1. Field of the Invention
The present invention relates to a development device for forming a toner image on a predetermined image carrier, and an image forming apparatus having the same.
2. Description of the Related Art
An image forming apparatus such as a copying machine, printer, facsimile, a multi-function machine thereof and the like which employs the electrophotographic system includes a development device for supplying a toner to an image carrier (for example, a photoreceptor drum or a transfer belt) and forming a toner image on the image carrier.
The development device includes, as its basic constituent elements, a developer storage part for storing the developer, a development roller for receiving the developer from the developer storage part and forming a toner image on the image carrier by supplying the developer to the image carrier, and a regulating blade which is placed opposite to the development roller so as to form a regulatory gap with the development roller and which regulates the layer thickness of the developer on the development roller.
With this kind of development device, in order to form a favorable toner image on the image carrier, it is necessary to cause the developer layer to be thinned and uniform prior to the development roller supplying the developer to the image carrier.
With the development device of a first relevant technology, a magnet member is disposed on the upstream surface of the regulating blade when viewed from the rotating direction of the development roller. A magnetic field is generated between the regulating blade made from a magnetic material and a regulating pole disposed on the development roller, and the magnet member causes the magnetic flux density of the magnetic field to increase, and the magnetic line of the magnetic field is concentrated at the upstream portion in the regulating blade. The developer layer (magnetic brush layer) is thereby regulated and thinned and becomes uniform.
Moreover, with the development device of a second relevant technology, the development roller has a built-in magnet roll for pumping the developer onto its outer peripheral surface, and the regulating blade is formed from a magnetic material. Since the magnetic field of the magnetic pole opposite to the regulating blade in the magnet roll is concentrated on the regulating blade, the regulating blade is able to regulate the developer layer (so-called magnetic brush layer) on the outer peripheral surface to become uniform in the regulatory gap, which is a range that is affected by the magnetic field.
Nevertheless, with the development device of the first relevant technology, the regulating force of the regulating pole, the regulating blade and the magnet member for regulating the developer in the regulatory gap; that is, the restraint of the regulating pole, the regulating blade and the magnet member for restraining the developer in the regulatory gap is too strong. Thus, the stress applied to the developer upon regulating the magnetic brush layer increases, and the developer tends to deteriorate. If the developer deteriorates, it becomes difficult to form a favorable toner image on the image carrier, and consequently becomes difficult to form a favorable image on a sheet.
Moreover, with the development device of the second relevant technology, since the amount of developer that is transported to the regulating blade is considerably more than the amount of developer that passes through the regulatory gap, the developer tends to accumulate in a range around the regulating blade that is not affected by the magnetic field. The accumulated developers mutually collide or collide with the wall part defining the developer storage part, and will thereby deteriorate. In addition, an accumulated developer tends to fall into a compressed state, or a so-called packed state, and will thereby deteriorate. If the developer deteriorates as described above, it becomes difficult to form a favorable toner image on the image carrier.
Thus, in light of the foregoing circumstances, an object of this invention is to provide a development device capable of inhibiting the deterioration of the developer while realizing the thinning and uniformity of the developer layer, and an image forming apparatus comprising the same.
In order to achieve the foregoing object, the development device according to one aspect of the present invention includes a developer storage part storing a developer while agitating the developer, a developer carrier having a carrying surface for carrying the developer, and a first magnet, the developer carrier receiving the developer on the carrying surface from the developer storage part while rotating in a predetermined direction, and supplying the developer to a predetermined image carrier, a magnetic member formed from a magnetic material, the magnetic member forming a predetermined regulatory gap with the carrying surface and arranged opposite to the first magnet, a second magnet arranged more upstream than the magnetic member when viewed from the rotating direction of the developer carrier, and having a magnetic pole of the same polarity as the first magnet, and a deterioration suppressing part suppressing deterioration of the developer that is transported to the regulatory gap along with the rotation of the developer carrier.
Other objects and specific advantages of the present invention shall become more apparent from the appended drawings and the ensuing explanation.
A development device and an image forming apparatus equipped with such development device according to an embodiment of the present invention are now explained with reference to the attached drawings.
The development device 20 and the image forming apparatus 1 equipped with the development device 20 according to the first embodiment are foremost explained.
The image forming apparatus 1 includes an image forming part 4 for forming a toner image on paper P (sheet) based on image data from the outside (for example, a personal computer), a fixation part 5 for heating the toner image formed on the paper P and fixating it on the paper P, a paper feed cassette 7 that houses the paper P, a paper discharge tray 12 to which the paper P is discharged, a transport path 6 for transporting the paper P from the paper feed cassette 7 to the paper discharge tray 12 via the image forming part 4 and the fixation part 5, a manual feed tray 3 provided to the right-side surface in
The image forming part 4 includes a photoreceptor drum 10 (image carrier), a charging unit 42 for performing charge processing to the photoreceptor drum 10, an exposure unit 43 for irradiating a laser beam L to the charged photoreceptor drum 10 and forming an electrostatic latent image, a development device 20 for causing the toner to electrostatically adhere to the electrostatic latent image formed on the photoreceptor drum 10 and visualizing the toner image, a toner cartridge 45 for supplying the internally filled toner to the development device 20, a transfer roller 46 (transfer member) for transferring the developed toner image onto the paper P, and a toner removing unit 47 for removing and recovering the toner remaining on the drum surface of the photoreceptor drum 10. Note that, when viewed from the rotating direction (clockwise direction in
The photoreceptor drum 10 is a drum with a photoreceptor in which an amorphous silicon layer as a positively-charged photoconductor is vapor-deposited, for example, on the surface of an aluminum cylinder. The layer thickness of the amorphous silicon layer and the linear velocity of the photoreceptor drum 10 are suitably set.
The charging unit 42 includes, for example, a charging roller 50. The charging roller 50 is configured from a cored bar, and an epichlorohydrin rubber layer covering the cored bar. Moreover, the charging roller 50 is of a contact-charging system in which the circumferential surface thereof is subject to approximately point contact with the drum surface of the photoreceptor drum 10, and uniformly charges the surface potential of the drum surface by applying a predetermined reference charge voltage (reference charge bias) superimposed with DC voltage and AC voltage on the drum surface.
The exposure unit 43 has a polygon mirror (not shown) for guiding a laser beam L based on the image data input from an external PC (personal computer) or the like to the drum surface of the photoreceptor drum 10. The polygon mirror forms an electrostatic latent image on the drum surface by scanning the drum surface of the photoreceptor drum 10 with laser beam L while being rotated with a predetermined drive source. The development device 20 supplies the toner to the electrostatic latent image and thereby forms a toner image on the drum surface.
The transfer roller 46 is pressure-welded to the drum surface of the photoreceptor drum 10 in the transport path 6, and a nip part N is formed between the transfer roller 46 and the drum surface. Since a voltage of reverse polarity as the surface potential of the drum surface is applied to the transfer roller 46, the toner image on the drum surface is transferred onto the paper P upon the paper P passing through the nip part N. The paper P that passed through the nip part N passes through the transport path 6 and is transported to the fixation part 5.
At the fixation part 5, the toner image on the paper P is heated and fixated onto the paper P, and the paper P thereafter passes through the transport path 6 and is transported to the paper discharge tray 12.
The development device 20 is now explained in detail with reference to
The development vessel 21 includes a bottom frame 21b, and a main body frame 21a which covers the bottom frame 21b from above, and the internal space is defined between both frames 21a, 21b.
The developer storage part 11 includes a developer storage space H which occupies a majority of the internal space for storing the developer, and two adjacent developer cyclic paths 14, 15 formed on the bottom frame 21b in the developer storage space H and extending in the longitudinal direction (perpendicular direction relative to the plane of paper of
The developer cyclic paths 14, 15 are mutually partitioned in the longitudinal direction with a partition plate 17 made of, for example, metal such as aluminum, but both ends thereof in the longitudinal direction are in mutual communication. Moreover, a screw feeder 18, 19 for agitating and transporting the developer, based on rotation, is rotatably mounted on each developer cyclic path 14, 15.
With the screw feeders 18, 19, since the transport directions are set in mutually reverse directions, the developer is agitated and transported between the developer cyclic path 14 and the developer cyclic path 15. Based on this agitation, the nonmagnetic body toner and the magnetic carrier are mixed, and the toner is charged with the carrier. The charged developer is supplied from the developer cyclic path 14 to the development roller 22. The developer storage part 11 receives the toner in the developer storage space H from the toner cartridge 45 via a resupply port not shown.
The development roller 22 is formed, for example, a nonmagnetic material such as aluminum, and is a roller member including a cylindrical development sleeve 24 extending in the longitudinal direction of the development device 20 (that is, axis direction of the photoreceptor drum 10), and a rotational axis not shown for rotating the development sleeve 24 in the counterclockwise direction in
The development sleeve 24 is placed opposite to the photoreceptor drum 10 in a state where a gap of 0.2 mm to 0.4 mm is formed between its outer peripheral surface 26 (carrying surface) and the drum surface of the photoreceptor drum 10. The development sleeve 24 includes a so-called magnet roll 25 extending in the longitudinal direction of the development sleeve 24 in a state where it is fixedly supported with a support shaft 28.
The magnet roll 25 is formed with a pumping pole 27 for magnetically pumping the developer from the developer storage part 11 onto the outer peripheral surface 26 of the development sleeve 24. The pumping pole 27 is placed opposite to the developer cyclic path 14 via the outer peripheral surface 26 of the development sleeve 24, and magnetically attaches (carries) the developer in the developer cyclic path 14 to the outer peripheral surface 26 of the rotating development sleeve 24. The developer that is pumped onto the outer peripheral surface 26 with the pumping pole 27 is transported toward a regulating part R pursuant to the rotation of the development sleeve 24 as a magnetic brush layer D1 (
The regulating part R is provided for achieving the thinning and uniformity of the layer thickness of the magnetic brush layer D1 on the outer peripheral surface 26. In this embodiment, the regulating part R is configured from a regulating pole 29 (first magnet), a magnetic member 30 and a magnet member 35 (second magnet). The regulating part R is now explained with reference to
The magnetic member 30 is disposed in a state of facing the development sleeve 24 above the development sleeve 24, and is a laminar member extending in the longitudinal direction of the development sleeve 24. The magnetic member 30 has a tip part 31 extending toward the outer peripheral surface 26 of the development sleeve 24, and a regulatory gap G of a predetermined size is formed between the end surface 32 of the tip part 31 and the outer peripheral surface 26 of the development sleeve 24. The size of the regulatory gap G is set to a value within the range of 0.5 mm to 1.2 mm.
The regulating pole 29 is formed with a magnet roll 25 (FIG. 2) opposite to the end surface 32 of the magnetic member 30, and the end side facing the end surface 32 in the regulating pole 29 is set to the N pole. In this embodiment, the regulating pole 29 is set to be positioned approximately 5° further upstream than the magnetic member 30 when viewed from the rotating direction of the development sleeve 24. Based on this positioning, the peak of the magnetic force of the regulating pole 29 will be positioned further upstream than the tip part 31 of the magnetic member 30.
The magnet member 35 is a plate-shaped magnet that is connected to the upstream surface 33 of the magnetic member 30 when viewed from the rotating direction of the development sleeve 24, and which extends in the longitudinal direction of the development sleeve 24. The magnet member 35 has a tip part 34 extending toward the outer peripheral surface 26 of the development sleeve 24, and the tip part 34 is formed with a magnetic pole; for example, the N pole, of the same polarity as the regulating pole 29. The magnetic force of the magnet member 35 is set to be greater than the magnetic force of the regulating pole 29. Moreover, the tip part 34 of the magnet member 35 has an opposing surface 36 which is opposite to the outer peripheral surface 26 of the development sleeve 24. The size of step formed between the opposing surface 36 and the end surface 32 of the magnetic member 30 is kept within 3 mm. The foregoing step is preferably around 1 mm to 2 mm.
With the development device 20 including the regulating part R of the foregoing configuration, the magnetic brush layer D1 on the outer peripheral surface 26 is regulated as follows. A magnetic pole; for example, the S pole, that is possible to the regulating pole 29 and the tip part 34 of the magnet member 35 is induced to the tip part 31 of the magnetic member 30 based on the magnetic field of the regulating pole 29 and the magnetic field of the magnet member 35. Since the magnetic force of the magnet member 35 is set to be greater than the magnetic force of the regulating pole 29, a part of the developer of the magnetic brush layer D1 on the outer peripheral surface 26 formed with the pumping pole 27 attaches to and accumulates on the end surface 32 of the magnetic member 30 from the opposing surface 36 of the magnet member 35 as its heads toward the regulating part R pursuant to the rotation of the development sleeve 24. A development layer D2 is thereby formed on the opposing surface 36 and the end surface 32. The amount of developer to be accumulated can be adjusted by suitably setting the magnetic force of the regulating pole 29 and/or the magnetic force of the magnet member 35.
The magnetic brush layer D1 on the outer peripheral surface 26 contacts the development layer D2 on the opposing surface 36 of the magnet member 35 and the end surface 32 of the magnetic member 30, when passing the regulatory gap G pursuant to the rotation of the development sleeve 24, and a part thereof is scraped off. The magnetic brush layer D1 on the outer peripheral surface 26 is thereby regulated (the magnetic brush DB is subject to scraping). Consequently, the layer thickness of the regulated magnetic brush layer D3 becomes a predetermined thickness T that is smaller than the size of the regulatory gap G, and this thereby thinned and becomes uniform. In the first embodiment, the developer layer D2 functions as the deterioration suppressing part.
The regulated magnetic brush layer D3 is carried toward the drum surface of the photoreceptor drum 10 pursuant to the rotation of the development sleeve 24. Subsequently, the toner in the magnetic brush layer D3 adheres to the electrostatic latent image of the drum surface of the photoreceptor drum 10 based on the potential difference between the development bias applied to the development sleeve 24 and the drum bias applied to the photoreceptor drum 10. A toner image is thereby formed on the drum surface.
As described above, with the development device 20 according to this embodiment, the magnetic brush layer D1 on the outer peripheral surface 26 of the development sleeve 24 is regulated with the development layer D2 on the opposing surface 36 of the magnet member 35 and the end surface 32 of the magnetic member 30. Accordingly, unlike the conventional configuration of regulating the magnetic brush layer, which is firmly restrained based on magnetic force, with a regulating blade, the development device 20 is able to alleviate the stress that works on the developer upon regulating the magnetic brush layer D1. It is thereby possible to inhibit the deterioration of the developer caused by the stress.
Moreover, with the development device 20 according to this embodiment, since the magnetic brush layer is not regulated with a conventional regulating blade as described above, the regulatory gap G can be set larger than conventionally; specifically to a value within the range of 0.5 to 1.2 mm. This consequently facilitates the formation of the magnetic brush layer D3 with the thickness T based on the developer layer D2 on the opposing surface 36 of the magnet member 35 and the end surface 32 of the magnetic member 30.
With the development device 20 explained above, although the end surface 32 of the magnetic member 30 is configured to protrude farther downward toward the outer peripheral surface 26 than the opposing surface 36 of the magnet member 35, as an alternative configuration, as shown in
In addition, the development device 20 may adopt, in substitute for the configuration shown in
Although the end surface 32 of the magnetic member 30 and the opposing surface 36 of the magnet member 35 are preferably set in a flush as shown in
Experiment I that was conducted using the development device 20 is now explained. In Experiment I, the thinning stability of the magnetic brush layer, degradation of the image density upon printing, and generation of streak noise were checked. As the targets of the experiment, Examples 1 to 10 and Comparative Examples 1 to 3 were used. With Examples 1 to 10, as shown in
Moreover, with Examples 1 to 6, the opposing surface 36 of the magnet member 35 was set to be positioned approximately 1 mm above the end surface 32 of the magnetic member 30 (that is, the configuration of
The results after driving the respective development devices 20 of Examples 1 to 10 and Comparative Examples 1 to 3 for 2 hours under the foregoing conditions are shown in
Moreover, the image density was evaluated based on the measurement result of the reflecting density meter. The reflecting density upon starting the drive of the development device 20 was set to 1.4, and the image density was evaluated as favorable and indicated as ∘ if the reflecting density after driving the development device 20 for 2 hours was 1.2 or more, and evaluated as inferior and indicated as x if the reflecting density was less than 1.2. Moreover, with respect to the streak noise, ∘ is indicated when it was visually confirmed that there are no streaks on the printed paper, and Δ is indicated if there are streaks but they are within a tolerable range.
As shown in
With respect to the streak noise, streaks could not be confirmed in Example 1, Example 2, Example 4, Example 5, Examples 7 to 10, and Comparative Example 2 and Comparative Example 3. Meanwhile, streaks were confirmed in Example 3 and Example 6, although they were in a tolerable range. The reason for this is considered to be as follows; specifically, as a result of setting the regulatory gap G to 1.2 mm in Example 3 and setting the regulatory gap G to 1.1 mm in Example 6, the thickness of the magnetic brush layer became slightly larger in comparison to the other Examples. Nevertheless, so as long as the size of the regulatory gap G is within the range of 0.5 mm to 1.2 mm, it has been confirmed that an image, which is trouble-free under normal circumstances, can be obtained even with the generation of some streaks.
In this embodiment explained above, in addition to setting the magnetic force of the magnet member 35 to be greater than the magnetic force of the regulating pole 29, by setting the saturation magnetization of the developer carrier, the magnetic brush layer D1 can be regulated even more favorably with the developer layer D2 on the opposing surface 36 of the magnet member 35 and the end surface 32 of the magnetic member 30.
Specifically, since the regulation of the magnetic brush layer D1 with the developer layer D2 on the opposing surface 36 and the end surface 32 is affected by the magnetic force of the carrier, in this embodiment, the saturation magnetization of the carrier is set to a value within the range of 40 emu/g to 70 emu/g.
If the saturation magnetization of the carrier exceeds 75 emu/g, the amount of developer that is accumulated on the end surface 32 of the magnetic member 30 and the opposing surface 36 of the magnet member 35 will become too great, and the regulatory gap G tends to get clogged. Consequently, the regulating force of the developer layer D2 on the end surface 32 of the magnetic member 30 and the opposing surface 36 of the second magnet will become too strong, which in turn will cause the stress working on the developer to increase and tend to deteriorate the developer.
Meanwhile, if the saturation magnetization is less than 40 emu/g, the magnetic restraint for restraining the developer with the magnetic force of the regulating pole 29 and the magnet member 35 becomes weak. Thus, it becomes difficult to stably form the magnetic brush layer D1 on the outer peripheral surface 26 of the development sleeve 24, and stably form the developer layer D2 on the end surface 32 of the magnetic member 30 and the opposing surface 36 of the magnet member 35. Consequently, it is not possible to achieve the thinning and uniformity of thin the magnetic brush layer D1.
Experiment II that was conducted using the development device 20 is now explained. In Experiment II, the thinning stability of the magnetic brush layer, degradation of the image density upon printing, and generation of streaky noise were checked based on different saturization magnetization of the carrier. As the targets of the experiment, as shown in
The carriers A to E were prepared as follows.
Carrier A: Foremost, ferrite particles (weight average particle size of 35 μm) were retained for 1 hour in a rotary-type air atmosphere furnace maintained at 500° C., and oxide coating treatment was performed to the ferrite particle surface to obtain a carrier core. Subsequently, 1000 parts by mass of the carrier core was covered, based on the dipping method, by a resin liquid obtained by diluting 20 parts by mass of KR-251 (methyl silicone resin produced by Shin-Etsu Chemical Co., Ltd.) in 500 parts by mass of the solvent (toluene). After the coating treatment, the carrier core was baked for 3 hours at 250° C. to remove cracking and coarse powders, and a carrier A with a degree of circularity of 0.913, saturation magnetization of 62 emu/g, and particle size of 35 μm was produced.
Carrier B: Foremost, spherical ferrite particles (weight average particle size of 35 μm) were retained for 1 hour in a rotary-type air atmosphere furnace maintained at 500° C., and oxide coating treatment was performed to the ferrite particle surface to obtain a carrier core. Subsequently, 1000 parts by mass of the carrier core was covered, based on the dipping method, by a resin liquid obtained by diluting 20 parts by mass of KR-251 (methyl silicone resin produced by Shin-Etsu Chemical Co., Ltd.) in 500 parts by mass of the solvent (toluene). After the coating treatment, the carrier core was baked for 3 hours at 250° C. to remove cracking and coarse powders, and a carrier B with a degree of circularity of 0.967, saturation magnetization of 75 emu/g, and particle size of 35 μm was produced.
Carrier C: Foremost, oxide coating treatment was performed to the ferrite particle surface of ferrite particles (weight average particle size of 35 μm) to obtain a carrier core. Subsequently, 1000 parts by mass of the carrier core was covered, based on the dipping method, by a resin liquid obtained by diluting 20 parts by mass of KR-251 (methyl silicone resin produced by Shin-Etsu Silicones) in 500 parts by mass of the solvent (toluene). After the coating treatment, the carrier core was baked for 3 hours at 250° C. to remove cracking and coarse powders, and a carrier C with a degree of circularity of 0.912, saturation magnetization of 40 emu/g, and particle size of 35 μm was produced.
Carrier D: Spherical ferrite particles (weight average particle size of 35 μm) were used as the carrier core, and 1000 parts by mass of the carrier core was covered, based on the dipping method, by a resin liquid obtained by diluting 20 parts by mass of KR-251 (methyl silicone resin produced by Shin-Etsu Silicones) in 500 parts by mass of the solvent (toluene). After the coating treatment, the carrier core was baked for 3 hours at 250° C. to remove cracking and coarse powders, and a carrier D with a degree of circularity of 0.968, saturation magnetization of 80 emu/g, and particle size of 35 μm was produced.
Carrier E: Foremost, oxide coating treatment was performed to the ferrite particle surface of ferrite particles (weight average particle size of 35 μm) to obtain a carrier core. Subsequently, 1000 parts by mass of the carrier core was covered, based on the dipping method, by a resin liquid obtained by diluting 20 parts by mass of KR-251 (methyl silicone resin produced by Shin-Etsu Silicones) in 500 parts by mass of the solvent (toluene). After the coating treatment, the carrier core was baked for 3 hours at 250° C. to remove cracking and coarse powders, and a carrier E with a degree of circularity of 0.913, saturation magnetization of 35 emu/g, and particle size of 35 μm was produced.
The weight average particle size of the carriers A to E was unified at 35 μm as described above. If the weight average particle size is too large, it becomes difficult to obtain a high-quality image since the uniformity of solid and half tones will deteriorate. Meanwhile, if the weight average particle size is too small, carrier adhesion tends to occur.
Each of the carriers A to E was mixed with a black toner with a volume average particle size of 6.8 μm to prepare the developer. The ratio of the carrier to the toner in the developer was set to 11:100 ratio by weight.
The results after driving the respective development devices 20 of Examples 11 to 14 and Comparative Examples 4 and 5 for 2 hours under the foregoing conditions are shown in
As shown in
With respect to the streak noise, no streaks were confirmed in Example 11, Example 13, Example 14, Comparative Example 4 and Comparative Example 5. Meanwhile, streaks were confirmed in Example 12 although they were within a tolerable range. The reason for this is considered to be as follows; specifically, with Example 12, as a result of the magnetic force of the carrier A and the magnetic force of the magnet member 35 both being set considerably greater than the other Examples, the amount of developer that was accumulated on the end surface 32 of the magnetic member 30 and the opposing surface 36 of the magnet member 35 became great, and the regulating force of the developer layer on the end surface 32 and the opposing surface 36 became strong.
Note that, in addition to setting the saturation magnetization of the carrier to be within the range of 40 to 75 emu/g, image deterioration can also be inhibited by setting the resistance value of the carrier to be within the range of 1E+6 to 9Ω. In addition, image deterioration can also be inhibited by using a toner externally added with alumina.
The development device 200 and the image forming apparatus 100 equipped with the development device 200 according to the second embodiment are now explained with reference to the drawings.
The image forming part 120 is used for forming a toner image on the paper P fed from the paper storage part 140, and, in this embodiment, includes a magenta unit 120M which uses a magenta-colored toner (developer), a cyan unit 120C which uses a cyan-colored toner, a yellow unit 120Y which uses a yellow-colored toner, and a black unit 120K which uses a black-colored toner which are sequentially disposed from the upstream side (right side of the plane of paper of
The respective units 120M, 120C, 120Y, 120K include a photoreceptor drum 121 and a development device 200. The photoreceptor drum 121 is used for forming an electrostatic latent image on the circumferential surface and a toner image (visible image) along such electrostatic latent image, and receives the supply of the toner from the corresponding development device 200 while rotating in the counterclockwise direction in
A charging device 123 is provided immediately below the respective photoreceptor drums 121, and an exposure device 124 is provided below the respective charging devices 123. The respective photoreceptor drums 121 are uniformly charged on the circumferential surface thereof with the charging device 123, and laser beams corresponding to the respective colors based on the image data input from a computer or the like are irradiated from the exposure device 124 to the circumferential surface of the charged photoreceptor drum 121. An electrostatic latent image is thereby formed on the circumferential surface of the respective photoreceptor drums 121. When the toner from the development device 200 is subsequently supplied to the electrostatic latent image, a toner image is formed on the circumferential surface of the photoreceptor drum 121.
A transfer belt 125 stretched tightly between a driving roller 125a and a driven roller 125b is provided above the photoreceptor drum 121. The transfer belt 125 goes around between the driving roller 125a and the driven roller 125b while synching with the respectively photoreceptor drums 121 in a state of being pressed against the circumferential surface of the photoreceptor drum 121 with the transfer roller 126 provided in correspondence with the respective photoreceptor drums 121.
While the transfer belt 125 is going around, foremost performed in the primary transfer of the magenta toner image onto the surface of the transfer belt 125 based on the photoreceptor drum 121 of the magenta unit 120M. Subsequently, the transfer of the cyan toner image is performed, in an overpainted manner, to the transfer position of the magenta toner image on the transfer belt 125 based on the photoreceptor drum 121 of the cyan unit 120C. Similarly, the transfer of the yellow toner image based on the yellow unit 120Y and the transfer of the black toner image based on the black unit 120K are performed in an overpainted manner. A color toner image is thereby formed on the surface of the transfer belt 125.
A drum cleaning device 127 for removing the residual toner on the circumferential surface of the photoreceptor drum 121 and performing cleaning thereto is provided to the left-side position in
A paper transport path 111 extending in the vertical direction is formed at the left-side position in
The paper storage part 140 includes a manual feed tray 141 provided openably/closably to the right-side wall in
The fixation part 130 performs fixation treatment to the toner image on the paper P that was subject to the secondary transfer. The fixation part 130 includes a heating roller 131 internally provided with a conductive heating element as the heating source, a fixation roller 132 placed opposite to the heating roller 131, a fixation belt 133 stretched tightly between the fixation roller 132 and the heating roller 131, and a pressure roller 134 placed opposite to the fixation roller 132 via the fixation belt 133. The paper P supplied to the fixation part 130 is subject to the fixation treatment upon being subject to the heat from the fixation belt 133 while passing through between the pressure roller 134 and the high temperature fixation belt 133. The color-printed paper P that was subject to the fixation treatment passes through the paper discharge transport path 114 extending from the upper part of the fixation part 130, and is discharged toward the paper discharge tray 151 of the paper discharge part 150.
The developer storage part 220 is configured from two adjacent developer storage chambers 250, 260 extending in the longitudinal direction of the development device 200, and the developer storage chambers 250, 260 are mutually partitioned in the longitudinal direction with a partition plate 270 formed integrally with the development vessel 210, but both ends thereof in the longitudinal direction are in mutual communication. Moreover, a screw feeder 280, 290 for agitating the developer, based on rotation, is rotatably mounted on each developer storage chamber 250, 260. With the screw feeders 280, 290, since the rotating directions are set in mutually reverse directions, the developer is agitated and transported between the developer storage chamber 250 and the developer storage chamber 260. Based on this agitation, the magnetic body toner and the nonmagnetic carrier are mixed, and the toner is thereby charged.
The development roller 230 is disposed so as to extend in the longitudinal direction of the development device 200, and is able to rotate in the counterclockwise direction in
The developer regulating blade 240 is used for regulating the layer thickness of the developer layer which was caused to magnetically adhere to the outer peripheral surface 300 of the development roller 230. The developer regulating blade 240 is a plate member made of a magnetic material that extends along the longitudinal direction of the development roller 230, and is supported at the appropriate location of the development vessel 210.
Moreover, the developer regulating blade 240 includes, as shown in
The developer with a regulated layer thickness is carried toward the photoreceptor drum 121 pursuant to the rotation of the development roller 230, and adheres to the electrostatic latent image on the photoreceptor drum 121 based on the potential difference between the development bias applied to the development roller 230 and the drum bias applied to the photoreceptor drum 121. A toner image is thereby formed on the photoreceptor drum 121.
The magnet roll of the development roller 230 is formed with, in addition to the pumping pole 310, a regulating pole 320 at a position which is opposite to the layer thickness regulating surface 350 of the developer regulating blade 240. Accordingly, the developer regulating blade 240 formed from a magnetic material is magnetized with the regulating pole 320 of the development roller 230, and a magnetic path is formed between the layer thickness regulating surface 350 of the developer regulating blade 240 and the regulating pole 320; that is, in the regulatory gap G. Note that the pumping pole 310 and the regulating pole 320 are formed across the of approximately the same longitudinal direction length as the development roller 230.
A magnet member 330 is disposed further upstream than the developer regulating blade 240 when viewed from the rotating direction of the development roller 230. The developer regulating blade 240 includes an upstream surface 360 facing the upstream side of the rotating direction, and the magnet member 330 is connected to such upstream surface 360. The magnet member 330 is a plate-shaped member which extends in the longitudinal direction of the development device 200 along the developer regulating blade 240.
The magnet member 330 includes a tip part 370 extending toward the development roller 230, and the tip part 370 is formed with a magnetic pole of the same polarity as the regulating pole 320. Based on the magnetic field generated by the magnet member 330, the magnetic flux density of the magnetic field (magnetic path) generated between the developer regulating blade 240 and the regulating pole 320 will increase.
Moreover, the tip part 370 of the magnet member 330 has an opposing surface 380 which is opposite to the development roller 230. The thickness of the magnet member 330 in the opposing surface 380 is defined by the rotating direction of the development roller 230. The opposing surface 380 and the layer thickness regulating surface 350 of the developer regulating blade 240 are set to be an approximately flush state. Consequently, step is not formed between the opposing surface 380 and the layer thickness regulating surface 350.
A transport amount regulating member 340 (second regulating member) is disposed further upstream than the magnet member 330 when viewed from the rotating direction of the development roller 230. The transport amount regulating member 340 has the approximately same width size as the longitudinal direction length of the development roller 230, and is a plate-shaped member formed from a nonmagnetic material such as resin. The transport amount regulating member 340 includes a base end part 400 connected to the upstream surface 390 of the magnet member 330 when viewed from the rotating direction of the development roller 230, and a main body part 410 extending from the base end part 400 to the upstream side in the rotating direction of the development roller 230 and along the outer peripheral surface 300 of the development roller 230.
The main body part 410 has a flat surface (hereinafter referred to as the “transport amount regulating surface 420”) opposite to the outer peripheral surface 300 of the development roller 230. The main body part 410 is set to gradually become separated from the development roller 230 as it heads toward the upstream side of the rotating direction. In other words, the transport amount regulating surface 420 of the main body part 410 is set so that the space S between the transport amount regulating surface 420 and the outer peripheral surface 300 of the development roller 230 gradually becomes larger as it heads toward the upstream side of the rotating direction of the development roller 230. The transport amount regulating member 340 regulates the transport amount of the developer that is transported toward the developer regulating blade 240 based on the transport amount regulating surface 420.
Nevertheless, it is not desirable to unnecessary expand the space S, and the transport amount regulating surface 420 is set to form a predetermined angle (hereinafter referred to as the “regulating angle α”) on a side of approaching the development roller 230 relative to the layer thickness regulating surface 350 of the developer regulating blade 240. As a result of suitably setting the regulating angle α, it is possible to adjust the size of the space S between the transport amount regulating surface 420 and the outer peripheral surface 300 of the development roller 230. As a result of suitably setting the size of the space S, the transport amount of the developer that is transported to the developer regulating blade 240 is set. Note that the transport amount regulating surface 420 does not necessarily have to form the predetermined regulating angle α relative to the layer thickness regulating surface 350, and, as shown in
With the development device 200 configured as described above, the developer is regulated as follows. Specifically, the developer which was caused to magnetically adhere to the outer peripheral surface 300 of the development roller 230 from the developer storage chamber 250 based on the pumping pole 310 gradually approaches, as shown with arrow A, the transport amount regulating surface 420 of the transport amount regulating member 340 pursuant to the rotation of the development roller 230. Although the developer is transported to the space S between the transport amount regulating surface 420 and the outer peripheral surface 300 of the development roller 230, the space S becomes narrower as its heads toward the downstream side of the rotating direction of the development roller 230. Thus, apart of the developer that is being transported is gradually pushed back in a direction (arrow B) that is opposite to the rotating direction (counterclockwise direction in
Thus, the developer is transported toward the developer regulating blade 240 in an amount that is affected by the magnetic field generated between the regulating pole 320 and the developer regulating blade 240. The layer thickness of the developer layer (so-called magnetic brush layer) is thereby regulated with the developer regulating blade 240. Moreover, unlike the conventional configuration where the transport amount of the developer that is transported to the developer regulating blade is considerably more than the amount of the developer that passes through the regulatory gap, it is possible to inhibit the accumulation of the developer in a range around the developer regulating blade 240 that is not affected by the magnetic field. Consequently, it is possible inhibit the deterioration of the developer caused by the foregoing accumulation. In the second embodiment, the transport amount regulating member 34 functions as the deterioration suppressing part.
Moreover, since the magnet member 330 with a magnetic pole of the same polarity as the regulating pole 320 is disposed on the upstream side of the developer regulating blade 240 when viewed from the rotating direction of the development roller 230, it is possible to increase the magnetic flux density of the magnetic field that is generated between the developer regulating blade 240 and the regulating pole 320 based on the magnetic field generated by the magnet member 330. Thus, the range that is affected by the magnetic field between the developer regulating blade 240 and the regulating pole 320 will increase, and the distance; that is, the regulatory gap G between the developer regulating blade 240 and the development roller 230 can be increased. It is thereby possible to stably transport the developer and alleviate the stress that works on the developer when it is regulated by the developer regulating blade 240.
Moreover, according to the development device 200, since it is possible to adjust the size of the space S between the transport amount regulating surface 420 and the outer peripheral surface 300 of the development roller 230 as a result of suitably setting the regulating angle α, the amount of the developer to the transported toward the developer regulating blade 240 can be easily set.
In addition, according to the development device 200, since the magnet member 330 is connected to the upstream surface 360 of the developer regulating blade 240, no gap is formed between the magnet member 330 and the upstream surface 360 which will allow the accumulation of the developer. Moreover, since the layer thickness regulating surface 350 of the developer regulating blade 240 and the opposing surface 380 of the magnet member 330 are set to be approximately flush, no step is formed between the layer thickness regulating surface 350 and the opposing surface 380 which will allow the accumulation of the developer. It is thereby possible to further stabilize the transport amount of the developer to be transported toward the developer regulating blade 240.
In addition, according to the development device 200, since the transport amount regulating member 340 is formed from a nonmagnetic material such a resin, the developer that is transported toward the developer regulating blade 240 in a charged state will not adhere easily to the transport amount regulating surface 420 when the transport amount thereof is regulated with the transport amount regulating surface 420.
Experiment III that was conducted using the development device 200 is now explained. In Experiment III, how the transport amount (mg/cm2) of the developer layer (magnetic brush layer) that passed through the regulatory gap G changes upon changing the size of such regulatory gap G. As the targets of the experiment, Examples 1 to 4 and Comparative Examples 1 to 6 which mutually have a different regulating angle α of the transport amount regulating surface 420, thickness of the magnet member 330, magnetic force of the magnet member 330, and size of step between the layer thickness regulating surface 350 and the opposing surface 380 were used. The setting conditions of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in
Moreover, with Experiment III, a development roller 230 subject to blast treatment was used, and a developer containing a toner with an average particle size of 6.8 μm and T/C (ratio of toner to carrier) of 11% and a carrier with an average particle size of 35 μm, and saturation magnetization of 60 emu/g was used. The transport amount of the developer after operating the respective development devices of Examples 1 to 4 and Comparative Examples 1 to 6 for a predetermined period of time was measured. The results are shown in
As shown in
With Comparative Example 3, 4 and 6 which used the developer regulating blade 240 and the magnet member 330, the transport amount of the developer was suppressed at 20 mg/cm2 or less even if the regulatory gap G was enlarged, but lacked stability in relation to changes in the regulatory gap G. Moreover, with Comparative Example 5, the restraint of the developer caused by the developer regulating blade 240 became too strong and it was not possible to form a magnetic brush layer.
Meanwhile, as shown in
This application is based on Japanese Patent application serial Nos. 2009-289332, 2009-289476 and 2010-093073 filed in Japan Patent Office on Dec. 21, 2009 and Apr. 14, 2010, the contents of which are hereby incorporated by reference.
Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention hereinafter defined, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2009-289332 | Dec 2009 | JP | national |
2009-289476 | Dec 2009 | JP | national |
2010-093073 | Apr 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4386577 | Hosono et al. | Jun 1983 | A |
4387664 | Hosono et al. | Jun 1983 | A |
4421057 | Hosono et al. | Dec 1983 | A |
4458627 | Hosono et al. | Jul 1984 | A |
4887131 | Kinoshita et al. | Dec 1989 | A |
RE34724 | Hosono et al. | Sep 1994 | E |
6021295 | Ochiai et al. | Feb 2000 | A |
20080181676 | Yamagishi et al. | Jul 2008 | A1 |
20110064484 | Wada et al. | Mar 2011 | A1 |
20110064485 | Ojima et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
59-8831 | Feb 1984 | JP |
2003-255710 | Sep 2003 | JP |
2005-148413 | Jun 2005 | JP |
2005-189753 | Jul 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20110150539 A1 | Jun 2011 | US |