Development of biomimetic oligomers as anticoagulant antagonists

Information

  • Research Project
  • 7671639
  • ApplicationId
    7671639
  • Core Project Number
    R44HL090113
  • Full Project Number
    2R44HL090113-02
  • Serial Number
    90113
  • FOA Number
    PA-08-050
  • Sub Project Id
  • Project Start Date
    9/21/2007 - 17 years ago
  • Project End Date
    6/30/2011 - 13 years ago
  • Program Officer Name
    SARKAR, RITA
  • Budget Start Date
    7/1/2009 - 15 years ago
  • Budget End Date
    6/30/2010 - 14 years ago
  • Fiscal Year
    2009
  • Support Year
    2
  • Suffix
  • Award Notice Date
    6/11/2009 - 15 years ago
Organizations

Development of biomimetic oligomers as anticoagulant antagonists

DESCRIPTION (provided by applicant): LMWHs are being used with greater frequency to treat deep vein thrombosis, unstable angina, and acute pulmonary embolism, as well as thromboprophylaxis agents in a wide range of clinical situations including orthopedic surgery, high risk pregnancy, and cancer therapy. The most common complication of anticoagulation with LMWHs is hemorrhage. Many published clinical studies report 1% to 4% major (life-threatening) bleeding associated with LMWH therapy and there is a 5-fold increase in the overall death rate for acute coronary syndrome patients receiving anti- coagulant therapy that experience major bleeding. Although protamine is commonly used to neutralize UFH following coronary bypass surgery, it is unable to completely reverse the anticoagulant effects of LMWHs or fondaparinux. Therefore, there is a strong medical need for the development of a safe and effective antagonist for the LMWHs. The goal would be to develop an antidote that could rapidly reverse unwanted bleeding yet permit rapid resumption of anticoagulation therapy with a new dose of LMWH to restore thromboprophylaxis. We are developing series of non-peptidic oligomers with well-defined secondary or tertiary structures to serve as novel templates for the design of compounds targeting specific protein- protein and protein-membrane interactions. These oligomers have many advantages over peptides: relatively smaller size which increases stability and enhances tissue distribution, ease of synthesis, resistance to proteolytic degradation, and suitability for medicinal chemistry approaches to fine-tune their physical properties and optimize potency and safety. We have utilized this strategy to design small oligomers that strongly interact with UFH and LMWH and antagonize their anti-coagulation properties. We propose to evaluate the suitability of current lead compounds as antagonists to LMWH and fondaparinux in preclinical efficacy and safety studies designed to identify clinical candidates. In addition, we propose to continue medicinal chemistry efforts in the salicylamide series and a newer series of arylamides to identify back-up compounds to substitute into the discovery program if problems are encountered with the current lead compounds. PUBLIC HEALTH RELEVANCE: Low molecular weight heparins (LMWHs) and the pentasaccharide, fondaparinux, are widely used anti-coagulants employed in a number of clinical and surgical applications. Bleeding complications are common adverse events associated with anti-coagulant therapy. Protamine is an effective antagonist of UFH but presently there are no effective antagonists for the pentasaccharide or the low molecular weight heparins. We are developing safe and effective non-peptidic oligomers to neutralize the anti-coagulation properties of LMWH and fondaparinux.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R44
  • Administering IC
    HL
  • Application Type
    2
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    553390
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:553390\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    POLYMEDIX, INC,
  • Organization Department
  • Organization DUNS
    621470033
  • Organization City
    RADNOR
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    190875279
  • Organization District
    UNITED STATES