The present application is related to, claims priority from and incorporates by reference Japanese Patent Application No. 2011-215376, filed on Sep. 29, 2011.
The present invention relates to a development device and an image forming apparatus. For example, the present invention may be applied in the image forming apparatus that forms an image on a medium and the development device that configures the image forming apparatus.
In a conventional image forming apparatus, a development device forms a toner image on a medium. The medium on which the unfixed toner image is formed is carried to a fuser. The fuser fixes the unfixed toner image on the medium.
The medium from the development device can be curled since a pressure is applied to the medium by various rollers. Accordingly, the medium cannot be correctly carried to a fuser and thereby the unfixed toner image can be scraped, or a jam of the medium can occur prior to the fixture of the toner image.
Japanese Laid-Open Patent Application Nos. H11-338290 and 2009-7080 describe a guide means that correctly guides a curled medium to a fuser while the medium is carried from a development device to the fuser.
The above-discussed Japanese Laid-Open Patent Application Nos. H11-338290 and 2009-7080 recite that the medium, which is to be carried to the fuser, is guided so that the medium is correctly carried to the fuser.
However, even immediately after the medium has been exited from the development device, the curled medium touches a housing of the development device on the medium exit side. Thereby, the unfixed toner image on the medium surface can be scraped.
For example, degrees of the curls on media significantly differ depending on qualities of the media used. For example, in a case when a recycled sheet or special sheet is used as media, a large curl can be generated. When a medium having such curl is exited from the development device, the medium can contact the housing of the development device.
In such a case, when the toner image has been transferred to the medium by a transfer part and when the medium has been exited from the development device, the curled medium surface touches the housing that is on the downstream side of the exit and thereby an image scrape can occur, meaning that the unfixed toner image on the medium surface is scraped.
Therefore, one of objects of the present invention is to provide a development device and an image forming apparatus that prevent a curled medium from contacting a housing of the development device on a medium exit side and an unfixed toner image on the medium surface from being scraped after the medium has been exited from the development device.
Considering the above drawbacks, a development device of the invention includes a development part configured to develop a developer image on a surface of an electrostatic latent image carrier based on an image signal, a transfer part configured to transfer the developer image to a medium; and a guide part configured to regulate a contact of the medium, on which the developer image has been transferred and been exited, to a housing of the development part, and to guide the medium to a carrying path.
In another view of the invention, an image forming apparatus is provided, including a development part configured to develop a developer image on a surface of an electrostatic latent image carrier based on an image signal, a transfer part configured to transfer the developer image to a medium, a fusion part configured to fix the developer image that has been transferred to the medium on the medium, and a guide part configured to regulate a contact of the medium, on which the developer image has been transferred and been exited, to a housing of the development part, and to guide the medium to a carrying path to the fusion part.
According to the present invention, the curled medium is prevented from contacting the housing of the development device on the medium exit side after the medium has been exited from the development device, and the unfixed toner image (developer image) on the medium surface from being scraped.
A development device and an image forming apparatus according to a first embodiment of the present invention are explained in detail below with reference to the drawings.
(A-1-1) Configuration of Image Forming Apparatus
In
The development device 110 forms a toner image (developer image) on a photosensitive drum 9 (electrostatic latent image carrier) based on image data, and transfers the toner image thereon to a medium 203. As shown in
An image forming part 120 includes the development device 110 and the image fuser 20 (fusion part) that includes the heat application roller 21 and the pressure application roller 22.
In
The controller 130 is, for example, a device that is configured to include a microcomputer and the like. The controller 130 performs a power supply control to respective configuration elements, a motor drive control for rotating various rollers, a suction instruction of the medium 203 to the medium carrying device 30 and a print control based on sensor information from various sensors (for example, a medium exit sensor, a passage sensor, an ejection sensor) and the like.
In the image forming apparatus 100, when the image data is given from the host device, the image data is stored in a memory. Then, due to the control by the controller 130, the sheet supply roller 201 rotates and the media 203 put on the cassette part 202 are supplied.
At this time, while the sheet supply roller 201 supplies the media 203, the photosensitive drum 9, the transfer roller 8, the ejection rollers 216, a fan 301 (medium suction part) included in the medium carrying device 30, and the heat application roller 21 and the pressure application roller 22 included in the image fuser 20 start to rotate due to the control by the controller 130.
The media 203 that are supplied by the sheet supply roller 201 are given to the separation frame part 204. The separation frame part 204 separates each of the media 203. Each medium 203 is carried toward the downstream of a medium carrying path by the rotation of the sheet supply roller 201. Here, in the medium carrying path of the medium 203, the cassette 202 side is the upstream, and the stacker 220 side is the downstream.
The medium 203 that has been separated by the separation frame part 204 is sent to two pairs of the carrying rollers 207. The medium 203 is carried by the rotation of the lower pair of the carrying rollers 207 of the two pairs of the carrying rollers 207. The passage sensor lever 208 detects arrival of a leading edge of the carried medium 203.
The development unit 10 forms on the photosensitive drum 9 the toner image of the image that is to be formed onto the medium 203 when the medium 203 is detected by the passage sensor lever 208. That is, the development unit 10 forms the toner image on the surface of the photosensitive drum 9 based on the image date stored in the memory.
When the medium 203 that is carried by the carrying rollers 207 is given to the development unit 10, the photosensitive drum 9 and the transfer roller 8 rotate, and the toner image on the surface of the photosensitive drum 9 is transferred to the medium 203 in the development device 110.
When the toner image is transferred to the medium 203 in the development device 110, the medium 203 is carried to the image fuser 20 on the downstream side of the carrying path by the medium carrying device 30. For example, the medium carrying device 30 includes a medium suction part such as the fan 301 and the like. The curled medium 203 is sucked into the carrying path by a suction force of the medium suction part.
In the image fuser 20, a fix process is performed on the carried medium 203 by the heat application roller 21 and the pressure application roller 22.
After the fusion process has been performed by the image fuser 20, the medium 203 is carried by the rotating ejection rollers 216, and is ejected on the stacker 220 provided on the upper surface of the image forming apparatus 100. Thereby, the printing process in the image forming apparatus 100 ends.
(A-1-2) Configuration of Development Device 110
Next, a configuration of the development device 110 is explained with reference to the drawings.
The guide plate 1 is a plate that contacts a horizontal contact part 12 of the housing 11 on the carrying downstream side. In a case that the curled medium 203 is exited from the photosensitive drum 9 and the transfer roller 8, the guide plate 1 contacts the leading edge of the curled medium 203 to regulate the medium 203 not to contact the housing 11. Thereby, the conventional scrape of the image that occurs when the medium 203 that intensely curled in the upper direction contacts the housing 11 is prevented.
Various methods may be applied in installation methods of the guide plate 1 as long as the curled medium 203 is prevented from contacting the housing 11. For example, the methods may be applied as shown in
For example, as shown in
In addition, materials of the guide plate 1 are not especially limited, and may be resin members, for example, polyester, or polyethylene terephthalate (PET) and the like, or may be metal materials.
Moreover, as shown in
In addition, a length of the guide plate 1 in the medium carrying direction is a length to the extent that the leading edge of the medium 203 is removed from the guide plate 1 by the weight of the medium 203. For example, in the example of the first embodiment, when the length of the guide plate 1 in the medium carrying direction is defined as L1, the length L1 is preferably approximately 10 mm to 15 mm.
Next, an operation of the development device 110 in the image forming apparatus 100 according to the first embodiment is explained with reference to the drawings.
In
In
When the medium 203 is sandwiched and carried by the photosensitive drum 9 and the transfer roller 8 and the curl has been generated on the medium 203, the leading edge of the curled medium 203 contacts a portion 11a in the housing 11 of the development unit 10 that covers the photosensitive drum 9 (see
Thereafter, when the medium 203 has been exited from the photosensitive drum 9 and the transfer roller 8, the curled leading edge of the medium 203 moves while scraping the bottom part of the housing 11 of the development unit 10 (see
Furthermore, as the exit of the medium 203 proceeds, the curvature of the medium 203 becomes larger due to the weight of the medium 203. Thereby, the portion of the medium 203 that has contacted the housing 11 separates from the housing 11, and the medium 203 is exited as is (see
As mentioned above, in the conventional image forming apparatus, once the curl occurred, portions any other than the leading edge of the medium 203 contacts the bottom of the housing 11. As a result, the image on the portions, which has been scraped with the housing 11, is scraped.
In
When the medium 203 is sandwiched and carried by the photosensitive drum 9 and the transfer roller 8 and the curl has been generated on the medium 203, the curled leading edge of the medium 203 contacts the guide plate 1 (see
Thereafter, when the medium 203 has been exited from the photosensitive drum 9 and the transfer roller 8, while the curled leading edge of the medium 203 scrapes the guide plate 1, the medium 203 moves in the downstream direction (see
Furthermore, as the exit of the medium 203 proceeds, the curvature of the medium 203 becomes larger due to the weight of the medium 203. Also, in this time, the leading edge of the medium 203 moves simultaneously with contacting the guide plate 1 (see
In this time, since the surface of the medium 203 is concave due to the curl, only the leading edge of the medium 203 contacts the guide plate 1, the portion on the surface of the medium 203 on which the image is transferred does not contact the guide plate 1.
Then, as the curled leading edge of the medium 203 moves along the guide plate 1, the curvature of the medium 203 becomes larger due to the weight of the medium 203. As a result, the leading edge of the medium 203 that has contacted the guide plate 1 separates from the guide plate 1 and the medium 203 is exited as it is (see
As mentioned above, according to the first embodiment, the leading edge of the medium is received by the surface of the guide plate and the medium moves to the carrying direction by providing the guide plate on the medium exit side of the housing of the development unit. As a result, according to the first embodiment, even when the curled medium is exited from the development device, a phenomenon where the medium surface contacts the housing of the development device and thereby the image scrape occurs is prevented.
In addition, according to the first embodiment, by making a length of the guide plate in the medium carrying direction a length to the extent that the leading edge of the medium separates the guide plate 1 by the weight of the medium, the transfer surface does not contact the guide plate while the leading edge of the medium is received by the surface of the guide plate, since the transfer surface of the medium is concave due to the curl. Accordingly, the image scrape is prevented.
Next, a development device and an image forming apparatus according to a second embodiment of the present invention are explained with reference to the drawings.
A difference of the second embodiment from the first embodiment is that lengths of guide plates in the medium carrying direction are extended from the development unit to the vicinity of the image fuser. Other configurations are the same as those of the first embodiment. Thereafter, characteristic configurations of the second embodiment are mainly explained.
In the
A guide plate 2 is provided so as to contact the contact part 12 on the carrying downstream side of the housing 11 of the development unit 10. The guide plate 2 only needs contact the contact part 12 in the same manner as the first embodiment. For example, similar to the first embodiment, the guide plate 2 may be adhered to the contact part 12 by adhesion members and the like. The guide plate 2 may also be configured removable from the contact part 12 by providing fitting parts and the like, for example.
The guide plate 2 guides the carrying of the medium 203 from the vicinity of an exit position in the development unit 10 to the vicinity of an entrance position in the image fuser 20. By extending the guide plate 2 to the vicinity of the entrance position in the image fuser 20, a curled medium 203 is accurately carried to the image fuser 20. In addition, the guide plate 2 may be provided so that an end part of the guide plate 2 contacts the housing of the image fuser 20.
The length L4 of the guide plate 2 in the carrying direction depends on the positional relationship between the development unit 10 and the image fuser 20, and may be, for example, approximately 180 mm to 220 mm.
In addition, the guide plate 2 is provided so that a carrying space (space configured by the guide plate 2 and the upper surface of the medium carrying device) of the medium 203 widens along the carrying direction (that is, a direction from the upstream to the downstream).
For example, in the example in the
In addition, in the example in the
Next, an operation of the development device 110 in the image forming apparatus 100 according to the second embodiment is explained with reference to the drawings.
The operation of the development device 110 according to the second embodiment is basically the same as that of the first embodiment. The movement of the medium 203 provided with the guide plate 2 of the second embodiment is mainly explained below.
A difference of the image forming part 120 shown in
The curled medium 203 can be exited from the development unit 10. At this time, a large curl may be generated on the entire medium. For example, there is a case that the medium 203, such as a recycled sheet or special sheet and the like, is used, on which different fabrication processes are performed on the back surface and the front surface on the sheet. Since the stretch of the back surface and the front surface are significantly different, a curl may be generated on the entire medium.
In such a case, the leading edge of the medium does not falls by the weight of the medium 203 and the medium 203 can move with the leading edge contacting the guide plate.
In a case that guide plate 3 shown in
However, as shown in
On the other hand, in the case that the guide plate 2 shown in
As mentioned above, according to the second embodiment, by connecting the upper parts of the carrying path of the medium from the development unit to the image fuser and widening the carrying path from the upstream to the downstream of the carrying of the medium, the image scrape on the entire medium on which the large curl has generated is prevented.
In the above-discussed first and second embodiments, the guide plates that guide a carrying path from the development device that includes the photosensitive drum and the transfer roller to the image fuser are exemplified. However, the above-mentioned guide plates may be applied in devices/method in which the surfaces of the media are not scraped.
In the above-discussed first embodiment, it is disclosed that the guide plate as a guide part is provided as an independent part to the housing of the development unit. Herein, the guide plate extends straight along the carrying direction of the medium. It is noted that providing the guide part as a different part from the housing bring an advantage that is an easy adjustment of the distance between the guide part and the rollers. However, as a modified embodiment, a shape of the contact portion of the housing (for example, 11a in
In the image forming apparatus shown in the above-discussed first and second embodiments may be any of various devices such as printers, multifunction peripherals (MFP) and the like that form an image on the medium, for example.
Regarding the guide plate shown in the above-discussed second embodiment, the guide plate that extends in the obliquely upward direction in the delivery direction is exemplified as one example of the case that the guide plate is disposed so that the carrying space widens along the carrying direction. The configurations of the guide plates are not limited to such a configuration. For example, as another configuration, a guide plate may have a curved shape that is a downward concave by a predetermined curvature.
Number | Date | Country | Kind |
---|---|---|---|
2011-215376 | Sep 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5546161 | Sakai et al. | Aug 1996 | A |
5752149 | Yuza et al. | May 1998 | A |
20040190935 | Sato | Sep 2004 | A1 |
20060182479 | Miyake | Aug 2006 | A1 |
20090003910 | Kobayashi | Jan 2009 | A1 |
20090285599 | Isokawa | Nov 2009 | A1 |
20090297242 | Kanematsu | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
63204283 | Aug 1988 | JP |
02-082269 | Mar 1990 | JP |
04034482 | Feb 1992 | JP |
05323814 | Dec 1993 | JP |
06342232 | Dec 1994 | JP |
07-191511 | Jul 1995 | JP |
07-237777 | Sep 1995 | JP |
08-006328 | Jan 1996 | JP |
08006328 | Jan 1996 | JP |
11-338290 | Dec 1999 | JP |
2002-072696 | Mar 2002 | JP |
2009-007080 | Jan 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20130084118 A1 | Apr 2013 | US |