The present disclosure relates to protection circuitry for electronic devices that are susceptible to thermal runaway.
Electronic devices such as bipolar power amplifiers use base ballast resistors and/or emitter ballast resistors to achieve thermal stability. However, in wide bandwidth applications a relatively large ballast resistor in conjunction with a relatively large input capacitance of an output power amplifier stage creates a pole that may be lower than a maximum modulation bandwidth, which can be 200 MHz and higher. A lower pole due to the relatively large input capacitance precludes fast dynamic biasing control needed to prevent thermal runaway of bipolar power amplifiers. Moreover, other electronic devices such as thyristors used to control utility power and electric vehicles also need to be protected from thermal damage. As such, there is a need for electronic devices and device protection systems that are structured for fast dynamic biasing and/or shutdown control of electronic devices in thermal distress.
A device having device function circuitry configured to receive a device signal and output a modified device signal is disclosed. The device includes a device temperature sensor configured to generate a device temperature signal that is proportional to a temperature of the device function circuitry. Device function circuitry is further configured to maintain power dissipation of the device function circuitry to below a predetermined safe power dissipation level in response to a control signal that is generated based upon the device temperature signal.
Another exemplary embodiment discloses a device protection system that includes device protection circuitry. The device protection circuitry has a reference temperature sensor configured to generate a reference temperature signal that is different in magnitude from the device temperature signal as the power dissipation of device function circuitry exceeds the predetermined safe power dissipation level. The device protection circuitry further includes a difference amplifier that is configured to amplify a difference between the device temperature signal and reference temperature signal to generate an error signal. Further included is a device controller configured to generate the control signal received by the device function circuitry.
The device controller generates the control signal in response to the error signal. The control signal is configured by the device controller to lower or eliminate power dissipation of the device function circuitry in order to protect the device from thermal damage.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure and, together with the description, serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Regardless of the device type, the device 12 includes a device temperature sensor 20 that is integrated with device function circuitry 14 and configured to generate a device temperature signal that is proportional to a temperature of the device function circuitry 14. The device function circuitry 14 is further configured to receive a control signal to maintain power dissipation of the device function circuitry 14 to below a predetermined safe power dissipation level in response to the control signal that is generated based upon the device temperature signal. For the purpose of this disclosure the predetermined safe power dissipation level is defined as a power dissipation level that allows the device function circuitry 14 to modify device signals without permanently thermally damaging the device 12. It is to be understood that the device 12 may have a lower predetermined safe power dissipation level without a heatsink and a higher predetermined safe power dissipation level when equipped with a heatsink. For example, the device 12 may have a higher predetermined safe power dissipation level of 100 watts with a heatsink and may have a lower predetermined safe power dissipation level of 30 watts without a heatsink. The device protection system 10 may be used to protect the device 12 from thermal damage in either case of employing a heatsink or not employing a heatsink.
In one embodiment the device function circuitry 14 is a thyristor and the device signal is an alternating current power signal. Moreover, in this exemplary embodiment, the control signal is a thyristor trigger signal that is either not received or not acted upon when the device temperature signal indicates that the thyristor is dissipating power outside the predetermined power dissipation range.
The device protection system 10 further includes device protection circuitry 22 that receives the device temperature signal and generates the control signal based upon the device temperature signal. In an exemplary embodiment, the device protection circuitry 22 includes a reference temperature sensor 24 configured to generate a reference temperature signal that is different in magnitude from the device temperature signal as the power dissipation of device function circuitry 14 exceeds the predetermined safe power dissipation level. Typically, the reference temperature sensor 24 generates a reference temperature signal that is lower in magnitude than the device temperature signal as the power dissipation of device function circuitry 14 exceeds the predetermined safe power dissipation level. However, it is to be understood that in some embodiments the reference temperature sensor 24 and the device temperature sensor 20 may be configured to generate temperature signals that are inversely proportional to absolute temperature. In such cases, the reference temperature signal is higher in magnitude than the device temperature signal as the power dissipation of device function circuitry 14 exceeds the predetermined safe power dissipation level. In either case, the reference temperature sensor 24 is at a significantly cooler temperature than the device temperature sensor 20 as the power dissipation of device function circuitry 14 exceeds the predetermined safe power dissipation level due to the much closer proximity of the device temperature sensor 20 to the device function circuitry 14.
The device protection circuitry 22 also includes a difference amplifier 26 that is configured to receive the device temperature signal and the reference temperature signal as inputs and amplify a difference between the device temperature signal and reference temperature signal to generate an error signal as an output. Further included in the device protection circuitry 22 is a device controller 28 that is configured to generate the control signal in response to the error signal, wherein the control signal is received by the device function circuitry 14 that is configured to maintain power dissipation of the device to below a predetermined safe power dissipation level in response to the control signal.
In the exemplary embodiment depicted in
In the exemplary embodiment of
In this particular embodiment, shown in
In the exemplary embodiment of
In the particular embodiment depicted in
In this particular embodiment, shown in
In this particular embodiment, shown in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5510753 | French | Apr 1996 | A |
5838732 | Carney | Nov 1998 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6141377 | Sharper et al. | Oct 2000 | A |
6985033 | Shirali et al. | Jan 2006 | B1 |
7043213 | Robinson et al. | May 2006 | B2 |
7471155 | Levesque | Dec 2008 | B1 |
7570931 | McCallister et al. | Aug 2009 | B2 |
7994862 | Pukhovski | Aug 2011 | B1 |
8461928 | Yahav et al. | Jun 2013 | B2 |
8493141 | Khlat et al. | Jul 2013 | B2 |
8519788 | Khlat | Aug 2013 | B2 |
8588713 | Khlat | Nov 2013 | B2 |
8718188 | Balteanu et al. | May 2014 | B2 |
8725218 | Brown et al. | May 2014 | B2 |
8774065 | Khlat et al. | Jul 2014 | B2 |
8803603 | Wimpenny | Aug 2014 | B2 |
8818305 | Schwent et al. | Aug 2014 | B1 |
8854129 | Wilson | Oct 2014 | B2 |
8879665 | Xia et al. | Nov 2014 | B2 |
8913690 | Onishi | Dec 2014 | B2 |
8989682 | Ripley et al. | Mar 2015 | B2 |
9018921 | Gurlahosur | Apr 2015 | B2 |
9020451 | Khlat | Apr 2015 | B2 |
9041364 | Khlat | May 2015 | B2 |
9041365 | Kay et al. | May 2015 | B2 |
9055529 | Shih | Jun 2015 | B2 |
9065509 | Yan et al. | Jun 2015 | B1 |
9069365 | Brown et al. | Jun 2015 | B2 |
9098099 | Park et al. | Aug 2015 | B2 |
9166538 | Hong et al. | Oct 2015 | B2 |
9166830 | Camuffo et al. | Oct 2015 | B2 |
9167514 | Dakshinamurthy et al. | Oct 2015 | B2 |
9197182 | Baxter et al. | Nov 2015 | B2 |
9225362 | Drogi et al. | Dec 2015 | B2 |
9247496 | Khlat | Jan 2016 | B2 |
9263997 | Vinayak | Feb 2016 | B2 |
9270230 | Henshaw et al. | Feb 2016 | B2 |
9270239 | Drogi et al. | Feb 2016 | B2 |
9271236 | Drogi | Feb 2016 | B2 |
9280163 | Kay et al. | Mar 2016 | B2 |
9288098 | Yan et al. | Mar 2016 | B2 |
9298198 | Kay et al. | Mar 2016 | B2 |
9344304 | Cohen | May 2016 | B1 |
9356512 | Chowdhury et al. | May 2016 | B2 |
9377797 | Kay et al. | Jun 2016 | B2 |
9379667 | Khlat et al. | Jun 2016 | B2 |
9515622 | Nentwig et al. | Dec 2016 | B2 |
9520907 | Peng et al. | Dec 2016 | B2 |
9584071 | Khlat | Feb 2017 | B2 |
9595869 | Lerdworatawee | Mar 2017 | B2 |
9595981 | Khlat | Mar 2017 | B2 |
9596110 | Jiang et al. | Mar 2017 | B2 |
9614477 | Rozenblit et al. | Apr 2017 | B1 |
9634666 | Krug | Apr 2017 | B2 |
9748845 | Kotikalapoodi | Aug 2017 | B1 |
9806676 | Balteanu et al. | Oct 2017 | B2 |
9831834 | Balteanu et al. | Nov 2017 | B2 |
9837962 | Mathe et al. | Dec 2017 | B2 |
9923520 | Abdelfattah et al. | Mar 2018 | B1 |
10003416 | Lloyd | Jun 2018 | B1 |
10090808 | Henzler et al. | Oct 2018 | B1 |
10097145 | Khlat et al. | Oct 2018 | B1 |
10110169 | Khesbak et al. | Oct 2018 | B2 |
10158329 | Khlat | Dec 2018 | B1 |
10158330 | Khlat | Dec 2018 | B1 |
10170989 | Balteanu et al. | Jan 2019 | B2 |
10291181 | Kim et al. | May 2019 | B2 |
10326408 | Khlat et al. | Jun 2019 | B2 |
10382071 | Rozek et al. | Aug 2019 | B2 |
10476437 | Nag et al. | Nov 2019 | B2 |
20020167827 | Umeda et al. | Nov 2002 | A1 |
20040266366 | Robinson et al. | Dec 2004 | A1 |
20050090209 | Behzad | Apr 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050232385 | Yoshikawa et al. | Oct 2005 | A1 |
20060240786 | Liu | Oct 2006 | A1 |
20070052474 | Saito | Mar 2007 | A1 |
20070258602 | Vepsalainen et al. | Nov 2007 | A1 |
20090016085 | Rader et al. | Jan 2009 | A1 |
20090045872 | Kenington | Feb 2009 | A1 |
20090191826 | Takinami et al. | Jul 2009 | A1 |
20100308919 | Adamski et al. | Dec 2010 | A1 |
20110074373 | Lin | Mar 2011 | A1 |
20110136452 | Pratt et al. | Jun 2011 | A1 |
20110175681 | Inamori et al. | Jul 2011 | A1 |
20110279179 | Vice | Nov 2011 | A1 |
20120194274 | Fowers et al. | Aug 2012 | A1 |
20120200435 | Ngo et al. | Aug 2012 | A1 |
20120299645 | Southcombe et al. | Nov 2012 | A1 |
20120299647 | Honjo et al. | Nov 2012 | A1 |
20130021827 | Ye | Jan 2013 | A1 |
20130100991 | Woo | Apr 2013 | A1 |
20130130724 | Kumar Reddy et al. | May 2013 | A1 |
20130162233 | Marty | Jun 2013 | A1 |
20130187711 | Goedken et al. | Jul 2013 | A1 |
20130200865 | Wimpenny | Aug 2013 | A1 |
20130271221 | Levesque et al. | Oct 2013 | A1 |
20140009226 | Severson | Jan 2014 | A1 |
20140028370 | Wimpenny | Jan 2014 | A1 |
20140028390 | Davis | Jan 2014 | A1 |
20140057684 | Khlat | Feb 2014 | A1 |
20140103995 | Langer | Apr 2014 | A1 |
20140155002 | Dakshinamurthy et al. | Jun 2014 | A1 |
20140184335 | Nobbe et al. | Jul 2014 | A1 |
20140199949 | Nagode et al. | Jul 2014 | A1 |
20140210550 | Mathe et al. | Jul 2014 | A1 |
20140218109 | Wimpenny | Aug 2014 | A1 |
20140235185 | Drogi | Aug 2014 | A1 |
20140266423 | Drogi et al. | Sep 2014 | A1 |
20140266428 | Chiron et al. | Sep 2014 | A1 |
20140315504 | Sakai et al. | Oct 2014 | A1 |
20140361830 | Mathe et al. | Dec 2014 | A1 |
20140361837 | Strange et al. | Dec 2014 | A1 |
20150048883 | Vinayak | Feb 2015 | A1 |
20150071382 | Wu et al. | Mar 2015 | A1 |
20150098523 | Lim et al. | Apr 2015 | A1 |
20150155836 | Midya et al. | Jun 2015 | A1 |
20150188432 | Vannorsdel et al. | Jul 2015 | A1 |
20150236654 | Jiang et al. | Aug 2015 | A1 |
20150236729 | Peng et al. | Aug 2015 | A1 |
20150280652 | Cohen | Oct 2015 | A1 |
20150333781 | Alon et al. | Nov 2015 | A1 |
20160065137 | Khlat | Mar 2016 | A1 |
20160099687 | Khlat | Apr 2016 | A1 |
20160105151 | Langer | Apr 2016 | A1 |
20160118941 | Wang | Apr 2016 | A1 |
20160126900 | Shute | May 2016 | A1 |
20160173031 | Langer | Jun 2016 | A1 |
20160181995 | Nentwig et al. | Jun 2016 | A1 |
20160187627 | Abe | Jun 2016 | A1 |
20160197627 | Qin et al. | Jul 2016 | A1 |
20160226448 | Wimpenny | Aug 2016 | A1 |
20160294587 | Jiang | Oct 2016 | A1 |
20170141736 | Pratt et al. | May 2017 | A1 |
20170302183 | Young | Oct 2017 | A1 |
20170317913 | Kim et al. | Nov 2017 | A1 |
20170338773 | Balteanu et al. | Nov 2017 | A1 |
20180013465 | Chiron et al. | Jan 2018 | A1 |
20180048265 | Nentwig | Feb 2018 | A1 |
20180048276 | Khlat | Feb 2018 | A1 |
20180076772 | Khesbak et al. | Mar 2018 | A1 |
20180123453 | Puggelli et al. | May 2018 | A1 |
20180288697 | Camuffo et al. | Oct 2018 | A1 |
20180302042 | Zhang et al. | Oct 2018 | A1 |
20180309414 | Khlat et al. | Oct 2018 | A1 |
20180367101 | Chen et al. | Dec 2018 | A1 |
20190044480 | Khlat | Feb 2019 | A1 |
20190068234 | Khlat | Feb 2019 | A1 |
20190097277 | Fukae | Mar 2019 | A1 |
20190109566 | Folkmann et al. | Apr 2019 | A1 |
20190109613 | Khlat et al. | Apr 2019 | A1 |
20190222178 | Khlat | Jul 2019 | A1 |
20190238095 | Khlat | Aug 2019 | A1 |
20190267956 | Granger-Jones et al. | Aug 2019 | A1 |
20190222175 | Khlat | Oct 2019 | A1 |
20200007090 | Khlat | Jan 2020 | A1 |
20200036337 | Khlat | Jan 2020 | A1 |
20200106392 | Khlat | Apr 2020 | A1 |
20200136561 | Khlat et al. | Apr 2020 | A1 |
20200136563 | Khlat | Apr 2020 | A1 |
20200136575 | Khlat | Apr 2020 | A1 |
20200144966 | Khlat | May 2020 | A1 |
20200153394 | Khlat et al. | May 2020 | A1 |
20200177131 | Khlat | Jun 2020 | A1 |
20200204116 | Khlat | Jun 2020 | A1 |
20200228063 | Khlat | Jul 2020 | A1 |
20200259456 | Khlat | Aug 2020 | A1 |
20200259685 | Khlat | Aug 2020 | A1 |
20200266766 | Khlat et al. | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
3174199 | May 2017 | EP |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 14/836,634, dated May 16, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 14/868,890, dated Jul. 14, 2016, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 15/792,909, dated May 18, 2018, 13 pages. |
Notice of Allowance for U.S. Appl. No. 15/459,449, dated Mar. 28, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/723,460, dated Jul. 24, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/704,131, dated Jul. 17, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/728,202, dated Aug. 2, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/792,909, dated Dec. 19, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 15/993,705, dated Oct. 31, 2018, 7 pages. |
Pfister, Henry, “Discrete-Time Signal Processing,” Lecture Note, pfister.ee.duke.edu/courses/ece485/dtsp.pdf, Mar. 3, 2017, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,260, dated May 2, 2019, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 15/986,948, dated Mar. 28, 2019, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/018,426, dated Apr. 11, 2019, 11 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 15/902,244, dated Mar. 20, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 151902,244, dated Feb. 8, 2019, 8 pages. |
Advisory Action for U.S. Appl. No. 151888,300, dated Jun. 5, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 15/984,566, dated May 21, 2019, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/150,556, dated Jul. 29, 2019, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/888,300, dated Jun. 27, 2019, 17 pages. |
Final Office Action for U.S. Appl. No. 15/986,948, dated Aug. 27, 2019, 9 pages. |
Advisory Action for U.S. Appl. No. 151986,948, dated Nov. 8, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 151986,948, dated Dec. 13, 2019, 7 pages. |
Final Office Action for U.S. Appl. No. 16/018,426, dated Sep. 4, 2019, 12 pages. |
Advisory Action for U.S. Appl. No. 16/018,426, dated Nov. 19, 2019, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/180,887, dated Jan. 13, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/888,300, dated Jan. 14, 2020, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/122,611, dated Mar. 11, 2020, 16 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated Feb. 25, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/018,426, dated Mar. 31, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/174,535, dated Feb. 4, 2020, 7 pages. |
Quayle Action for U.S. Appl. No. 161354,234, dated Mar. 6, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/354,234, dated Apr. 24, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/246,859, dated Apr. 28, 2020, 9 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 15/888,300, dated May 13, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/155,127, dated Jun. 1, 2020, 8 pages. |
Final Office Action for U.S. Appl. No. 16/174,535, dated Jul. 1, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/284,023, dated Jun. 24, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/435,940, dated Jul. 23, 2020, 6 pages. |
Final Office Action for U.S. Appl. No. 15/888,300, dated Feb. 15, 2019, 15 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Jan. 13, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/284,023, dated Jan. 19, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/416,812, dated Feb. 16, 2021, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/689,236 dated Mar. 2, 2021, 15 pages. |
Notice of Allowance for U.S. Appl. No. 16/435,940, dated Dec. 21, 2020, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/774,060, dated Feb. 3, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/590,790, dated Jan. 27, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/661,061, dated Feb. 10, 2021, 7 pages. |
Final Office Action for U.S. Appl. No. 16/122,611, dated Sep. 18, 2020, 17 pages. |
Notice of Allowance for U.S. Appl. No. 16/246,859, dated Sep. 18, 2020, 8 pages. |
Quayle Action for U.S. Appl. No. 16/421,905, dated Aug. 25, 2020, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/774,060, dated Aug. 17, 2020, 6 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Dec. 1, 2020, 9 pages. |
Advisory Action for U.S. Appl. No. 16/174,535, dated Sep. 24, 2020, 3 pages. |
Notice of Allowance for U.S. Appl. No. 16/174,535, dated Oct. 29, 2020, 7 pages. |
Final Office Action for U.S. Appl. No. 16/284,023, dated Nov. 3, 2020, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/416,812, dated Oct. 16, 2020, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 16/514,051, dated Nov. 13, 2020, 9 pages. |
Quayle Action for U.S. Appl. No. 16/589,940, dated Dec. 4, 2020, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/122,611, dated Apr. 1, 2021, 8 pages. |
Notice of Allowance for U.S. Appl. No. 16/689,236 dated Jun. 9, 2021, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 16/775,554, dated Jun. 14, 2021, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/582,471, dated Mar. 24, 2021, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/597,952, dated May 26, 2021, 7 pages. |
Notice of Allowance for U.S. Appl. No. 16/582,471, dated Jun. 22, 2021, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20210305944 A1 | Sep 2021 | US |