is subjected to a decreased load from the elastic layer so that the toner t is prevented from being fractured to produce fine toner particles. This leads to the reduction of the toner particles t fused to the surface of the toner carrying member
11
and the like, contributing to the prevention of the occurrence of streaking or the like in the resultant image. The rubber hardness of the elastic layer preferably ranges from 10 to 70 degrees, more preferably from 15 to 55 degrees or still more preferably from 15 to 50 degrees. It is noted that the above rubber hardness is determined according to JIS K6301.
In the developing device of the embodiment designed to regulate the amount of toner t transported to the development region by means of the regulating member
14
pressed against the surface of the toner carrying member
11
, there may be attained a greater effect to prevent the production of toner fine particles resulting from the toner fracture caused by the pressure contact by the regulating member
14
if the contact pressure of the regulating member
14
is limited within the range of 5 to 50 N/m or preferably of 8 to 30 N/m, or if a toner having an average roundness of not less than 0.940 is used.
The average roundness of the above toner t was determined as follows. A flow-type particle size analyzer (FPIA-2000 commercially available from Sysmex Corp.) was used to measure the length of a circumference of a projected image of a toner particle in an aqueous dispersion system. There was determined the length of a circumference of a circle having an equal area to that of the projected image of the toner particle. The roundness of the toner particle was calculated using the following expression:
Roundness=Circumference of circle of equal area to that of projected image of toner particle/Circumference of projected image of toner particle
The resultant roundness was used to determine the average roundness of the toner t.
In the developing device of the embodiment, if the toner carrying member
11
formed with the elastic layer
11
b
has too small a surface roughness, the toner carrying member
11
is able to carry such a small amount of toner t on its surface that an image sufficient in image density cannot be obtained. If, on the other hand, the toner carrying member
11
has too great a surface roughness, the toner carrying member
11
carries such a great amount of toner t on its surface that the toner t is not properly charged. Hence, the resultant image tends to suffer fog. Accordingly, the toner carrying member
11
formed with the elastic layer
11
b
may preferably have an arithmetical average surface roughness Ra in the range of 0.5 to 2.0 m.
Where the developing device of the embodiment uses a negatively chargeable toner t, the toner carrying member
11
may preferably have a work function at its surface in the range of 4.30 to 5.00 eV such that the negatively chargeable toner t may be charged more properly.
If the toner carrying member has an electrical resistance in the range of 1×10
6
to 5×10
10
Ω, the electrical leakage between the toner carrying member and the regulating member is more positively prevented when the electric field is applied between the toner carrying member and the regulating member for charging the toner. In addition, the toner carrying member opposing the image bearing member in the development region via the required gap therebetween is able to supply a sufficient amount of toner to the image bearing member for developing an image sufficient in image density.
Examples of an elastic material for forming the elastic layer on the surface of the toner carrying member include a variety of thermoplastic elastomers such as of polystyrene, polyolefin, polyurethane, polyester, polyvinyl chloride, polybutadiene, polyamide and the like; and vulcanized rubbers such as natural rubber, cis-polyisoprene, styrene-butadiene rubber, cis-polybutadiene, chloroprene rubber, butyl rubber, nitrile rubber, ethylene-propylene rubber, acrylic rubber, urethane rubber, silicone rubber and the like. Where the negatively chargeable toner is used, in particular, the elastic layer may preferably be formed from a polyurethane-based elastomer, polyamide-based elastomer, nitrile rubber or urethane rubber in order to provide for the proper charging of the toner.
For proper charging of the toner, the elastic layer over the surface of the toner carrying member may further contain an electroconductivity imparting agent, chargeability imparting agent, roughness imparting material or the like.
Examples of a usable elctroconductivity imparting agent include carbon blacks such as Ketchen black, acetylene black, furnace black and the like; fine particles of metal oxides; and ionic conductive materials. These materials may be used alone or in combination of two or more types.
Examples of a usable chargeability imparting agent include nigrosine dyes, triphenylmethane dyes, Kalex allene dyes, quaternary ammonium salts, imidazole and the like. These materials may be used alone or in combination of two or more types.
Examples of a usable roughness imparting material include fine particles such as of various types of resins or metal oxides, silica, a variety of fillers and the like. These materials may be used alone or in combination of two or more types.
In the developing device according to the above embodiment, an experiment was conducted using toner carrying members
11
formed with various types of elastic layers
11
b
over the respective surfaces thereof. The experiment was intended to demonstrate that the developing device of the embodiment satisfying the conditions of the invention is adapted to reduce the fracture of the toner t thereby ensuring a stable formation of images decreased in density variations or fog.
EXAMPLE 1
A coating solution for elastic layer was prepared as follows. A mixture was prepared by kneading 200 parts by weight of styrene-based thermoplastic elastomer having a rubber hardness of 15 degrees, 10 parts by weight of nigrosine as an electrification-controlling agent, and 15 parts by weight of acetylene black as a conductive material. Subsequently, the kneaded mixture was dissolved in 1000 parts by weight of toluene.
Then, an aluminum conductive substrate
11
a
shaped like a roller was dipped in the coating solution and was withdrawn at a rate of 2.4 mm/s thereby to apply the solution over an outer periphery of the conductive substrate
11
a
. A toner carrying member
11
was obtained by drying the resultant coating film constituting an elastic layer
11
b
having a thickness of 30 μm. It is noted that the elastic layer
11
b
had a rubber hardness of 18 degrees.
EXAMPLE 2
A coating solution for elastic layer was prepared as follows. A mixture was prepared by kneading 100 parts by weight of styrene-based thermoplastic elastomer having a rubber hardness of 15 degrees, 100 parts by weight of styrene-based thermoplastic elastomer having a rubber hardness of 61 degrees, 10 parts by weight of nigrosine as the electrification-controlling agent, and 20 parts by weight of acetylene black as the conductive material. Subsequently, the kneaded mixture was dissolved in 1000 parts by weight of toluene.
Then, an aluminum conductive substrate
11
a
shaped like a roller was dipped in the coating solution and was withdrawn at a rate of 2.4 mm/s thereby to apply the solution over an outer periphery of the conductive substrate
11
a
. A toner carrying member
11
was obtained by drying the resultant coating film constituting an elastic layer
11
b
having a thickness of 30 μm. It is noted that the elastic layer
11
b
had a rubber hardness of 44 degrees.
EXAMPLE 3
A coating solution for elastic layer was prepared as follows. A mixture was prepared by kneading 200 parts by weight of styrene-based thermoplastic elastomer having a rubber hardness of 61 degrees, 10 parts by weight of nigrosine as the electrification-controlling agent, and 20 parts by weight of acetylene black as the conductive material. Subsequently, the kneaded mixture was dissolved in 1000 parts by weight of toluene.
Then, an aluminum conductive substrate
11
a
shaped like a roller was dipped in the coating solution and was withdrawn at a rate of 2.4 mm/s thereby to apply the solution over an outer periphery of the conductive substrate
11
a
. A toner carrying member
11
was obtained by drying the resultant coating film constituting an elastic layer
11
b
having a thickness of 30 μm. It is noted that the elastic layer
11
b
had a rubber hardness of 68 degrees.
Comparative Example 1
A coating solution for elastic layer was prepared as follows. A mixture was prepared by kneading 70 parts by weight of styrene-based thermoplastic elastomer having a rubber hardness of 61 degrees, 130 parts by weight of butadiene-based thermoplastic elastomer having a rubber hardness of 95 degrees, 10 parts by weight of nigrosine as the electrification-controlling agent, and 2 parts by weight of Ketchen black as a conductive material. Subsequently, the kneaded mixture was dissolved in 1000 parts by weight of toluene.
Then, an aluminum conductive substrate
11
a
shaped like a roller was dipped in the coating solution and was withdrawn at a rate of 2.4 mm/s thereby to apply the solution over an outer periphery of the conductive substrate
11
a
. A toner carrying member
11
was obtained by drying the resultant coating film constituting an elastic layer
11
b
having a thickness of 30 μm. It is noted that the elastic layer
11
b
had a rubber hardness of 85 degrees.
Comparative Example 2
A coating solution for elastic layer was prepared as follows. A mixture was prepared by kneading 200 parts by weight of butadiene-based thermoplastic elastomer having a rubber hardness of 95 degrees, 10 parts by weight of nigrosine as the electrification-controlling agent, and 2 parts by weight of Ketchen black as the conductive material. Subsequently, the kneaded mixture was dissolved in 1000 parts by weight of toluene.
Then, an aluminum conductive substrate
11
a
shaped like a roller was dipped in the coating solution and was withdrawn at a rate of 2.4 mm/s thereby to apply the solution over an outer periphery of the conductive substrate
11
a
. A toner carrying member
11
was obtained by drying the resultant coating film constituting an elastic layer
11
b
having a thickness of 30 μm. It is noted that the elastic layer
11
b
had a rubber hardness of 96 degrees.
The toner t was a negatively chargeable toner T
1
prepared as follows.
A Henschel mixer was operated at 2800 rpm for 3 minutes for mixing 100 parts by weight of polyester resin (TUFTONE NE-1110 commercially available from Kao Corp.), 8 parts by weight of carbon black (Mogul L commercially available from Cabot Inc.), 3 parts by weight of electrification-controlling agent (BONTRON S-34 commercially available from Orient Industry Co.,Ltd.), and 2.5 parts by weight of lubricant (BISCOL TS-200 commercially available from Sanyo Chemical Industries Ltd.). The mixture was kneaded by a twin-screw extruder/kneader and was cooled. Subsequently, the kneaded mixture was roughly milled and then pulverized by a jet pulverizer (IDS commercially available from Japan Pneumatic Industries Co.,Ltd.). The resultant particles were classified by DS classifier thereby to obtain toner particles. The resultant toner particles were admixed with 0.8 wt % of hydrophobic silica (CABOSIL TS-500 commercially available from Cabot Inc.) and blended together by a Henschel mixer operated at 2500 rpm for 90 seconds. Thus was obtained the negatively chargeable toner T
1
having a volume-average particle size of 8.5 μm and an average roundness of 0.938.
Each of the toner carrying members
11
of Examples 1-3 and Comparative Examples 1-2 was allowed to carry the resultant toner T
1
on its surface. Each toner carrying member
11
was rotated at a circumferential speed of 240 mm/s with an SUS regulating member
14
pressed against its surface at a linear pressure of 50 N/m. In this state, each toner carrying member
11
was rotated through 250 revolutions.
Before and after the rotation through 250 revolutions with the regulating member
14
pressed against each toner carrying member, the toner carrying member
11
was examined for the proportion of fine toner particles 5.0 μm or less in size which were contained in the toner T
1
carried on the surface thereof. There was determined the increase percentage of the fine toner particles after the rotation through 250 revolutions. The results are listed in Table 1 as below.
TABLE 1
|
|
increase
|
type of elastic layer
percentage of
|
rubber hardness
fine toner
|
(degree)
thickness (μm)
particles (%)
|
|
example 1
18
30
4
|
example 2
44
30
5
|
example 3
68
30
5.5
|
comparative
85
30
16
|
example 1
|
comparative
96
30
30
|
example 2
|
|
As apparent from the results, the increase percentages of the fine toner particles were much lower in the toner carrying members
11
of Examples 1-3 wherein the elastic layers formed on their surfaces had the rubber hardnesses of not more than 70 degrees, as compared with those of Comparative Examples 1-2 wherein the elastic layers had the rubber hardnesses of above 70 degrees.
EXAMPLE 4
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 1, except that the conductive substrate
11
a
was withdrawn from the above coating solution for elastic layer at a rate of 1.6 mm/s. The elastic layer
11
b
had a rubber hardness of 18 degrees and a thickness of 20 μm.
EXAMPLE 5
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 1, except that the kneaded mixture of Example 1 was dissolved in 2000 parts by weight of toluene. The elastic layer had a rubber hardness of 18 degrees and a thickness of 11 μm.
Comparative Example 3
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 1, except that the kneaded mixture of Example 1 was dissolved in 2000 parts by weight of toluene and that the conductive substrate
11
a
was withdrawn from the coating solution for elastic layer at a rate of 1.0 mm/s. The elastic layer had a rubber hardness of 18 degrees and a thickness of 4 μm.
EXAMPLE 6
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 2, except that the conductive substrate
11
a
was withdrawn from the above coating solution for elastic layer at a rate of 1.4 mm/s. The elastic layer
11
b
had a rubber hardness of 44 degrees and a thickness of 17 μm.
EXAMPLE 7
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 2, except that the kneaded mixture of Example 2 was dissolved in 2000 parts by weight of toluene. The elastic layer had a rubber hardness of 44 degrees and a thickness of 10 μm.
Comparative Example 4
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 2, except that the kneaded mixture of Example 2 was dissolved in 2000 parts by weight of toluene and that the conductive substrate
11
a
was withdrawn from the coating solution for elastic layer at a rate of 1.0 mm/s. The elastic layer had a rubber hardness of 44 degrees and a thickness of 3 μm.
EXAMPLE 8
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 3, except that the conductive substrate
11
a
was withdrawn from the above coating solution for elastic layer at a rate of 1.4 mm/s. The elastic layer
11
b
had a rubber hardness of 68 degrees and a thickness of 18 μm.
EXAMPLE 9
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 3, except that the kneaded mixture of Example 3 was dissolved in 2000 parts by weight of toluene. The elastic layer had a rubber hardness of 68 degrees and a thickness of 7 μm.
Comparative Example 5
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Comparative Example 2, except that the conductive substrate
11
a
was withdrawn from the above coating solution for elastic layer at a rate of 1.6 mm/s. The elastic layer
11
b
had a rubber hardness of 96 degrees and a thickness of 20 μm.
Comparative Example 6
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Comparative Example 2, except that the kneaded mixture of Comparative Example 2 was dissolved in 2000 parts by weight of toluene. The elastic layer had a rubber hardness of 96 degrees and a thickness of 8 μm.
Comparative Example 7
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 2, except that the operation for applying the coating solution for elastic layer to an outer periphery of the conductive substrate
11
a
was carried out twice. The elastic layer had a rubber hardness of 44 degrees and a thickness of 58 μm.
Developing devices of Examples 4-9 and Comparative Examples 3-7 used their respective toner carrying members
11
and the aforesaid negatively chargeable toner T
1
. The SUS regulating member
14
was pressed against a surface of each toner carrying member
11
at a linear pressure of 50 N/m.
The developing devices of Examples 4-9 and Comparative Examples 3-7 were each mounted in a commercial printer (LP-3000C commercially available from Epson Corp.) which was operated at a rate of 20 sheets/min to print an image on 10000 sheets of A-4 size. The resultant images were examined for streaking and evaluated. The results are listed in Table 2 as below, in which ◯ denotes an image free from streaking and X denotes an image sustaining streaking.
TABLE 2
|
|
type of elastic layer
|
rubber hardness
|
(degree)
thickness (μm)
streaking
|
|
example 4
18
20
◯
|
example 5
18
11
◯
|
example 6
44
17
◯
|
example 7
44
10
◯
|
example 8
68
18
◯
|
example 9
68
7
◯
|
comparative
18
4
X
|
example 3
|
comparative
44
3
X
|
example 4
|
comparative
96
20
X
|
example 5
|
comparative
96
8
X
|
example 6
|
comparative
44
58
X
|
example 7
|
|
As apparent from the results, 10000 favorable images free from streaking were achieved by the developing devices of Examples 4-9 which included the toner carrying members
11
formed with the elastic layers
11
b
having the rubber hardnesses of not more than 70 degrees and the thicknesses of not less than 7 μm.
In contrast, the developing devices of Comparative Examples 3-4 including the toner carrying members
11
formed with the elastic layers
11
b
which were not more than 70 degrees in rubber hardness but less than 7 μm in thickness, and those of Comparative Examples 5-6 including the toner carrying members
11
formed with the elastic layers
11
b
having the rubber hardnesses of more than 70 degrees, all encountered the fusion of the fine toner particles to the toner carrying members or regulating members thereof during the production of 10000 prints. The streaking was observed in the resultant images. Furthermore, the streaking was also observed in the images provided by the developing device of Comparative Example 7 wherein the elastic layer
11
b
had the thickness of 58 μm.
EXAMPLE 10
A coating solution for elastic layer was prepared by blending together 100 parts by weight of commercial urethane emulsion (IODOSOL available from Japan NSC Co.Ltd.), 5 parts by weight of Ketchen black as the conductive material, and 2.3 parts by weight of EPOSTER MA1010 (NIPPON SHOKUBAI Co., Ltd.) as a roughness imparting material. The resultant coating solution was applied to an outer periphery of an aluminum conductive substrate
11
a
shaped like a roller and then dried. Thus was fabricated a toner carrying member
11
formed with an elastic layer
11
b
in the thickness of 27 μm. The elastic layer
11
b
had a rubber hardness of 50 degrees and an arithmetical average surface roughness Ra Of 0.54 m.
EXAMPLE 11
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 10, except that the amount of Eposter MA1010 (NIPPON SHOKUBAI Co., Ltd.) was changed to 4.6 parts by weight and that the thickness of the elastic layer
11
b
was adjusted to 32 μm. The elastic layer
11
b
had a rubber hardness of 53 degrees and an average arithmetical surface roughness Ra of 0.86 m.
EXAMPLE 12
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 10, except that the amount of Eposter MA1010 (NIPPON SHOKUBAI Co., Ltd.) was changed to 5.9 parts by weight and that the thickness of the elastic layer
11
b
was adjusted to 30 μm. The elastic layer
11
b
had a rubber hardness of 52 degrees and an average arithmetical surface roughness Ra of 1.35 m.
EXAMPLE 13
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 10, except that the amount of Eposter MA1010 (NIPPON SHOKUBAI Co., Ltd.) was changed to 7.3 parts by weight and that the thickness of the elastic layer
11
b
was adjusted to 34 μm. The elastic layer
11
b
had a rubber hardness of 55 degrees and an average arithmetical surface roughness Ra of 1.88 m.
Developing devices of Examples 10-13 used their respective toner carrying members
11
and the aforesaid negatively chargeable toner T
1
. The SUS regulating member
14
was pressed against a surface of each toner carrying member
11
at a linear pressure of 30 N/m.
The developing devices of Examples 10-13 were each mounted in a commercial printer (LP-3000C available from Epson Corp.) wherein the circumferential speed of the toner carrying member
11
was set to 1.5 times the circumferential speed of the image bearing member
1
. The printers were each operated at a rate of 20 sheets/min to print an image on 10000 sheets of A-4 size. The resultant images were examined for image density and fog and evaluated. The results are listed in Table 3 as below.
As to the image density, ◯ denotes an image having an image density of 1.2 or more whereas X denotes an image having an image density of less than 1.2.
As to the fog, ∘ denotes an image free from the fog whereas X denotes an image sustaining the fog.
TABLE 3
|
|
type of elastic layer
|
rubber
|
hardness
thickness
Ra
image
|
(degree)
(μm)
(μm)
density
fog
|
|
example 10
50
27
0.54
◯
◯
|
example 11
53
32
0.86
◯
◯
|
example 12
52
30
1.35
◯
◯
|
example 13
55
34
1.88
◯
◯
|
|
EXAMPLE 14
A toner carrying member
11
formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 11, except that 5 parts by weight of acetylene black was used in place of Ketchen black and that the thickness of the elastic layer
11
b
was adjusted to 30 μm. The elastic layer
11
b
had a rubber hardness of 53 degrees and a work function of 4.38 eV.
EXAMPLE 15
A coating solution for elastic layer was prepared by blending together 100 parts by weight of commercial acrylonitrile-butadiene copolymer rubber containing a carboxyl group (NIPOL 1072J available from Zeon Corporation), 20 parts by weight of Ketchen black as the conductive material, 5 parts by weight of zinc white, and 4.6 parts by weight of Eposter MA1010 (NIPPON SHOKUBAI Co., Ltd.) as the roughness imparting material, and then dissolving or dispersing the resultant mixture in toluene.
The resultant coating solution was applied to an aluminum conductive substrate shaped like a roller and then dried. Thus was fabricated a toner carrying member formed with an elastic layer
11
b
in a thickness of 30 μm. The elastic layer
11
b
had a rubber hardness of 48 degrees and a work function of 4.65 eV.
EXAMPLE 16
A toner carrying member
11
formed with a 30 μm-thick elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 15, except that 25 parts by weight of acetylene black was used in place of Ketchen black. The elastic layer
11
b
had a rubber hardness of 49 degrees and a work function of 4.80 eV.
EXAMPLE 17
A toner carrying member
11
formed with a 30 μm-thick elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 16, except that the commercial acrylonitrile-butadiene copolymer rubber (NIPOL 1072J available from Zeon Corporation) was replaced by a commercial acrylonitrile-butadiene copolymer rubber (NIPOL DN207 available from Zeon Corporation). The elastic layer
11
b
had a rubber hardness of 49 degrees and a work function of 5.01 eV.
Developing devices of Examples 10-13 used their respective toner carrying members
11
and the aforesaid negatively chargeable toner T
1
. The SUS regulating member
14
was pressed against a surface of each toner carrying member
11
at a linear pressure of 30 N/m.
The developing devices of Examples 14-17 were each mounted in a commercial printer (LP-3000C available from Epson Corp.) which was operated at a rate of 20 sheets/min to print an image on 10000 sheets of A-4 size. Each toner carrying member
11
was examined for toner filming on its surface whereas the resultant images were examined for fog. The results are listed in Table 4 as below.
As to the toner filming on the surface of the toner carrying member
11
, ◯ denotes a toner carrying member free from the toner filming whereas X denotes a toner carrying member suffering the toner filming.
As to the fog, ◯ denotes an image free from the fog whereas X denotes an image sustaining the fog.
TABLE 4
|
|
type of elastic layer
|
rubber
work
|
hardness
thickness
function
|
(degree)
(μm)
(eV)
filming
fog
|
|
example 14
53
30
4.38
◯
◯
|
example 15
48
30
4.65
◯
◯
|
example 16
49
30
4.80
◯
◯
|
example 17
49
30
5.01
◯
◯
|
|
EXAMPLES 18-20
A toner carrying member formed with an elastic layer
11
b
on an outer periphery of its conductive substrate
11
a
was fabricated the same way as in Example 11, except that the thickness of the elastic layer
11
b
was adjusted to 30 μm. The elastic layer
11
b
had a rubber hardness of 53 degrees.
Example 18 used the aforesaid toner T
1
having a volume-average particle size of 8.5 μm and an average roundness of 0.938.
Example 19 used a negatively chargeable toner T
2
prepared the same way as in the preparation of the toner T
1
, except that the jet pulverizer was replaced by an inomizer (INM-30 commercially available from Hosokawamicron Corporation) and the DS classifier was replaced by a rotor-type classifier (100ATP commercially available from Hosokawamicron Corporation). The toner T
2
had a volume-average particle size of 8.5 μm and an average roundness of 0.953.
Example 20 used a negatively chargeable toner T
3
prepared the same way as in the preparation of the toner T
1
, except that the aforesaid procedure for preparing the negatively chargeable toner T
1
was followed by treating the resultant toner particles by a hybridization system (HS-3 commercially available from Nara Machinery Co.,Ltd.) which was operated at 6000 rpm for 5 minutes. The toner T
3
had a volume-average particle size of 8.5 μm and an average roundness of 0.963.
In the developing devices of Examples 18-20, the SUS regulating members
14
were pressed against the surfaces of the toner carrying members
11
at linear pressures varied in the range of 10 to 50 N/m as listed in Table 5 as below. The developing devices were each mounted in a commercial printer (LP-3000C available from Epson Corp.) which was operated at a rate of 30 sheets/min to print an image on 5000 sheets of A-4 size. The resultant images were examined for fog. The results are listed in Table 5, in which ◯ denotes an image free from the fog whereas X denotes an image sustaining the fog.
TABLE 5
|
|
type of elastic
|
layer
fog
|
rubber
linear pressure of
|
hardness
thickness
toner
regulating member
|
(degree)
(μm)
roundness
10
20
30
40
50
|
|
example 18
53
30
0.938
◯
◯
◯
X
X
|
example 19
53
30
0.953
◯
◯
◯
◯
◯
|
example 20
53
30
0.968
◯
◯
◯
◯
◯
|
|
The results show that in Examples 19-20 using the negatively chargeable toners T
2
, T
3
having the average roundnesses of not less than 0.940, favorable fog-free images were obtained when a large number of images were produced with the regulating member
14
pressed against the surface of the toner carrying member
11
at such a high linear pressure of 50 N/m. On the other hand, in Example 18 using the negatively chargeable toner T
1
having the average roundness of 0.938, the process for producing a large number of images with the regulating member
14
pressed against the surface of the toner carrying member
11
at a linear pressure of not less than 40 N/m resulted in fogged images. However, when the linear pressure of the regulating member
14
pressed against the surface of the toner carrying member
11
is not more than 30 N/m, favorable fog-free images were obtained.
Experiment A
Experiment A used the aforesaid developing device wherein the toner carrying member
11
was formed with an elastic layer
11
b
on its surface and had an electrical resistance of 1×10
8
Ω, the layer
11
b
having a rubber hardness of 55 degrees and a thickness of 30 μm.
Experiment A was conducted as follows. The regulating member
14
was pressed against the surface of the toner carrying member
11
for regulating the amount of toner t transported to the development region. On the other hand, the aforesaid regulating bias source
15
applied a voltage 100 V lower than that of the toner regulating member
14
to the regulating member
14
thereby applying an electric field of 1×10
7
V/m between the regulating member
14
and the toner carrying member
11
such that the toner t may be charged in the predetermined polarity. The toner t was the aforesaid negatively chargeable toner T
1
.
The gap ‘d’ between the toner carrying member
11
and the image bearing member
1
was varied whereas the toner carrying member
11
was applied with a developing bias from the developing bias source
16
, the developing bias so varied as to achieve an image sufficient in image density. That is, images were formed with the DC voltage varied in the range of 330 to 470 V and with the AC voltage set at a frequency of 2 kHz and varied in peak-to-peak value Vpp in the range of 1.1 to 2.7 kV and in duty on the development side in the range of 30 to 40%. The resultant images were examined for density variations as well as for noises due to the electrical leakage between the toner carrying member
11
and the image bearing member
1
. The results are graphically shown in FIG.
3
.
According to the results, when the gap ‘d’ between the toner carrying member
11
and the image bearing member
1
is 250 μm or more, all the resultant images suffered the density variations or the noises due to the electrical leakage no matter how the developing bias from the developing bias source
16
was changed.
Experiment B
Similarly to Experiment A, Experiment B used the toner carrying member
11
which was formed with the elastic layer
11
b
on its surface and had the electrical resistance of 1×10
8
Ω, the layer
11
b
having the rubber hardness of 55 degrees and the thickness of 30 μm.
Experiment B was conducted as follows. The SUS regulating member
14
was pressed against the surface of the toner carrying member
11
. On the other hand, in the process for applying a voltage from the regulating bias source
15
to the regulating member
14
thereby charging the toner t in the predetermined polarity, the electric field which was varied in the range of 5.00×10
5
to 5.00×10
7
V/m was applied between the regulating member
14
and the toner carrying member
11
, as shown in Table 6. The toner t was the aforesaid negatively chargeable toner T
1
.
Subsequent to the process for regulating the amount of toner t on the surface of the toner carrying member
11
and charging the toner t, the following developing process was performed for forming images. The gap ‘d’ between the toner carrying member
11
and the image bearing member
1
was set to 150 μm. A developing bias from the aforesaid developing source
16
was applied to the toner carrying member
11
, the developing bias obtained by superimposing an AC voltage having a frequency of 2 kHz, a peak-to-peak value Vpp of 1.6 kV and a duty on the development side of 33% on a DC voltage of 400 V.
The resultant images were examined for streaking noises due to the electrical leakage between the regulating member
14
and the toner carrying member
11
. The results are listed in Table 6, in which ◯ denotes an image free from the streaking noises whereas X denotes an image sustaining the streaking noises. The images were also examined for fog and the results are also listed in Table 6, in which ◯ denotes an image free from the fog whereas X denotes an image sustaining the fog.
TABLE 6
|
|
electric field between regulating member and
|
evaluation
toner carrying member (V/m)
|
items
5.00 × 10
5
1.00 × 10
6
1.00 × 10
7
3.00 × 10
7
5.00 × 10
7
|
|
streaking
◯
◯
◯
◯
X
|
noise
|
fog
X
◯
◯
◯
◯
|
|
Experiment C
Experiment C used a toner carrying member
11
which was formed with the same elastic layer
11
as in Experiment A on its surface, the layer having the rubber hardness of 55 degrees and the thickness of 30 μm, and which was varied in electrical resistance in the range of 1.00×10
5
to 1.00×10
11
Ω, as listed in Table 7.
Experiment C was conducted as follows. The SUS regulating member
14
was pressed against the surface of the toner carrying member
11
. The regulating bias source
15
applied, to the regulating member
14
, a voltage for charging the toner t in the predetermined polarity, thereby applying an electric field of 1×10
7
V/m between the regulating member
14
and the toner carrying member
11
. Thus, the amount of toner t carried on the toner carrying member
11
to the development region was regulated while the toner t was charged. The toner t was the aforesaid negatively chargeable toner T
1
.
Similarly to Experiment B, the gap ‘d’ between the toner carrying member
11
and the image bearing member
1
was set to 150 μm. The developing bias from the aforesaid developing source
16
was applied to each of the toner carrying members
11
, the developing bias obtained by superimposing the AC voltage having the frequency of 2 kHz, the peak-to-peak value Vpp of 1.6 kV and the duty on the development side of 33% on the DC voltage of 400 V. Images were formed in this manner.
The resultant images were examined for streaking noises due to the electrical leakage between the regulating member
14
and the toner carrying member
11
. The results are listed in Table 7, in which ◯ denotes an image free from the streaking noises whereas X denotes an image sustaining the streaking noises. In addition, each of the images was examined for the density of a solid area thereof using a commercial Macbeth densitometer TD904. The results are listed in Table 7, in which ◯ denotes an image having a density of not less than 1.2 whereas X denotes an image having a density of less than 1.2.
TABLE 7
|
|
evalu-
|
ation
electrical resistance of toner carrying member (Ω)
|
items
1.00 × 10
5
1.00 × 10
6
1.00 × 10
8
5.00 × 10
10
1.00 × 10
11
|
|
streak-
X
◯
◯
◯
◯
|
ing
|
noise
|
image
◯
◯
◯
◯
X
|
density
|
|
Although the present invention has been fully described by way of examples, it is to be noted that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention, they should be construed as being included therein.
Claims
- 1. A developing device of monocomponent development system for developing a latent image formed on an image bearing member comprising:a toner carrying member disposed opposite the image bearing member via a gap of 50 to 250 μm therebetween, and including a conductive substrate and an elastic layer having a rubber hardness of not more than 70 degrees and a thickness in the range of 7 to 50 μm; and a regulating member pressed against a surface of the toner carrying member for regulating the amount of toner on the toner carrying member.
- 2. The developing device as claimed in claim 1, wherein the gap between the toner carrying member and the image bearing member is in the range of 60 to 200 μm.
- 3. The developing device as claimed in claim 1, wherein the rubber hardness of the elastic layer is in the range of 15 to 55 degrees.
- 4. The developing device as claimed in claim 1, wherein the thickness of the elastic layer is in the range of 10 to 40 μm.
- 5. The developing device as claimed in claim 1, wherein a contact pressure of the regulating member against the toner carrying member is in the range of 5 to 50 N/m.
- 6. The developing device as claimed in claim 1, wherein a contact pressure of the regulating member against the toner carrying member is in the range of 8 to 30 N/m.
- 7. The developing device as claimed in claim 1, wherein the toner has an average roundness in the range of 0.940 to 1.
- 8. The developing device as claimed in claim 1, wherein the elastic layer has an arithmetical average surface roughness Ra in the range of 0.5 to 2.0 μm.
- 9. The developing device as claimed in claim 1, wherein the toner is a negatively chargeable toner and the elastic layer has a work function at its surface in the range of 4.30 to 5.00 eV.
- 10. The developing device as claimed in claim 1, wherein the toner carrying member has an electrical resistance in the range of 1×106 to 5×1010 Ω.
- 11. A developing device of monocomponent development system for developing a latent image formed on an image bearing member comprising:a toner carrying member disposed opposite the image bearing member via a gap of 50 to 250 μm, and including a conductive substrate and an elastic layer having a rubber hardness of not more than 70 degrees and a thickness in the range of 7 to 50 μm; a regulating member pressed against a surface of the toner carrying member for regulating the amount of toner on the toner carrying member; and a power source member for applying an electric field of 1×106 to 3×107 V/m between the toner carrying member and the regulating member in a direction to charge the toner in a predetermined polarity.
- 12. The developing device as claimed in claim 11, wherein the gap between the toner carrying member and the image bearing member is in the range of 60 to 200 μm.
- 13. The developing device as claimed in claim 11, wherein the rubber hardness of the elastic layer is in the range of 15 to 55 degrees.
- 14. The developing device as claimed in claim 11, wherein the thickness of the elastic layer is in the range of 10 to 40 μm.
- 15. The developing device as claimed in claim 11, wherein a contact pressure of the regulating member against the toner carrying member is in the range of 5 to 50 N/m.
- 16. The developing device as claimed in claim 11, wherein a contact pressure of the regulating member against the toner carrying member is in the range of 8 to 30 N/m.
- 17. The developing device as claimed in claim 11, wherein the toner has an average roundness in the range of 0.940 to 1.
- 18. The developing device as claimed in claim 11, wherein the elastic layer has an arithmetical average surface roughness Ra in the range of 0.5 to 2.0 μm.
- 19. The developing device as claimed in claim 11, wherein the toner is a negatively chargeable toner and the elastic layer has a work function at its surface in the range of 4.30 to 5.00 eV.
- 20. The developing device as claimed in claim 11, wherein the toner carrying member has an electrical resistance in the range of 1×106 to 5×1010 Ω.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2001-000932 |
Jan 2001 |
JP |
|
2001-000931 |
Jan 2001 |
JP |
|
US Referenced Citations (12)
Number |
Name |
Date |
Kind |
4780743 |
Asada et al. |
Oct 1988 |
A |
4958193 |
Nojima et al. |
Sep 1990 |
A |
5170213 |
Yamaguchi et al. |
Dec 1992 |
A |
5621506 |
Hosaka et al. |
Apr 1997 |
A |
5666626 |
Takizawa et al. |
Sep 1997 |
A |
5689784 |
Shin et al. |
Nov 1997 |
A |
5862444 |
Machida et al. |
Jan 1999 |
A |
5870658 |
Goto et al. |
Feb 1999 |
A |
5875379 |
Machida et al. |
Feb 1999 |
A |
5893014 |
Goto et al. |
Apr 1999 |
A |
6049688 |
Hayashi et al. |
Apr 2000 |
A |
6397032 |
Sakaizawa et al. |
May 2002 |
B1 |
Foreign Referenced Citations (1)
Number |
Date |
Country |
11-344856 |
Dec 1999 |
JP |