Development of an Advanced In-Vitro Model for Angiogenesis Research and Drug Test

Information

  • Research Project
  • 8898182
  • ApplicationId
    8898182
  • Core Project Number
    R44HL107040
  • Full Project Number
    5R44HL107040-04
  • Serial Number
    107040
  • FOA Number
    PA-13-234
  • Sub Project Id
  • Project Start Date
    1/1/2011 - 13 years ago
  • Project End Date
    4/30/2016 - 8 years ago
  • Program Officer Name
    LUNDBERG, MARTHA
  • Budget Start Date
    5/1/2015 - 9 years ago
  • Budget End Date
    4/30/2016 - 8 years ago
  • Fiscal Year
    2015
  • Support Year
    04
  • Suffix
  • Award Notice Date
    4/29/2015 - 9 years ago
Organizations

Development of an Advanced In-Vitro Model for Angiogenesis Research and Drug Test

DESCRIPTION (provided by applicant): Abnormal angiogenesis-the growth of new blood vessels from existing vasculature-plays a central role in more than seventy major health conditions, afflicting over one billion people worldwide. Uncovering the mechanisms that control angiogenesis promises to fuel the discovery of novel therapies targeting cancer, diabetes, macular degeneration and others-but the progress in translation from basic research into the clinic is slowed by the lack of dependable models for angiogenesis research and drug testing. None of the existing in-vitro models includes the growth of capillary sprouts from existing blood vessels under flow-which is, by definition, the hallmark of angiogenesis. To address this need, our company has developed a proprietary technology for the creation of human microvasculature within microfluidic chips. Within these chips, we generate lumenally perfused 'parent' vessels from human endothelial cells that are surrounded by an extracellular-matrix gel. When exposed to vascular growth factors the parent vessels exhibit angiogenic sprouting and grow new capillaries into the surrounding matrix. We plan to commercialize this technology under the name PIVA (Perfused In Vitro Angiogenesis) system. PIVA is envisioned to consist of the following components: (1) disposable microfluidic chips, (2) portable, modular perfusion platforms that can be stacked inside standard cell incubators, (3) scalable meta-modules that can support up to six microfluidic chips, and (4) image analysis software. The meta-module concept will allow users to run 100 or more assays simultaneously per incubator-a throughput capacity that is sufficient for applications in research and drug discovery. During Phase I of this project, we established feasibility of the manufacturing techniques, developed the prototype of a pneumatically driven perfusion platform and validated that our angiogenesis model recapitulates features of in vivo microvasculature. Currently, chips and perfusion platforms are tested in more than ten research laboratories throughout the U.S. The goal of Phase II is to finish the development of the PIVA technology to enable a rapid commercial transition into the research market. Aim 1 is to finalize the design of the microfluidic chip, meta-module perfusion platform, and the image analysis software. Aim 2 will focus on defining assay parameters and establishing the metrics for image analysis and methods for downstream analysis. Aim 3 will be to test PIVA on drugs with known anti-angiogenic effects. Once Phase II is completed, the PIVA design will be ready for production transfer within twelve months. Nortis has significant expertise in bringing prototype technologies to market. The commercial launch of the PIVA components will leverage previously validated manufacturing processes as well as operational and business infrastructure to support commercial activities. Phase III funding is lined up in the form of angel investments and revenue obtained through sales of existing Nortis products. We believe that PIVA will become an important new tool in angiogenesis research, accelerating the discovery and clinical translation of novel angiogenesis-modulating therapeutics.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R44
  • Administering IC
    HL
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    739884
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:739884\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    NORTIS, INC.
  • Organization Department
  • Organization DUNS
    963398826
  • Organization City
    WOODINVILLE
  • Organization State
    WA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    980729088
  • Organization District
    UNITED STATES