DEVELOPMENT OF A NOVEL GLAUCOMA IMPLANT

Information

  • Research Project
  • 7159436
  • ApplicationId
    7159436
  • Core Project Number
    R44EY015587
  • Full Project Number
    2R44EY015587-02
  • Serial Number
    15587
  • FOA Number
    PA-06-06
  • Sub Project Id
  • Project Start Date
    9/30/2007 - 17 years ago
  • Project End Date
    8/31/2009 - 15 years ago
  • Program Officer Name
    WUJEK, JEROME R
  • Budget Start Date
    9/30/2007 - 17 years ago
  • Budget End Date
    8/31/2008 - 16 years ago
  • Fiscal Year
    2007
  • Support Year
    2
  • Suffix
  • Award Notice Date
    9/30/2007 - 17 years ago

DEVELOPMENT OF A NOVEL GLAUCOMA IMPLANT

[unreadable] DESCRIPTION (provided by applicant): Glaucoma is one of the leading causes of blindness in the world. Glaucoma is a complex disease with many underlying causes. Currently, the only effective treatment is reducing intraocular pressure (IOP) to a clinically safe range. A significant portion of individuals with glaucoma will require surgical intervention to stop progressive optic nerve damage. Current surgical options for refractory glaucomas include trabeculectomy and the use of glaucoma drainage implants. Although antimetabolites have improved success rates for trabeculectomy, their use is associated with unpredictable control of flow, hypotony, wound leaks, capsular fibrosis and infection. Glaucoma tube implants have been gaining popularity, but all current commercially available devices are plagued with a fibrotic response that ultimately limits the outflow facility of these devices and prevents lower IOP. In addition, the fibrous capsule increases the risk of motility disturbances and drooping of the eyelid and ultimately limits the filtration life of these glaucoma implants. Attempts to modify the fibrotic response to conventional implants have largely been unsuccessful. There have been recent attempts to develop newer generation glaucoma implants using various biocompatible membranes with limited success. We successfully demonstrated the feasibility of using a particular biocompatible membrane with a proven glaucoma tube implant to favorably modulate the fibrotic response at the conclusion of our Phase I SBIR grant. For this Phase II application we propose a unique implant design consisting of a biocompatible material that demonstrates advantageous flow and tissue characteristics in animals and humans. We propose to integrate an existing implant with new material to improve performance. The device will be tested in a rabbit model system, and then in humans. The histology, safety, and effectiveness of the implants will be analyzed in the rabbit study. Thereafter, manufacturing of the final prototype for humans will begin along with the development of a mass manufacturing system for the final product. With improved long-term performance of this implant, use of surgical devices would likely increase significantly. Development of this safe and effective glaucoma drainage device will greatly improve the ability to reduce blindness from this common disorder. This project aims to prevent blindness in glaucoma patients through the development of a new glaucoma drainage device. [unreadable] [unreadable] [unreadable] [unreadable]

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R44
  • Administering IC
    EY
  • Application Type
    2
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    394694
  • Sub Project Total Cost
  • ARRA Funded
  • CFDA Code
    867
  • Ed Inst. Type
  • Funding ICs
    NEI:394694\
  • Funding Mechanism
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NEW WORLD MEDICAL, INC.
  • Organization Department
  • Organization DUNS
  • Organization City
    RANCHO CUCAMONGA
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    91730
  • Organization District
    UNITED STATES