The present disclosure relates to an image forming apparatus and a development device and a cartridge used for the image forming apparatus. Particularly, the present disclosure relates to an electrophotographic image forming apparatus employing an electrophotographic method and a development device and a cartridge used for the electrophotographic image forming apparatus.
Conventionally, there have been widely known replaceable constituent elements such as a development cartridge (including a development unit) and a process cartridge (including a development unit and a photosensitive drum), which can be attached to and detached from an apparatus main body of an electrophotographic image forming apparatus.
Further, a toner cartridge capable of replenishing toner to a toner containing unit of the development cartridge, which can be attached (connected) to the development cartridge (or the process cartridge) has been known (see Japanese Patent Application Laid-Open No. 2016-156955).
Specifically, according to a configuration discussed in Japanese Patent Application Laid-Open No. 2016-156955, toner supplied to a toner containing unit from a toner cartridge via a replenishing port is agitated and mixed with toner already existing in the toner container unit by an agitation member arranged in the toner containing unit. The agitation member includes a rotating agitation shaft and a sheet fixed to the agitation shaft at one end, having the other end as a free end. In order to improve the conveyance performance and the agitation performance, the agitation member is arranged so that a free end of the sheet kept in a warped state can rub against the inner wall face of the toner containing unit.
However, in the configuration discussed in Japanese Patent Application Laid-Open No. 2016-156955, when toner is supplied to the development cartridge from the toner cartridge, toner within the toner containing unit may flow back to the toner cartridge via the replenishing port because of elastic deformation of the sheet caused by rotation of the agitation member. This may result in lowering of replenishing efficiency of toner to the development cartridge (or the process cartridge) immediately after replacement of the toner cartridge.
The present disclosure is directed to a development device, a cartridge, and an image forming apparatus, which can replenish a developer containing chamber with developer, reduce backflow of developer from the developer containing chamber to a replenishing port, and improve replenishing efficiency.
According to an aspect of the present disclosure, a development device includes a development frame body including a development chamber in which a developer bearing body for bearing developer is housed, a developer containing chamber for storing developer to be supplied to the development chamber, and a replenishing port through which the developer containing chamber can be replenished with developer from outside, the developer containing chamber having a communication port for communicating with the development chamber, and an agitation member housed in the developer containing chamber and including a rotatable shaft portion and an elastically-deformable sheet portion, one end of the sheet portion being fixed to the shaft portion as a fixed end, and the other end of the sheet portion being a free end, wherein a developer replenishing device, for replenishing developer to the developer containing chamber via the replenishing port, can be attached to and detached from the development frame body, wherein the development frame body for constructing the developer containing chamber includes a concave portion formed by projecting from an inner wall face of the development frame body, in a direction along an upward direction of a gravitational direction in an in-use orientation, the concave portion being located at a downstream side of the communication port and an upstream side of the replenishing port in a rotation direction of the agitation member, wherein the concave portion and the replenishing port overlap with each other at least at one part in an axis direction of the shaft portion, when viewed in a direction orthogonal to the axis direction of the shaft portion, wherein a relationship R1≤L is satisfied when a free length from the fixed end to the free end of the sheet portion is L and a distance from a rotation center of the shaft portion to the inner wall face is R1, and wherein slit portions are formed in the free end of the sheet portion, so that a section of the free end of the sheet portion is able to enter the concave portion when the agitation member is rotated.
According to another aspect of the present disclosure, a development device includes a development frame body including a development chamber in which a developer bearing body for bearing developer is housed, a developer containing chamber for storing developer to be supplied to the development chamber, and a replenishing port through which the developer containing chamber can be replenished with developer from outside, the developer containing chamber having a communication port for communicating with the development chamber, and an agitation member, housed in the developer containing chamber and including a rotatable shaft portion and an elastically-deformable sheet portion, one end of the sheet portion being fixed to the shaft portion as a fixed end, and the other end of the sheet portion being a free end, wherein a developer replenishing device, for replenishing developer to the developer containing chamber via the replenishing port, can be attached to and detached from the development frame body, wherein the development frame body for constructing the developer containing chamber includes a convex portion formed by projecting from an inner wall face of the development frame body, in a direction along a downward direction of a gravitational direction in an in-use orientation, the convex portion being located at a downstream side of the communication port and an upstream side of the replenishing port in a rotation direction of the agitation member, wherein the convex portion and the replenishing port overlap with each other at least at one part in an axis direction of the shaft portion, when viewed in a direction orthogonal to the axis direction of the shaft portion, wherein a relationship R4<R1≤L is satisfied when a free length from the fixed end to the free end of the sheet portion is L, a distance from a rotation center of the shaft portion to the inner wall face is R1, and a distance from the rotation center of the shaft portion to a leading end of the convex portion is R4, and wherein, in the axis direction, a first slit portion is formed in the sheet portion at a position corresponding to one end portion of the replenishing port, and a second slit portion is formed in the sheet portion at a position corresponding to the other end portion of the replenishing port.
Further, a cartridge according to the present disclosure includes the development device, and a developer replenishing device for replenishing developer to the developer containing chamber, which can be attached to and detached from the development frame body.
Furthermore, an image forming apparatus according to the present disclosure includes the development device or the cartridge, and a transfer member.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An electrophotographic image forming apparatus according to the present invention (hereinafter, simply called “image forming apparatus”) will be described with reference to the appended drawings.
In addition, the below-described exemplary embodiments are merely examples illustratively describing the present disclosure, and a scope of the present disclosure is not intended to be limited to sizes, materials, shapes and a relative positional relationship of the constituent elements described below unless such specific limitations are described in particular.
Herein, the electrophotographic image forming apparatus is an apparatus which forms an image on a recording medium by employing an electrophotographic image forming method. Therefore, electrophotographic copying machines, electrophotographic printers (such as laser beam printers and light-emitting diode (LED) printers), facsimile apparatuses, and word processors are given as the examples of the electrophotographic image forming apparatus.
Further, a development device used for the image forming apparatus is a device including at least a development unit. The development device may be formed into a cartridge that can be attached to or detached from a main body of the electrophotographic image forming apparatus. Further, the development device may also include a toner cartridge for replenishing toner to the development device, which can be attached to and detached from a frame body of the development device.
A process cartridge that constitutes a part of the image forming apparatus is configured of a charging unit, a development unit (or a cleaning unit), and an electrophotographic photosensitive drum, integrated into a form of a cartridge that can be attached to and detached from a main body of the electrophotographic image forming apparatus. Further, a process cartridge is configured of at least any one of a charging unit, a development unit, and a cleaning unit, and an electrophotographic photosensitive drum, integrated into a form of a cartridge that can be attached to and detached from a main body of the electrophotographic image forming apparatus. Furthermore, a process cartridge is configured of at least a development unit and an electrophotographic photosensitive drum, integrated into a form of a cartridge that can be attached to and detached from a main body of the electrophotographic image forming apparatus. In addition, a process cartridge can be a unit fixed to the image forming apparatus.
Hereinafter, an image forming apparatus according to a first exemplary embodiment of the present disclosure will be described with reference to
First,
As illustrated in
<Image Forming Apparatus>
Hereinafter, an image forming apparatus 100 and image forming operation will be described with reference to
As illustrated in
Specifically, the charging roller 2 serving as a charging unit abuts on the photosensitive drum 1 serving as an image bearing body to apply charging bias thereto, so that a surface of the photosensitive drum 1 is charged at a predetermined dark portion potential Vd. In the present exemplary embodiment, direct-current (DC) bias is applied by using a negatively-charged photosensitive body.
Then, a laser emitting device LR serving as an exposure unit exposes the surface of the photosensitive drum 1 with light, so that an electrostatic latent image is formed thereon.
The development device 3 includes a development frame body 30A. Further, the development frame body 30A mainly includes a first hopper unit 4 (developer containing chamber) and a development unit 5 (development chamber). The development frame body 30A further includes a development opening 15 (communication port) and a supply port 17 (replenishing port) described below.
In the development device 3, developer (toner) contained in the substantially cylindrical-shaped first hopper unit 4 is supplied to and borne on the developer bearing body 6, and a developer regulation member 7 regulates the developer to a predetermined layer thickness and charging amount. In addition, the developer bearing body 6 and the developer regulation member 7 constitute the development unit 5 (development chamber).
Then, development bias is applied to the developer bearing body 6, so that the electrostatic latent image formed on the photosensitive drum 1 is developed thereby. The first hopper unit 4 includes an agitation member 8 which conveys toner to the development unit 5 while agitating (mixing) the toner within the first hopper unit 4.
In the present exemplary embodiment, the agitation member 8 is configured of a rotating shaft portion 81 and a sheet-like portion 82 (i.e., sheet portion), fixed to the rotating shaft portion 81 (rotating shaft) at one end in a breadthwise direction (fixed end 821), having the other end as a free end 822.
Further, the developer bearing body 6 is configured of an aluminum base pipe having an elastic layer on a surface thereof and a magnetic roller (not illustrated) disposed inside the aluminum base pipe. An outer surface of the elastic layer of the developer bearing body 6 is in contact with the photosensitive drum 1.
The developer regulation member 7 is configured of a urethane rubber material fixed to a supporting sheet metal, and abuts on the developer bearing body 6. In addition, the toner used for the image forming apparatus according to the present exemplary embodiment is single-component magnetic developer having negative charging polarity.
A transfer member 9 (recording medium) such as a sheet of paper is picked up by a pick-up unit 10 and conveyed to an area (transfer portion 11A) where the transfer roller 11 serving as a transfer unit and the photosensitive drum 1 face one another.
The electrostatic latent image formed on the photosensitive drum 1 is developed with developer supplied from the developer bearing body 6, so that a toner image is formed thereon. The formed toner image is transferred to the transfer member 9 at the transfer portion 11A. The transfer member 9 on which the toner image is transferred passes through the fixing roller 12, so that a fixed image is formed on the transfer member 9.
On the other hand, unused toner is collected from the photosensitive drum 1 by a cleaning member 13 configured of a blade, and stored in a cleaning container 14.
The supply port 17 is arranged on the above-described first hopper unit 4 (developer containing chamber) at a position opposite to the development opening 15 (communication port) connected to the development unit 5 (development chamber). A second hopper unit 16 (developer replenishing device) is connected to the first hopper unit 4 via the supply port 17. Further, the agitation member 8 is arranged inside the first hopper unit 4, and an agitation member 18 is arranged inside the second hopper unit 16.
In the present exemplary embodiment, the second hopper unit 16 (developer replenishing device) is provided as a toner cartridge that can be attached to and detached from the first hopper unit 4 (development frame body 30A). With this configuration, the second hopper unit 16 can be replaced individually.
In addition, the second hopper unit 16 may be one of constituent elements of the development device 3, or may be an element separate from the development device 3. Similarly, the second hopper unit 16 may be one of constituent elements of a process cartridge PC, or may be an element separate therefrom.
For example, in the present exemplary embodiment, the elements excluding the second hopper unit 16, i.e., the first hopper unit 4, the development unit 5, the photosensitive drum 1, the cleaning member 13, and the cleaning container 14, are integrated into the process cartridge PC.
Only the process cartridge PC (or the development device 3) can be replaced when it is necessary to replace a member such as the photosensitive drum 1, the developer bearing body 6, or the developer regulation member 7, having the lifetime longer than that of the toner cartridge.
As illustrated in
In the present exemplary embodiment, a user is prompted to replace the toner cartridge based on a detection result acquired by the remaining toner amount detection mechanism. With this configuration, it is possible to reduce defective image formation caused by shortage of toner and deterioration of components.
<Configuration of Toner Cartridge>
Next, a toner cartridge 16A configured of the second hopper unit 16 of the present exemplary embodiment will be described in detail with reference to
Specifically, the agitation member 18 arranged on the toner cartridge 16A is activated, so that toner inside the toner cartridge 16A is supplied to the first hopper unit 4. Further, the first hopper unit 4 and the toner cartridge 16A are connected to each other via the supply port 17.
A width of the supply port 17 in a rotation axis direction A2 of the developer bearing body 6 is expressed as W1.
Further, a width of the developer bearing body 6 in a longitudinal direction of a coating layer 61 coated with toner is expressed as Z.
As illustrated in
In the present exemplary embodiment, based on a detection result of a remaining amount of toner within the first hopper unit 4 acquired by the remaining toner amount detection mechanism, replenishment of toner (i.e., replacement of the toner cartridge) is notified to the user.
After the user performs replacement work to attach a new toner cartridge, the agitation members 8 and 18 are rotated for approximately 20 seconds (i.e., toner replenishment operation), so that a detection result detected by the remaining toner amount detection mechanism exceeds a predetermined value (remaining toner amount).
<Configuration of Agitation Member>
Next, the agitation member 8 arranged on the first hopper unit 4 will be described. Particularly, a positional relationship between a slit portion arranged on the sheet portion 82 of the agitation member 8 and the supply port 17 will be described.
As illustrated in
In the present exemplary embodiment, a partial area between one end portion and the cut Q1 in the rotation axis direction A2, i.e., a section on a side of one end portion, is called a section KS1 of the sheet portion 82. Further, an area between the cut Q1 and the cut Q2, i.e., a central section, is called a section KS2 of the sheet portion 82. Then, an area between the cut Q2 and the other end portion, i.e., a section on a side of the other end portion, is called a section KS3 of the sheet portion 82.
The section KS2 of the sheet portion 82 is positioned on a central portion CT in the axis direction. Therefore, in comparison to the sections KS1 and KS3, the section KS2 is adjacent to the supply port 17 positioned on the central side. Further, a relationship W3>W1 is satisfied when a width of the section KS2 of the sheet portion 82 in the rotation axis direction A2 is W3 and a width of the supply port 17 is W1. Furthermore, the section KS2 of the sheet portion 82 overlaps with the supply port 17 when viewed in a direction A3 orthogonal to the rotation axis direction A2.
<Configuration of Concave Portion>
The concave portion 31 arranged on the first hopper unit 4 will be described.
As illustrated in
Specifically, the concave portion 31 is formed of an inner wall face 40A of the development frame body 30A, projected in a direction G11 along an upward direction G1 of a gravitational direction G in an in-use orientation, at a position downstream of the development opening 15 and upstream of the supply port 17 in a rotation direction A1 of the agitation member 8.
The concave portion 31 and the supply port 17 overlap with each other at least at one part W100 in the axis direction A2 of the rotating shaft portion 81, when viewed in the direction A3 orthogonal to the axis direction A2 of the rotating shaft portion 81.
Further, a relationship R1≤L is satisfied when a free length from the fixed end 821 to the free end 822 of the sheet portion 82 is L and a distance from the rotation center O of the rotating shaft portion 81 to the inner wall face 40A is R1.
The slit portions Q1 and Q2 are formed on the free end 822 side of the sheet portion 82, so that the section KS2 of the free end 822 of the sheet portion 82 can enter the concave portion 31 when the agitation member 8 is rotated.
As illustrated in
When the agitation member 8 is driven rotationally, a warped state of the section KS2 of the sheet portion 82 is changed. A position on the upper side of the first hopper unit 4, immediately before the free end 822 of the agitation member 8 reaches the concave portion 31 (i.e., a position upstream of the concave portion 31), is called a position P1. At the position P1, the sheet portion 82 is in a warped state. However, the warp is released when the sheet portion 82 passes the position P1, and the free end 822 thereof moves from the position P1 to a position P2.
In this state, the sheet portion 82 has entered the inside of the concave portion 31. When the agitation member 8 is further rotated and the free end 822 of the sheet portion 82 passes a position P3 immediately after the free end 822 of the sheet portion 82 has come out from the concave portion 31 (i.e., a position downstream of the concave portion 31), the sheet portion 82 is brought into a warped state again. Then, the sheet portion 82 reaches the supply port 17 in that state.
On the other hand,
As illustrated in
As illustrated in
In the present exemplary embodiment, in the area between the development opening 15 and the position P1 and in the area between the position P3 and the supply port 17, the distance R1 from the rotation center O to the inner wall face 40A is set to be constant. In the present exemplary embodiment, the free length L (rotation radius) is defined by a distance from the rotation center O to the position P2 where the agitation member 8 has a free length L. However, the free length L may be defined as a distance from the fixed end to the free end. In other words, a position of the fixed end can be taken as the rotation center O.
Further, a distance between the top face (bottom face 311) of the concave portion 31 and the rotation center O is greater than the free length L.
On the other hand, when a distance from each of an upstream portion 32 and a downstream portion 33 of the inner wall face adjacent to the concave portion 31 on the upper side of the container to the rotation center O is R1, the distance R1 and the rotation radius (free length) L of the agitation member 8 in a non-warped state satisfy a relationship L>R1.
Further, the width W2 of the concave portion 31 in the rotation axis direction A2 is equal to the width W3 of the section KS2 of the sheet portion 82.
Next, an effect of the present exemplary embodiment will be described by making comparisons between the present exemplary embodiment and comparative examples.
On the other hand,
Specifically, a configuration of the comparative example 1 is different from the present exemplary embodiment in that the concave portion 31 is not arranged on the first hopper unit 4, and the cuts (slit portions) are not formed in the sheet portion 82 of the agitation member 8.
In the configuration of the comparative example 2, although the cuts (slit portions) are arranged in the sheet portion 82, the concave portion 31 is not arranged on the first hopper unit 4.
In the configuration of the comparative example 3, although the concave portion 31 is arranged on the first hopper unit 4, the cuts (slit portions) are not formed in the sheet portion 82.
In addition, a shape of the first hopper unit 4 and the width W1 of the supply port 17 in each of the comparative examples 1 to 3 are similar to those described in the present exemplary embodiment except for the concave portion 31. Further, the comparison example 2 is similar to the present exemplary embodiment in terms of the agitation member 8 having the slit portions, and the comparative examples 1 and 3 are similar to each other in terms of the agitation member 8 without having the slit portions. Then, the comparative example 3 is similar to the present exemplary embodiment in terms of the shape of the concave portion 31.
Hereinafter, configurations will be described in detail with reference to the drawings.
A warped state of the sheet portion 82 when the free end 822 of the sheet portion 82 has reached the upper portion of the container according to each of the present exemplary embodiment and the comparative examples 1 to 3 is illustrated in each of FIGS. 1, 8, 9, and 10.
On the other hand,
Then,
When a notification about replacement is output from the remaining toner amount detection mechanism, the developer bearing body 6 (development sleeve) and the developer regulation member 7 (development blade) abut on each other via toner. At this time, a certain amount of toner also remains in the first hopper unit 4.
As illustrated in
However, as illustrated in
When the sheet portion 82 passes the concave portion 31, the sheet portion 82 is brought into a warped state again. Then, as illustrated inn
On the other hand, in the comparative example 1 illustrated in
It is conceivable that occurrence of “backflow” can be reduced if the supply port 17 is arranged far from the moving range of the agitation member 8. However, collision of toner supplied from the toner cartridge 16A against toner returned by the agitation member 8 may still occur, so that an influence thereof still remains in the replenishing efficiency.
Further, in the comparative example 2 illustrated in
Then, in the comparative example 3 illustrated in
In addition, a configuration of the present exemplary embodiment (comparative example) was evaluated through the following steps 1 to 10.
1. Prepare a process cartridge having a hopper unit and a replaceable toner cartridge that can be attached to and detached from the process cartridge.
2. Execute printing operation, and stop the printing operation when the remaining toner amount detection unit outputs information about replacement of the toner cartridge.
3. Print a solid image (an image of a printing rate of 100%) in the stopped state, and take the printed solid image as a solid image before replacement of a toner cartridge.
4. Measure a weight of the process cartridge in the stopped state. Then, from a difference between the measured weight and a previously-measured weight of an unused (empty) process cartridge, acquire a remaining amount of toner in the process cartridge (mainly the first hopper unit) before replenishment.
5. Measure a weight of a new toner cartridge (a second hopper unit).
6. Replace the toner cartridge with new one, print one solid image immediately after replacement, take out the process cartridge and the toner cartridge, and measure the weights.
7. Attach the process cartridge and the toner cartridge, and print four solid images.
8. Measure the weights of the process cartridge and the toner cartridge after printing five solid images in total.
9. Attach the respective cartridges again, and further print five solid images.
10. Measure the weights of the process cartridge and the toner cartridge after printing ten solid images in total.
With respect to the ten solid images printed immediately before and after replacement, image density was measured by using a spectrodensitometer model 504 from X-Rite Inc.
Next, experiments was conducted by changing a rotation period (the number of fed sheets) after attaching the toner cartridge.
First, a rotation period after attachment of the toner cartridge is set to 20 seconds, and the influence caused by different shapes of the first hopper unit 4 and the sheet portion 82 in each of the first exemplary embodiment and the comparative examples 1 to 3 was checked.
Each of the graphs in
As illustrated in
As described above, according to the configuration of the present exemplary embodiment, after the toner cartridge is replaced, the first hopper unit 4 is efficiently replenished with developer, so that an image can be stably and promptly formed.
Further, as illustrated in
Further, as illustrated in
Further, as illustrated in
A remaining amount of toner in the toner cartridge when a first solid mage (an image of a printing rate 100%) is printed immediately after attachment of the toner cartridge in each of the comparative examples 1 to 3 is greater than that of the present exemplary embodiment. Therefore, it was found that replenishing efficiency in the present exemplary embodiment was superior to the others.
It was also found that a toner decrease rate (i.e., replenishing efficiency) for printing of up to 10 sheets in each of the comparative examples 1 to 3 was more moderate (i.e., lower) than in the present exemplary embodiment.
From the above-described data about transition of density and transition of the remaining amount of toner, it was found that replenishing efficiency of toner of the present exemplary embodiment was higher than that of each of the comparison examples 1 to 3.
In other words, in the present exemplary embodiment, toner can be promptly supplied to the process cartridge immediately after replacement of the toner cartridge. As a result, density of a solid image which has been lowered immediately before replacement can resume promptly, so that high-quality image formation is stably executed.
Next, comparative experiments were conducted with respect to the rotation period of the agitation member 8 after attachment of the toner cartridge to the process cartridge and change of image density.
Specifically, with respect to the cases where the rotation period after attachment of the toner cartridge was 20 sec. (the same condition as the comparative example 1), 60 sec. (comparative example 4), and 120 sec. (comparative example 5), in the configuration of the first hopper unit 4 of the comparative example 1, the present exemplary embodiment (rotation period of 20 sec.) was compared to the comparative examples
Specifically,
In the comparative examples 4 and 5, the rotation period was respectively extended to 60 sec. and 120 sec. from 20 sec., so that transition of density became relatively stable, compared to the comparative example 1. Further, it was found that a result similar to the first exemplary embodiment was acquired with respect to transition of the remaining amount when the rotation period is extended.
In the present exemplary embodiment, the rotation period was 20 sec. However, in the comparative examples 4 and 5, the rotation period was extended by 40 sec. and 100 sec. respectively, so that additional time was required. In comparison to the comparative examples 4 and 5, in the present exemplary embodiment, time necessary for acquiring a first image after replacement of the toner cartridge, having quality as good as that of an image acquired before replacement, can be shortened reliably, and replenishing efficiency is good.
Next, a variation example of the concave portion arranged on the first hopper unit will be described.
First, variation examples of the convex portion illustrated in
In the variation example 1, as illustrated in
In the variation example 2, as illustrated in
Further, in the variation example 2, because the upstream side face 312 makes an acute angle with the bottom face 311, there is a case where toner is accumulated on the upstream side face 312 inclined upward. In order to reduce the accumulation of toner, it is preferable that an inclination angle of the side face 312 with respect to the horizontal direction be greater than or equal to a repose angle of toner.
Further, in the variation example 3, as illustrated in
Similar to the variation example 2, in order to reduce the accumulation of toner, it is preferable that an inclination angle of the downstream side face 313 with respect to the horizontal direction be greater than or equal to the repose angle of toner.
As illustrated in
In each of the variation examples 1 to 4, the upstream side face 312 and the downstream side face 313 are inclined with respect to the bottom face 311. However, any one of the side faces on the upstream side and the downstream side may be arranged in an inclined state, and the other side face may be arranged in a vertical direction or a direction orthogonal to the bottom face 311.
As described above, the side faces on the upstream side and the downstream side of the concave portion 31 can be arranged in a direction orthogonal to the horizontal direction. In contrast to the variation examples 1 to 4, in the present exemplary embodiment, the side faces are arranged in a vertical direction orthogonal to the horizontal direction. With this configuration, a warp of the sheet portion 82 can be released most efficiently, so that toner can fall downward promptly.
Next, a variation example 5 will be described with reference to
In the variation example 5, as illustrated in
Accordingly, in the variation example 5, after the sheet portion 82 passes the upstream position P1 of the concave portion 31, a warp of a section thereof is released. A leading end of the sheet portion 82 reaches the downstream position P3 of the concave portion 31 before reaching the position P2, so that the sheet portion 82 is regulated (warped) again. Therefore, in the variation example 5, as illustrated by a solid line, the leading end of the sheet portion 82 is brought into a state P2′.
In the variation example 5, a warp of the sheet portion 82 is partially released, so that toner can fall downward. Therefore, although the effect is not as much as the effect acquired in the first exemplary embodiment, suppression effect can be also acquired with respect backflow of toner to the supply port 17.
Next, a variation example 6 will be described with reference to
As illustrated in
In the variation example 6, because a warp of the sheet portion 82 is partially released, suppression effect can be acquired with respect backflow of toner to the supply port 17, although the effect is not as much as the effect acquired in the first exemplary embodiment.
In addition, the following elements A to D were studied with respect to improvement in releasing performance of the warped sheet portion 82 in the concave portion 31.
A. The rotation radius of the sheet portion 82.
B. A distance from the concave portion 31 to the rotation center of the agitation member 8.
C. An entering amount of the sheet portion 82 at the container face of the first hopper unit 4 on the upstream side of the concave portion 31 in the rotation direction of the agitation member 8.
D. An opening width WD of the concave portion 31 in the rotation direction of the agitation member 8.
The respective elements A to D will be described in detail.
First, in order to reliably release the warp of the sheet portion 82 at the concave portion 31, it is preferable that the elements A and B satisfy a relationship A<B.
If the entering amount (C) is small, the width WD (D) can be also small because a changing amount of the warp is small when the sheet portion 82 passes the upstream of the concave portion 31. However, if the entering amount (C) is large, it is preferable that the width WD (D) be large because the changing amount of the warp is increased. Accordingly, the element D can be set in proportion to the element C. Alternatively, the element C can be set in proportion to the element D.
In each of
As illustrated in
On the other hand, as illustrated in
<Widths of Supply Port, Sheet Portion, and Concave Portion>
A warp of the sheet portion 82 has to be reliably released at the concave portion 31. As illustrated in
On the other hand, as illustrated in
Although the section KS2 of the sheet portion 82 of the agitation member 8 enters the concave portion 31, the sections KS1 and KS3 cannot enter the concave portion 31. Therefore, warps of the sections KS1 and KS3 of the sheet portion 82 are not released. This is not preferable because the sections KS1 and KS3 of the sheet portion 82 may convey toner to the supply port 17 in the vicinities of the both end portions of the supply port 17 facing the sections KS1 and KS3. Therefore, it is preferable that the respective widths satisfy the relationship W3≥W1.
Accordingly, it is more preferable that the respective widths satisfy the relationship W2≥W3≥W1.
According to the present exemplary embodiment, a section of the agitation member 8 which passes the vicinity area of the supply port 17 enters the concave portion 31 arranged on the upstream side of the supply port 17, so that a warp of that section of the sheet portion 82 can be released. Further, toner borne on the section of the sheet portion 82 collides with the side face or the bottom face of the concave portion 31, so that toner can fall in the inner portion of the first hopper unit 4 before the agitation member 8 comes close to the supply port 17.
With this configuration, even if the sheet portion 82 reaches the vicinity area of the supply port 17, toner is less likely to be conveyed to the toner cartridge from the supply port 17 because the amount of toner borne on the sheet portion 82 is reduced.
As a result, toner supplied from the toner cartridge is prevented from flowing back to the toner cartridge. With this configuration, supply (replenishment) of toner to the first hopper unit 4 can be stably executed, and a rotation (charging) period after replacement (attachment) of a new toner cartridge can be shortened when the toner cartridge is replaced. Therefore, it is possible to restart the image forming operation stably and promptly immediately after the toner cartridge is replaced.
A second exemplary embodiment of the present disclosure will be described with reference to
Hereinafter, a configuration different from the first exemplary embodiment will be mainly described. In the present exemplary embodiment, a plurality of supply ports from the toner cartridge is arranged on the hopper unit.
In the above-described first exemplary embodiment, a supply port is arranged on a central portion. The present exemplary embodiment is different from the first exemplary embodiment in that the supply ports are arranged on both end portions instead of the central portion as described in the first exemplary embodiment.
The supply ports are arranged on the end portions because of the following reasons. The end portions are close to margins of an image to be printed, so that not much toner is consumed. Therefore, toner borne on the developer bearing body is borne and regulated continuously without being consumed, so that development performance will be deteriorated. A purpose of the present exemplary embodiment is to replace the toner easily.
As illustrated in
Further, concave portions are arranged according to the supply ports 17a and 17b and the divided areas of the sheet portion 82. Specifically, concave portions 31a and 31b are arranged according to the supply ports 17a and 17b.
As described above, when the widths of the concave portions 31a and 31b are W201 and W202, the respective widths should satisfy the relationships “W201≥W301” and “W202≥W302” in order to acquire a releasing effect on the warp of the sheet portion 82. Further, in a case where three or more supply ports are arranged thereon, concave portions are arranged according to the number of supply ports, and the sheet portion 82 is divided in association with the concave portions. With this configuration, an effect similar to the effect of the first exemplary embodiment can be acquired.
A third exemplary embodiment of the present disclosure will be described with reference to
Hereinafter, a configuration different from the first exemplary embodiment will be mainly described.
In the present exemplary embodiment, in order to cancel the warp of the sheet portion 82, a convex portion 41 projected toward the rotation center of the agitation member 8 (i.e., projected toward the inner side) is arranged on the upper side of the first hopper unit 4 instead of the concave portion 31 projected toward the outside as described in the first and second exemplary embodiments.
In the present exemplary embodiment, the agitation member 8 is divided in a same way as the first and the second exemplary embodiments (see
The convex portion 41 of the present exemplary embodiment will be described with reference to
On the upper side of the first hopper unit 4, the convex portion 41 is arranged to project toward the inside from the inner wall face 40A of the first hopper unit 4, at a position downstream of the development opening 15 and upstream of the supply port 17 in the rotation direction of the agitation member 8.
More specifically, a relationship R3<R1 is satisfied when a distance between the position P1 of the leading end of the sheet portion 82 immediately before the sheet portion 82 is in contact with the convex portion 41 and the rotation center O of the agitation member 8 is R1, and a distance between a leading end P5 of the convex portion 41 and the rotation center O of the agitation member 8 is R3. Further, a relationship R1<L is satisfied when a free length of the sheet portion 82 is L. In other words, in the present exemplary embodiment, a relationship R3<R1<L is satisfied.
The toner borne on the sheet portion 82 is scraped off when the leading end of the sheet portion 82 is in contact with the convex portion 41. Further, at the section of the sheet portion 82 which is not in contact with the convex portion 41, a warped state thereof is also changed before and after collision of the sheet portion 82 against the convex portion 41, and vibration occurs in the sheet portion 82. As a result, toner held by the sheet portion 82 can easily fall in the container.
As illustrated in
On the other hand, as illustrated in
In addition, although it is not illustrated, a magnitude relationship (not illustrated) between the widths of the convex portion 41, the section KS2 of the sheet portion 82, and the supply port 17 in the rotation axis direction A2 is basically the same as the relationship described in the first exemplary embodiment in which the concave portion 31 is arranged thereon.
Further, in the configuration described in the present exemplary embodiment, by changing the warped state of the sheet portion 82, toner borne on the sheet portion 82 can also fall in the container before the sheet portion 82 reaches the vicinity area of the supply port 17. With this configuration, an amount of toner scattering in a direction of the supply port 17 can be reduced. Therefore, similar to the first and the second exemplary embodiments, effect of improving the replenishing efficiency can be acquired when toner is supplied from the toner cartridge.
<Others>
The development device described in the present exemplary embodiment may constitute a part of the process cartridge or the image forming apparatus. The process cartridge may constitute a part of the image forming apparatus. The toner cartridge serving as a part of the development device may constitute a new cartridge or a process cartridge.
The configuration according to the present disclosure can be summarized as follows.
1. A development device (3) according to the present disclosure includes a development frame body (30A) and an agitation member (8), and a developer replenishing device (16) for replenishing developer to a developer containing chamber via a replenishing port (17) can be attached to and detached from the development frame body (30A).
The development frame body (30A) includes a development chamber (5) in which a developer bearing body (6) for bearing developer is housed, a developer containing chamber (4) for storing developer to be supplied to the development chamber (5), and a replenishing port (17) through which the developer containing chamber (4) can be replenished with developer from the outside, the developer containing chamber (4) having a communication port (15) for communicating with the development chamber (5).
An agitation member (8) is housed in the developer containing chamber (4), and includes a rotatable shaft portion (81) and an elastically-deformable sheet portion (82), one end of the sheet portion is fixed to the shaft portion as a fixed end (821), and the other end of the sheet portion is a free end (822).
The development frame body (30A) for constructing the developer containing chamber (4) includes a concave portion (31) formed by projecting from an inner wall face (40A) of the development frame body (30A), in a direction (G11) along an upward direction (G1) of a gravitational direction (G) in an in-use orientation, and the concave portion is located at a downstream side of the communication port and an upstream side of the replenishing port (17) in a rotation direction (A1) of the agitation member (8).
The concave portion (31) and the replenishing port (17) overlap with each other at least at one part (W100) in an axis direction (A2) of the shaft portion, when viewed in a direction (A3) orthogonal to the axis direction (A2) of the shaft portion, a relationship R1≤L is satisfied when a free length from the fixed end (821) to the free end (822) of the sheet portion (82) is L and a distance from a rotation center (O) of the shaft portion to the inner wall face (40A) is R1, and slit portions (Q1 and Q2) are formed in the free end (822) of the sheet portion (82), so that a section (KS2) of the free end (822) of the sheet portion (82) is able to enter the concave portion (31) when the agitation member (8) is rotated.
In addition, the slit portion may be formed to extend in a direction along a direction heading toward the free end (822) from the fixed end (821) of the sheet portion (82). Further, the first and second slit portions Q1 and Q2 may be arranged in parallel in the axis direction (A2). Then, the first and second slit portions Q1 and Q2 may be formed to extend in the entire area from the free end (822) to the fixed end (821), or may be formed only on a side of the free end (822).
2. In the development device (3) of the present disclosure, a relationship W1≤W2 is satisfied, when a width of the replenishing port (17) is W1 and a width of the concave portion (31) is W2 in the axis direction (A2), and an area (W1) of the replenishing port (17) may be arranged not to exceed an area (W2) of the concave portion (31) in the axis direction (A2) when viewed in a direction orthogonal to the axis direction (A2).
3. In the development device (3) of the present disclosure, the first slit portion (Q1) and the second slit portion (Q2) are formed in the sheet portion (82), a relationship W1≤W3≤W2 is satisfied, when a distance between the first slit portion (Q1) and the second slit portion (Q2) is W3 in the axis direction (A2), and the first slit portion (Q1) and the second slit portion (Q2) may be arranged so as not to exceed the area of the concave portion (31) in the axis direction (A2) when viewed in a direction orthogonal to the axis direction (A2).
4. In the development device (3) of the present disclosure, both of the concave portion (31) and the replenishing port (17) may be arranged at a central portion (CT) of the development frame body (30A) in the axis direction (A2).
5. In the development device (3) of the present disclosure, the development frame body (30A) may include: a first replenishing port (17a), a first concave portion (31a) corresponding to the first replenishing port (17a), a second replenishing port (17b), and a second concave portion (31b) corresponding to the second replenishing port (17b).
6. In the development device (3) of the present disclosure, when viewed in the axis direction (A2), the concave portion (31) includes a bottom face (311), a first side face (312) that connects the bottom face (311) and the inner wall face (40A) at an upstream side of the bottom face in the rotation direction, and a second side face (313) that connects the bottom face (311) and the inner wall face (40A) at a downstream side of the bottom face in the rotation direction of the agitation member (8), and the section of the free end (822) of the sheet portion (82) may be arranged to come to abut on the second side face (313) after entering the concave portion (31).
7. In the development device (3) of the present disclosure, a relationship L≤R2 may be satisfied, when a distance from the rotation center (O) to the bottom face (311) of the concave portion (31) is R2.
8. In the development device (3) of the present disclosure, the first side face (312) is arranged at an upstream side of a perpendicular line passing through the rotation center (O), and the second side face (313) may be arranged at a downstream side of the perpendicular line, when viewed in the axis direction (A2).
9. The development device (3) of the present disclosure includes the development frame body (30A) and the agitation member (8), and a developer replenishing device (16) for replenishing the developer containing chamber (4) with developer via the replenishing port (17), can be attached to and detached from the development frame body (30A).
Further, the development frame body (30A) includes a development chamber (5) in which a developer bearing body (6) for bearing developer is housed, a developer containing chamber (4) for storing developer to be supplied to the development chamber (5), and a replenishing port (17) through which the developer containing chamber (4) can be replenished with developer from the outside, the developer containing chamber (4) having a communication port (15) for communicating with the development chamber (5).
The agitation member (8) is housed in the developer containing chamber (4), and includes a rotatable shaft portion and an elastically-deformable sheet portion, one end of the sheet portion is fixed to the shaft portion as a fixed end, and the other end of the sheet portion is a free end (822).
The development frame body (30A) for constructing the developer containing chamber (4) includes a convex portion (41) formed by projecting from the inner wall face (40A) of the development frame body (30A), in a direction (G21) along an downward direction (G2) of the gravitational direction (G) in an in-use orientation, and the convex portion is located at a downstream side of the communication port and an upstream side of the replenishing port (17) in a rotation direction of the agitation member (8).
The convex portion (41) and the replenishing port (17) overlap with each other at least at one part in the axis direction (A2) of the shaft portion, when viewed in a direction orthogonal to the axis direction (A2) of the shaft portion. A relationship R4<R1≤L is satisfied when a free length from the fixed end (821) to the free end (822) of the sheet portion (82) is L, a distance from the rotation center (O) of the shaft portion to the inner wall face (40A) is R1, and a distance from the rotation center (O) of the shaft portion to a leading end (P5) of the convex portion (41) is R4. In the axis direction (A2), The first slit portion (Q1) is formed in the sheet portion (82) at a position corresponding to one end portion of the replenishing port (17), and a second slit portion (Q2) is formed in the sheet portion (82) at a position corresponding to the other end portion of the replenishing port.
10. A cartridge (PC) of the present disclosure includes the development device (3) and the developer replenishing device (16) for replenishing developer to the developer containing chamber (4), which can be attached to and detached from the development frame body (30A).
11. A cartridge of the present disclosure may include an image bearing body (1) which bears a developer image acquired by developing an electrostatic latent image with developer supplied from the developer bearing body (6) and a frame body (14) which supports the image bearing body (1).
12. An image forming apparatus (100) of the present disclosure includes at least any one of the development device (3) and the cartridge (PC), and a transfer member (11).
According to the present disclosure, a developer containing chamber (4) can be replenished with developer, backflow of developer from the developer containing chamber (4) to a replenishing port (17) can be reduced, and replenishing efficiency can be improved.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2019-153054, filed Aug. 23, 2019, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-153054 | Aug 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20090297178 | Kakuta | Dec 2009 | A1 |
20110103843 | Sato | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2005-140908 | Jun 2005 | JP |
2007-322936 | Dec 2007 | JP |
2016-156955 | Sep 2016 | JP |
2018-072601 | May 2018 | JP |
Number | Date | Country | |
---|---|---|---|
20210055672 A1 | Feb 2021 | US |