The present invention relates to a developing device.
Japanese Patent Laid-Open No. 2012-181286 discloses a developing device of a so-called separate-function type in which a function of supplying developer to a developer bearing member and a function of collecting developer having passed through a development area opposing an image bearing member from the developer bearing member are separated from each other.
In the developing device of a separate-function type, a developer surface in a supply chamber from which the developer is supplied to the developer bearing member tends to have a shape in which a more upstream portion thereof is higher than a more downstream portion thereof in a developer conveyance direction in the supply chamber. In addition, a developer surface in a collection chamber in which the developer having passed through the development area is collected from the developer bearing member tends to have a shape in which a more upstream portion thereof is higher than a more downstream portion thereof in a developer conveyance direction in the collection chamber.
In recent years, miniaturization of devices has been desired, and, for a developing device, it is desired that the length of the developing device in a longitudinal direction is reduced. With regard to this point, in the developing device disclosed in Japanese Patent Laid-Open No. 2012-181286, a cutout portion is provided in an upper portion of an area of a partition wall separating the supply chamber from the collection chamber. The area opposes a developer coating area of a developer bearing member. Further, the developing device has a configuration in which developer in the collection chamber is permitted to be communicated from the collection chamber to the supply chamber through the cutout portion.
However, in the case where such a configuration of a developing device of a separate-function type is employed, a downstream portion in the developer conveyance direction of the developer surface in the collection chamber becomes so high as to reach the cutout portion. Therefore, there is a possibility that developer having just been collected in a downstream portion of the collection chamber in the developer conveyance direction, that is, developer whose toner density is lowered, is communicated from the collection chamber to the supply chamber through the cutout portion without being agitated.
Therefore, a new configuration of a developing device of a separate-function type in which developer whose toner density is lowered being communicated from a collection chamber to a supply chamber without being agitated is suppressed even in the case where a part of a communication portion that permits the developer in the collection chamber to be communicated to the supply chamber is disposed so as to oppose a developer coating area of a developer bearing member is desired.
The present invention provides a device having a configuration in which developer whose toner density is lowered being communicated from a collection chamber to a supply chamber without being agitated is suppressed even in the case where a part of a communication portion that permits the developer in the collection chamber to be communicated to the supply chamber is caused to oppose a developer coating area of a developer bearing member.
According to one aspect of the present invention, a developing device includes a developer bearing member configured to be rotatable, bear developer containing toner and carrier, and convey the developer to a development area opposing an image bearing member, a first chamber which is disposed below a rotation axis of the developer bearing member in a vertical direction and from which the developer is supplied to the developer bearing member, a second chamber disposed so as to be exposed to the developer bearing member and configured to accommodate the developer having passed through the development area and collected from the developer bearing member, a first conveyance screw portion disposed in the first chamber and configured to convey the developer in the first chamber in a first conveyance direction, a second conveyance screw portion disposed in the second chamber, including a rotatable shaft portion, and configured to convey the developer in the second chamber in a second conveyance direction opposite to the first conveyance direction, a partition wall configured to separate the first chamber from the second chamber, a first communication portion configured to permit the developer in the second chamber to be communicated from the second chamber to the first chamber, and a second communication portion configured to permit the developer in the first chamber to be communicated from the first chamber to the second chamber. The first communication portion defines a communication path through which the developer in the second chamber is communicated from the second chamber to the first chamber, the communication path having a first area and a second area, the first area being positioned within a range corresponding to a developer coating area of the developer bearing member in the second conveyance direction, the second area being positioned downstream of the developer coating area of the developer bearing member in the second conveyance direction. A first length of the first area is shorter than a second length of the second area, the first length being a maximum length from a bottom surface portion of the communication path to an upper portion of the first area of the communication path, the second length being a maximum length from the bottom surface portion of the communication path to an upper portion of the second area of the communication path.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
First, a configuration of an image forming apparatus 100 including a developing device according to an exemplary embodiment will be described with reference to
Image Forming Apparatus
In the image forming portion PY, a yellow toner image is formed on a photosensitive drum 10Y, and is transferred onto the intermediate transfer belt 25. In the image forming portion PM, a magenta toner image is formed on a photosensitive drum 10M, and is transferred onto the intermediate transfer belt 25. In the image forming portions PC and PK, cyan and black toner images are respectively formed on photosensitive drums 10C and 10K, and are transferred onto the intermediate transfer belt 25. The toner images of four colors transferred onto the intermediate transfer belt 25 are conveyed to a secondary transfer portion T2 serving as a secondary transfer nip portion, and are collectively transferred onto a recording material S through secondary transfer. Examples of the recording material S include sheet materials such as paper sheets and overhead projector sheets. The recording material S is taken out one by one from a sheet feed cassette that is not illustrated, and is conveyed to the secondary transfer portion T2.
The image forming portions PY, PM, PC, and PK are configured in substantially the same manner except that colors of toner used in developing devices 1Y, 1M, 1C, and 1K, that is, yellow, magenta, cyan, and black, respectively, are different. Configurations and operations of the image forming portions PY to PK will be described below while omitting Y, M, C, and K at the end of the reference signs of the image forming portions PY to PK distinguishing the image forming portions PY to PK from each other.
In an image forming portion P, a charging roller 21, an exposing unit 22, a developing device 1, a transfer roller 23, and a drum cleaning unit 24 are disposed around a photosensitive drum 10 serving as an image bearing member. The photosensitive drum 10 is constituted by an aluminum cylinder and a photosensitive layer formed on an outer peripheral surface of the aluminum cylinder, and is rotated in an arrow R1 direction in
The charging roller 21 uniformly charges the photosensitive drum 10 to a dark potential of a negative polarity by being subjected to a charging voltage applied thereto and coming into contact with the photosensitive drum 10. The exposing unit 22 generates, by a laser emitting element, a laser beam that is on-off keyed on the basis of scanning line image data in which decomposed images of respective colors are loaded, scans the charged surface of the photosensitive drum 10 with the laser beam via a rotating mirror, and thereby draws an electrostatic image on the surface of the photosensitive drum 10. The developing device 1 supplies toner to the photosensitive drum 10 to develop the electrostatic image as a toner image. The developing device 1 will be described in detail later with reference to
The transfer roller 23 is disposed so as to oppose the photosensitive drum 10 with the intermediate transfer belt 25 interposed therebetween, and thereby forms a primary transfer portion T1 of a toner image serving as a primary transfer nip portion between the photosensitive drum 10 and the intermediate transfer belt 25. At the primary transfer portion T1, the toner image is transferred from the photosensitive drum 10 onto the intermediate transfer belt 25 through primary transfer as a result of, for example, the transfer roller 23 being subjected to a primary transfer voltage applied thereto from a high-voltage power source that is not illustrated. That is, in the case where a primary transfer voltage of a polarity opposite to a charging polarity of the toner is applied to the transfer roller 23, the toner image on the photosensitive drum 10 is electrostatically attracted to the intermediate transfer belt 25, and thereby the toner image is transferred. The drum cleaning unit 24 rubs the photosensitive drum 10 with a cleaning blade to remove primary transfer residual toner remaining on the photosensitive drum 10 by a small amount after the primary transfer.
The intermediate transfer belt 25 is supported by being stretched over rollers including a tension roller 26, a secondary transfer inner roller 27, and a driving roller 28, and is driven by the driving roller 28 to rotate in an arrow R2 direction in
The recording material S onto which the toner image of four colors has been transferred through the secondary transfer at the secondary transfer portion T2 is conveyed to a fixing unit 31. The fixing unit 31 applies pressure and heat to the recording material S to melt and fix the toner image on the recording material S. The pressure is applied by opposing rollers or belts that are not illustrated, and the heat is generally applied by a heat source such as a heater that is not illustrated. The recording material S onto which the toner image has been fixed by the fixing unit 31 is discharged to the outside of the apparatus.
A toner supplying unit 32 is capable of supplying, to the developing device 1, toner of an amount corresponding to the amount of consumed toner in accordance with toner in the developing device 1 consumed in image formation. More specifically, the toner supplying unit 32 is capable of supplying a replenishment.
Developing Device
The developing device 1 of the present exemplary embodiment will be described with reference to
The development container 2 accommodates two-component developer containing nonmagnetic toner and magnetic carrier. That is, a two-component development method is used as a development method in the present exemplary embodiment, a mixture of negatively chargeable nonmagnetic toner and positively chargeable magnetic carrier is used as the developer. The nonmagnetic toner is powder formed of resin, such as polyester and styrene acrylic resin, containing colorant, a wax component, and so forth, and obtained through crushing or polymerization. The magnetic carrier is constituted by a core and a surface layer of resin coating on the core. The core is a ferrite particle or a resin particle kneaded with magnetic powder. For example, the toner density of the developer in an initial state is 8% in the present exemplary embodiment. The toner density is a proportion or ratio of the weight of toner with respect to the total weight of the developer, and is also referred to as a TD ratio.
The development container 2 includes an opening portion in a portion opposing the photosensitive drum 10 illustrated in
The developing sleeve 3 rotates in the arrow R3 direction in
Development Container
The development container 2 includes a development chamber 11 serving as a first chamber and an agitation chamber 12 serving as a second chamber, and a partition wall 15 separating the development chamber 11 and the agitation chamber 12 from each other is provided between the development chamber 11 and the agitation chamber 12. The partition wall 15 projects in the development container 2 from a bottom surface portion 2c such that the development chamber 11 and the agitation chamber 12 are separated from each other. In addition, the partition wall 15 extends in a rotation axis direction of the developing sleeve 3, and the development chamber 11 and the agitation chamber 12 are formed along the rotation axis direction of the developing sleeve 3. In the present exemplary embodiment, the development chamber 11 and the agitation chamber 12 are disposed at different heights when viewed in the horizontal direction such that a bottom surface portion 12a of the agitation chamber 12 is positioned above a bottom surface portion 11a of the development chamber 11. In the description below, “above” and “below” respectively indicate above and below in the gravity direction, or the vertical direction.
As illustrated in
Further, as illustrated in
As illustrated in
The developing sleeve 3, the development screw 13, and the agitation screw 14 are each configured to be connected to and driven by a gear train that is not illustrated, and are each rotated by a driving force transmitted from a driving motor that is not illustrated via the gear train. The developer is conveyed in a circulating manner by the rotation of the development screw 13 and the agitation screw 14 as indicated by arrows in
The developer is supplied from the development chamber 11 to the developing sleeve 3, and the developer peeled off the developing sleeve 3 is collected in the agitation chamber 12. That is, the developer in the development chamber 11 is attracted to the developing sleeve 3 at a position corresponding to the pulling-up pole N1 of the magnet roller 4 while being conveyed by the development screw 13. The guide member 151 provided in the upper portion of the partition wall 15 is provided so as to extend from the upper end of the partition wall 15 to the vicinity of the portion of the developing sleeve 3 corresponding to the nonmagnetic field. Therefore, the developer peeled off the developing sleeve 3 by the peeling pole N3 is collected in the agitation chamber 12 without returning to the development chamber 11. In the agitation chamber 12, the collected developer is conveyed by the agitation screw 14 while collecting the developer.
In the developing device 1 that performs development by using two-component developer, a charge imparting ability, in other words, a charging performance, of the carrier to the toner may be lowered in the course of image formation. In this case, the charge of toner is reduced, and image defects such as density variation and scattered fogging may occur. Thus, control of supplying a replenishment from the toner supplying unit 32 illustrated in
Discharge Port
As illustrated in
It may be also considered to define the discharge port 20 not in the wall portion 2a at an end of the development container 2 but at a predetermined height in a conveyance path in the agitation chamber 12, that is, in a side wall surface opposing the first conveyance portion 141. However, in such a case, there may be a case that the developer is discharged through the discharge port 20 by being struck up by the agitation screw 14 in addition to a case where the developer is discharged through the discharge port 20 as a result of an overflow. That is, compared with the present exemplary embodiment in which the discharge port 20 is defined in the wall portion 2a at the end of the development container 2, the developer is likely to be discharged regardless of the amount of developer accommodated in the agitation chamber 12, and the developer may be sometimes reduced too much. In this case, particularly in the development chamber 11, a sufficient amount of developer is not ensured on the upstream side of the development screw 13 in the first direction D1, and the coating area of the developing sleeve 3 becomes less likely to be uniformly coated. In the case where this coating failure occurs, image defects such as reduction of image density and occurrence of white streaks on an image may be caused. To avoid this, it is preferable that the discharge port 20 is defined in the wall portion 2a at the end of the development container 2 at which the influence of striking up is small as in the present exemplary embodiment.
Returning Screw
As illustrated in
In the case where a large amount of developer has reached to the most downstream portion of the first conveyance portion 141 of the agitation screw 14 and the developer surface of the developer has reached the height of the gap between the rotation shaft 14a and the discharge port 20, the developer is discharged through the gap. That is, most of the developer conveyed toward the discharge port 20 by the first conveyance portion 141 is pushed back upstream in the second direction D2 by the returning screw 19, and is communicated to the development chamber 11 through the first communication port 16 and the third communication port 18 without passing through the discharge port 20. The developer that has not been pushed back by the returning screw 19 moves downstream of the agitation chamber 12 through the discharge port 20 in accordance with the developer surface becoming higher than a lower end of the discharge port 20, and is thus discharged from the development container 2.
The developing device 1 of the present exemplary embodiment has a configuration of a so-called separate-function type in which developer is supplied from the development chamber 11 to the developing sleeve 3 and developer is collected from the developing sleeve 3 into the agitation chamber 12. In the developing device 1 of the separate-function type, the developer on the developing sleeve 3 is collected in the whole area of the agitation chamber 12 in the longitudinal direction. Therefore, the developer is circulated through two paths of a first path, through which the developer is conveyed from the development chamber 11 to the agitation chamber 12 not via the developing sleeve 3, and a second path, through which the developer is directly conveyed from the developing sleeve 3 to the agitation chamber 12, and the distribution of the amount of developer is likely to be non-uniform in the development container 2. The developer is likely to be accumulated on the downstream side in the agitation chamber 12, and thus a more downstream portion of the developer surface is likely to be higher than a more upstream portion thereof.
As has been already described, in a conventional developing device, the communication of developer from the agitation chamber 12 to the development chamber 11 is suppressed in the case where the fluidity of the developer is lowered. In this case, developer of a low toner density is dragged around the developing sleeve 3, and thus image defects such as density irregularity become more likely to occur. In addition, image defects may occur in the case where a sufficient amount of developer is not ensured on the upstream side of the development screw 13 in the development chamber 11 in the first direction D1, or on the downstream side of the agitation screw 14 in the second direction D2.
Third Communication Port
Therefore, in the present exemplary embodiment, the third communication port 18 is provided in the partition wall 15 in addition to the first communication port 16 and the second communication port 17 through which the developer is communicated between the development chamber 11 and the agitation chamber 12. The third communication port 18 will be described with reference to
As illustrated in
However, in the case where the third communication port 18 merely widens the first communication port 16 to the downstream side, the developer peeled off the developing sleeve 3 and collected in the agitation chamber 12 may be communicated to the development chamber 11 without being agitated as has been described above. To avoid this, in the present exemplary embodiment, the upper end 18a of the third communication port 18 is disposed below an upper end 16a of the first communication port 16 as illustrated in
When viewed in the plane perpendicular to the partition wall 15, the upper end 18a of the third communication port 18 corresponds to a portion at which the third communication port 18 intersects with the partition wall 15. In addition, when viewed in the plane perpendicular to the partition wall 15, the upper end 16a of the first communication port 16 corresponds to a portion at which the first communication port 16 intersects with a certain component constituting the developing device 1. Further, when viewed in the plane perpendicular to the partition wall 15, the certain component which constitutes the developing device 1 and with which the first communication port 16 intersects changes depending on the shape of the partition wall 15 extending in the rotation axis direction of the developing sleeve 3. In the present exemplary embodiment, the partition wall 15 is provided such that a part of the partition wall 15 extends above the first communication port 16 as illustrated in
In a modification embodiment in which the part of the partition wall 15 does not extend above the first communication port 16, the upper end 16a of the first communication port 16 may have a following configuration when viewed in the plane perpendicular to the partition wall 15. For example, the upper end 16a of the first communication port 16 may be a portion at which the first communication port 16 intersects with the developing sleeve 3. In this case, an area other than the coating area M in the outer circumferential surface of the developing sleeve 3, in other words, a so-called non-coating area, is the certain component defining the upper end 16a of the first communication port 16, that is, the upper edge of the first area A1. In addition, for example, the upper end 16a is a portion at which the first communication port 16 intersects with “a cover frame body for covering a part of an opening portion of a frame body of the development container 2”, in other words, “a so-called upper lid of the development container 2”. In this case, an area other than the coating area M in the upper lid of the development container 2, in other words, a so-called non-coating area, is the certain component defining the upper end 16a of the first communication port 16, that is, the upper edge of the first area A1.
In addition, the third communication port 18 and the first communication port 16 are defined such that a downstream end portion of the third communication port 18, that is, the border between the third communication port 18 and the first communication port 16, is disposed downstream of the coating area M. That is, the first communication port 16 is disposed downstream of the coating area M. In the present exemplary embodiment, the height, that is, the length in a direction perpendicular to the second direction D2, of the third communication port 18 is constant. In addition, the second communication port 17 is disposed upstream of the coating area M.
As described above, whereas the first communication port 16 is defined so as not to overlap the coating area M, the third communication port 18 is defined so as to overlap the coating area M. Since the upper end 18a of the third communication port 18 is formed below the upper end 16a of the first communication port 16, the area of opening, i.e., a size of opening, of the third communication port 18 is restricted on the upper side by the partition wall 15 compared with the first communication port 16. Therefore, developer being conveyed on the lower side in the agitation chamber 12 is communicated to the development chamber 11 through the third communication port 18.
However, in the case where the width, that is, the length in the second direction D2, of the third communication port 18 is too large, the developer peeled off the developing sleeve 3 and collected in the agitation chamber 12 may be communicated to the development chamber 11 without being agitated. To avoid this, the width of the third communication port 18 is restricted. In the present exemplary embodiment, the third communication port 18 is defined such that a width L3 of the third communication port 18, more specifically a length of a portion of the third communication port 18 overlapping the coating area M, is shorter than the pitch of the ridge 14b of the agitation screw 14 as illustrated in
As described above, in the developing device 1 of the present exemplary embodiment, the first communication port 16 through which the developer can be communicated from the agitation chamber 12 to the development chamber 11 is substantially expanded by the third communication port 18. According to this, the communication of developer from the agitation chamber 12 to the development chamber 11 is not suppressed even in the case where the fluidity of the developer is lowered, and thus the developer is less likely to be dragged around by the developing sleeve 3. In addition, a sufficient amount of developer can be ensured on the upstream side of the development screw 13 in the first direction D1 in the development chamber 11, and thus the occurrence of image defects caused by coating failure can be reduced. In addition, the upper end 18a of the third communication port 18 is formed below the upper end 16a of the first communication port 16, and the third communication port 18 is configured such that the developer in a lower portion of the agitation chamber 12 can be communicated to the development chamber 11 through the third communication port 18. According to this, although the communication portion 34 is expanded to an area overlapping the coating area M of the developing sleeve 3, communication of the developer on the upper side in the agitation chamber 12 is prevented by a partition wall portion 51. Therefore, the developer guided to the agitation chamber 12 by the guide member 151 is not immediately communicated to the development chamber 11 but communicated to the development chamber 11 after being mixed with existing developer being conveyed in the agitation chamber 12. That is, since the developer of a low toner density peeled off the developing sleeve 3 and collected in the agitation chamber 12 is not communicated to the development chamber 11 without being sufficiently agitated, image defects caused by the communication of the developer of a low toner density can be suppressed.
As has been described, in the case of the developing device 1 of a separate-function type, the height of the developer surface in the agitation chamber 12 gradually increases from upstream to downstream of the agitation screw 14 in the second direction D2. In contrast, in the case where the height of the third communication port 18 is constant as in the exemplary embodiment described above and illustrated in
Therefore, the upper end 18a of the third communication port 18 is preferably formed such that a more downstream portion thereof, i.e., a first portion, is higher than a more upstream portion thereof, i.e., a second portion positioned upstream of the first portion, in the second direction D2 as illustrated in
In addition, in the exemplary embodiment described above, an example in which the first communication port 16 is defined such that the height of the first communication port 16 is constant as illustrated in
In addition, in the exemplary embodiment described above, an example in which the third communication port 18 and the first communication port 16 are defined such that the upper end 18a of the third communication port 18 and the upper end 16a of the first communication port 16 are discontinuous at a portion at which the downstream side of the third communication port 18 and the upstream side of the first communication port 16 in the second direction D2 are adjacent to each other has been described as illustrated in
Alternatively, a modification embodiment in which the third communication port 18 and the first communication port 16 are defined such that the upper end 18a of the third communication port 18 and the upper end 16a of the first communication port 16 are continuous at the adjacency portion of the third communication port 18 and the first communication port 16 may be employed. In this modification embodiment, the height of the communication portion 34 gradually increases, at the adjacency portion of the third communication port 18 and the first communication port 16, from the height of the upper end 18a of the third communication port 18 to the height of the upper end 16a of the first communication port 16. Also in such a case, in the opening of the communication portion 34, a portion whose position in the second direction D2 is within the range corresponding to the coating area M corresponds to a first area, and a portion positioned downstream of the coating area M corresponds to a second area.
In the modification embodiments described above, any configuration may be employed as long as the maximum height L1 of the first area A1 whose position in the second direction D2 is within the range corresponding to the coating area M of the developing sleeve 3 is smaller than the maximum height L2 of the second area A2 downstream of the coating area M in the second direction D2 in a communication path of developer formed by the communication portion 34. However, the maximum height is not necessarily a length in the vertical direction. The maximum height indicates the maximum length from the bottom surface portion 2c to the upper ends 16a and 18a of the communication portion 34 in the respective areas of areas A1 and A2 when viewed in the plane perpendicular to the partition wall 15.
Although the image forming apparatus 100 of an intermediate transfer system that transfers toner images of respective colors from the photosensitive drums 10 of respective colors onto the intermediate transfer belt 25 through primary transfer and then collectively transfers a composite toner image of respective colors onto the recording material S through secondary transfer has been described in the exemplary embodiments described above, embodiments of the present invention is not limited to this example. For example, the present invention may be applied to an image forming apparatus of a direct transfer system that directly transfers toner images from photosensitive drums onto a recording material carried and conveyed by a transfer material conveyance belt.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application Nos. 2016-140688, filed on Jul. 15, 2016, and 2017-093144, filed on May 9, 2017, which are hereby incorporated by reference wherein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2016-140688 | Jul 2016 | JP | national |
2017-093144 | May 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8326180 | Fujiwara et al. | Dec 2012 | B2 |
8626034 | Koike et al. | Jan 2014 | B2 |
8787802 | Hattori et al. | Jul 2014 | B2 |
20100215401 | Fujiwara et al. | Aug 2010 | A1 |
20120163874 | Hattori et al. | Jun 2012 | A1 |
20120219326 | Koike | Aug 2012 | A1 |
20170052482 | Ishida | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
S59100471 | Jun 1984 | JP |
2009192554 | Aug 2009 | JP |
2010197539 | Sep 2010 | JP |
2012133119 | Jul 2012 | JP |
2012133212 | Jul 2012 | JP |
2012181286 | Sep 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20180017895 A1 | Jan 2018 | US |