DEVICE AND MECHANISM FOR FACILITATING NON-INVASIVE, NON-PIERCING MONITORING OF BLOOD GLUCOSE

Information

  • Patent Application
  • 20160256084
  • Publication Number
    20160256084
  • Date Filed
    June 10, 2014
    10 years ago
  • Date Published
    September 08, 2016
    8 years ago
Abstract
A mechanism is described for facilitating non-invasive and non-skin piercing monitoring of blood glucose according to one embodiment. A method of embodiments, as described herein, includes receiving a body part including a finger, where the body part in the placement area causes interruptions in the running of a light. The method may further include detecting initial readings corresponding to the interruptions, the initial readings including signals, where a signal is generated each time the light is interrupted while passing through the body part, calculating absolute values based on the initial readings, and computing a final glucose reading based on the absolute values.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


FIELD

Embodiments described herein generally relate to computing devices. More particularly, embodiments relate to a device having a mechanism for facilitating non-invasive, non-piercing monitoring of blood glucose.


BACKGROUND

Diabetes (also referred to as “elevated sugar level”) is a chronic disease affecting about 347 million people globally. According to World Health Organization (“WHO”), it is estimated to be the seventh leading cause of death by 2030. It is expected that by the year 2030 this rate would increase by about 69% in developing countries and 20% in developed countries. Several factors account for this alarming rate of diabetes that include, for example, population growth, aging, urbanization, increasing prevalence of obesity, and lack of physical inactivity.


Diabetes increases risk for several health problems. An uncontrolled blood sugar may lead to skin complications, such as: bacterial infections, fungal infections, and itching; eye complications contributing towards potential loss of vision; nerve damage causing tingling, pain, numbness, and weakness in feet and hands; renal (kidney) failure; peripheral risk of foot ulcers; heart diseases; and strokes. Hypertension is often found in people with diabetes. Diabetes during pregnancy increases perinatal risks of shoulder dystocia, birth injuries, nerves palsies, and hypoglycemia, with long term glucose intolerance and obesity among infants.


The self-monitoring of blood glucose (SMBG) is found to be associated with decreased diabetes-related morbidity (e.g., myocardial infarction, stroke, foot amputation, blindness, hemodialysis, etc.), and mortality promoting better disease management. Continuous glucose monitoring can provide maximal information about variation in blood glucose levels throughout the day and facilitate optimal treatment decisions for the diabetic patient. Regular monitoring of blood sugar level during pregnancy and subsequent treatment (if necessary) may reduce serious perinatal morbidity and improve the woman's health-related quality of life.


Despite advances in disease treatment in the last two decades, compliance to SMBG remains a challenge. Patients are reluctant to use SMBG devices due to their invasive nature, such as requiring one or more drops of blood by pricking a finger. Further, for many patients, this process can be painful and inconvenient and contribute to suboptimal frequency of glycemic level monitoring. Invasive and painful monitoring is one of the reasons for poor patient compliance both with treatments and overall disease self-management.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.



FIG. 1 illustrates a computing device (e.g., glucose monitoring device) hosting a non-invasive glucose monitoring mechanism and non-invasive glucose monitoring elements according to one embodiment.



FIG. 2 illustrates a non-invasive glucose monitoring mechanism and non-invasive glucose monitoring elements according to one embodiment.



FIG. 3A illustrates a transaction sequence for facilitating non-invasive blood glucose monitoring using a non-invasive glucose monitoring device of FIG. 1 according to one embodiment.



FIG. 3B illustrates a method for facilitating non-invasive blood glucose monitoring using a non-invasive glucose monitoring device of FIG. 1 according to one embodiment.



FIG. 4A illustrates a front/side view of a monitoring device of FIG. 1 according to one embodiment;



FIG. 4B illustrates a side view of a monitoring device of FIG. 1 according to one embodiment;



FIG. 4C illustrates a back/top view of a monitoring device of FIG. 1 according to one embodiment;



FIG. 4D illustrates an unassembled view of a monitoring device of FIG. 1 according to one embodiment;



FIG. 5 illustrates computer system suitable for implementing embodiments of the present disclosure according to one embodiment.





SUMMARY

In accordance with embodiments, there are provided mechanisms and methods for facilitating non-invasive and non-skin piercing monitoring of blood glucose according to one embodiment. In one embodiment and by way of example, a method includes receiving a body part including a finger, where the body part in the placement area causes interruptions in the running of a light. The method may further include detecting initial readings corresponding to the interruptions, the initial readings including signals, where a signal is generated each time the light is interrupted while passing through the body part, calculating absolute values based on the initial readings, and computing a final glucose reading based on the absolute values.


DETAILED DESCRIPTION

In the following description, numerous specific details are set forth. However, embodiments, as described herein, may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in details in order not to obscure the understanding of this description.


Embodiments provide for a non-invasive, non-piercing blood sugar or glucose monitoring device (also referred to as “glucometer” or simply “monitoring device”) that employs a technique that is non-invasive and non-piercing (e.g., no piercing or pricking of skin or drawing of blood), cost-efficient, accurate, and easily producible that can cater to a large variety of populations including those from developing countries, such as lower or middle income countries (LMIC), poor or underprivileged communities, etc., and further, for various age groups and both genders struggling with diabetes. Further, in one embodiment, the device provides for a manner of output readings that can be easily read and comprehended even by those at a relatively lower literacy level or that are not so technologically savvy. Embodiments further provide for a technique that is non-invasive in nature and easier to handle even for those diabetic patients who suffer through other changes or have developed complications, such as certain skin conditions and to whom continuous pricking causes additional pain.


It is to be noted that embodiments provide for a novel and innovative monitoring of blood glucose without having to pierce or pinch or poke a skin (e.g., human skin, animal skin, etc.) for drawing blood for blood glucose testing or monitoring purposes. Conventional devices require that the skin (e.g., finger) be pierced (or pinched or pricked or poked) with a sharp needle-like instrument to draw one or more drops of blood that can then be used for performing necessary tests to determine the blood glucose level.


It is to be further noted that embodiments are not limited to merely glucose monitoring and that any number and type of monitoring (also referred to as “detecting”, “observing”, or “testing”), may be performed, such as monitoring of hemoglobin, heart rate, blood pressure, body temperature (e.g., fever), etc. Furthermore, embodiments are not merely limited to humans and that the aforementioned monitoring (e.g., monitoring of glucose, hemoglobin, heart rate, blood pressure, body temperature (e.g., fever), etc.) may be performed on any number and type of animals.


In one embodiment, the device helps patients take control of their disease as well as facilitates physicians to view and analyze complete glucose profile for the respective patients. Further, in one embodiment, the device aims to increase SMBG compliance rate that can ultimately reduce the disease burden globally. Embodiments provide for measuring glucose levels by using, for example, a near infrared technique, using, for example, set parameters and mathematical algorithms which are capable of correcting the received values according to the gold standard values.


Throughout this document, terms like “logic”, “component”, “module”, “framework”, “engine”, “mechanism”, “technique”, “element”, and/or the like, may be referenced interchangeably and include, by way of example, software, hardware, and/or any combination of software and hardware, such as firmware. Further, any use of a particular brand, word, term, phrase, name, acronym, or the like, such as “glucometer”, “self-monitoring of blood glucose” or “SMBG”, “lower or middle income countries” or “LMIC”, “blood sugar monitoring device”, and/or the like, should not be read to limit embodiments to software or devices that carry that label in products or in literature external to this document. Further, for the sake of brevity, clarity, and ease of understanding, certain devices, techniques, methods, materials, conditions, diseases, etc., may be referenced by name or their acronym while other are ignored; however, it is to be noted that embodiments are not limited to these or any other particular devices, techniques, methods, materials, conditions, diseases, etc., and that embodiments are applicable and compatible to and workable with all forms, manners, brands, types and numbers of devices, techniques, methods, materials, conditions, diseases, etc.



FIG. 1 illustrates a computing device 100 (e.g., glucose monitoring device) hosting a non-invasive glucose monitoring mechanism 110 and non-invasive glucose monitoring elements 112 according to one embodiment. Computing device 100 serves as a host machine for employing non-invasive glucose monitoring mechanism (“monitoring mechanism”) 110 and non-invasive glucose monitoring elements (“monitoring elements”) 112 for non-invasive blood sugar/glucose monitoring, including self-monitoring of glucose level. Throughout the document, computing device 100 may be interchangeably referred to as (but not limited to) “host machine”, “glucometer”, “glucometer device”, “glucose monitoring device”, “non-invasive blood sugar monitor” “non-invasive blood glucose monitor”, “glucometer monitor”, “monitoring device”, simply “device” or “monitor”.


It is contemplated that blood glucose monitoring refers to testing of concentration of glucose in the blood (e.g., glycaemia) and it is particularly important for patients with diabetes. Embodiments provide for monitoring device 100 having monitoring mechanism 110 and monitoring elements 112 for facilitating non-invasive/non-piercing monitoring of blood glucose, where the non-invasive monitoring is performed without having to pierce or prick the skin (e.g., finger) or having the need for drawing blood.


Although throughout this document monitoring device 100, monitoring mechanism 110, and monitoring elements 112 are discussed with reference to glucose monitoring in humans, it is contemplated and in some embodiments, monitoring device 100, monitoring mechanism 110, and monitoring elements 112 are not limited to monitoring of glucose or humans and that they may be used for monitoring of other conditions in humans, such as hemoglobin, heart rate, blood pressure, body temperature (e.g., fever), etc., and similarly, in some embodiments, monitoring device 100, monitoring mechanism 110, and monitoring elements 112 are not limited to merely humans and that they may be used for monitoring of various conditions, such as glucose, hemoglobin, heart rate, blood pressure, body temperature (e.g., fever), etc., in animals.


Computing device 100 may include large computing systems, such as server computers, desktop computers, etc., and may further include set-top boxes (e.g., Internet-based cable television set-top boxes, etc.), global positioning system (GPS)-based devices, etc. Computing device 100 may include mobile computing devices, such as cellular phones including smartphones (e.g., iPhone® by Apple®, BlackBerry® by Research in Motion®, etc.), personal digital assistants (PDAs), tablet computers (e.g., iPad® by Apple®, Galaxy 3® by Samsung®, etc.), laptop computers (e.g., notebook, netbook, Ultrabook™ system, etc.), e-readers (e.g., Kindle® by Amazon®, Nook® by Barnes and Nobles®, etc.), etc.


Computing system 100 may serve as a glucometer device employing and hosting monitoring mechanism 110 which may be accessed by a user directly (such as by placing a finger in a dedicated finger placement area) or through one or more other computing devices (such as mobile computing devices, such as a smartphone, a tablet computer, a laptop computer, etc.). The term “user” may refer to an individual or a group of individuals (e.g., end-users, such as human beings including, but not limited to, patients, doctors, nurses, laboratory technicians, etc., administrative users, such as software programmers, system administrators, laboratory or office managers, etc.) who can access (to use or alter) various features of monitoring mechanism 110. Monitoring mechanism 110 may be offered as a software program or application (e.g., a downloaded or cloud-based application, such as a business application, a website, etc.) at computing device 100 or one or more of the other computing devices accessible to the user.


Computing device 100 includes an operating system (OS) 106 serving as an interface between any hardware or physical resources of the computer device 100 and a user. Computing device 100 further includes one or more processors 102, memory devices 104, network devices, drivers, or the like, as well as input/output (I/O) sources 108, such as touchscreens, touch panels, touch pads, virtual or regular keyboards, virtual or regular mice, etc. It is to be noted that terms like “node”, “computing node”, “server”, “server device”, “cloud computer”, “cloud server”, “cloud server computer”, “machine”, “host machine”, “device”, “computing device”, “computer”, “computing system”, and the like, may be used interchangeably throughout this document. It is to be further noted that terms like “application”, “software application”, “program”, “software program”, “package”, and “software package” may be used interchangeably throughout this document. Similarly, terms like “job”, “input”, “request” and “message” may be used interchangeably throughout this document.



FIG. 2 illustrates a non-invasive glucose monitoring mechanism 110 and non-invasive glucose monitoring elements 112 according to one embodiment. In one embodiment, monitoring mechanism 110 includes any number and type of components, such as (1) detection (interruption) logic 201; (2) observation/reading logic 203; (3) signal conversion logic 205; (4) processing engine 207 including (a) calibration logic 209 having (i) absolute value computation module 211 and (ii) error rectification module 213, (b) predictive analysis logic 215, and (c) sampling device and presentation logic (“presentation logic”) 217; (5) settings adjustment logic (“adjustment logic”) 219; and (6) communication/compatibility logic 221. In one embodiment, monitoring elements 112 include placement area 231 having biometric sensor 247; peripheral interface controller (“interface controller”) 233; adjustment control component (“adjustment component”) 235; light source 237 including emission control component (“emission component”) 239; sensor 241 including reception control component (“reception component”) 243; and display screen 245.


Embodiments provide for monitoring device 100 having monitoring mechanism 110 and monitoring elements 112 for facilitating non-invasive/non-piercing monitoring of blood glucose, where the non-invasive monitoring is performed without having to pierce or prick the skin (e.g., finger) or having the need for drawing blood. In one embodiment, upon turning on monitoring device 100, such as by turning on an on/off switch, a light begins to emit from emission component 239 of light source 237 which may be placed within a top or upper chamber (also referred to as “lid”, “portion”, “half” or “section”), such as top chamber 401 of FIG. 4A, of device 100. The emitted light may then travel down to a bottom or lower chamber (similarly, also referred to as “lid”, “portion”, “half” or “section”), such as bottom chamber 403 of FIG. 4A, of device 100 where the light may be received by reception component 243 of photo or light sensor 241 that is placed in the bottom chamber of device 100.


In one embodiment, the light may include an infrared light emitted from emission component 239 (e.g., an infrared light-emitting diode (“LED”), such as a two-lead semiconductor, etc.) of light source 237 and received at reception component 243 (e.g., phototransistor or light receptor, such as L14G1/2/3, a silicone phototransistor hermetically sealed package with a combination of, for example, LED55B/55C or LED56 Gallium Arsenide (GaAs)) of light sensor 241, where the light may be transmitted over a wavelength and is passed through a couple of beams, such as an emission beam (as facilitated by emission component 239) and a reception beam (as facilitated by reception component 243).


Further, the light may be transmitted over a peak emission wavelength (such as 940 nm, etc.) and an emission angle, such as ±8 degrees at ½ power, etc. It is contemplated that embodiments are not limited to any particular wavelength (e.g., a peak wavelength may be chosen from any range of wavelengths, such as from 640 nm to 1000 nm, etc.) but for the sake of brevity and ease of understanding, throughout this document, a particular wavelength, such as 940 nm, may be regarded as associated with the light and referred to as the peak emission wavelength. Further, in some embodiments, wavelengths may be adjusted within device 100 supporting one or more wavelengths as deemed necessary and appropriate for performing fine glucose monitoring and subsequently, producing accurate glucose readings.


Once device 100 has been turned on and the light has started to travel, a person may place their finger (or thumb, toe, etc.) into placement area 231 which, as a result, may then interrupt the light running between light source 237 and sensor 239. In one embodiment, this interruption and the light passing through the finger may be detected by detection (interruption) logic 201 and received at interface controller 233 (e.g., 8 bit peripheral interface controller, such as Atmega328/328P, etc.) in the form of an analog signal and further, this interruption generates an observation or reading which may be detected or read by observation/reading logic 203. It is contemplated that at this level of monitoring, the observations (also referred to as “observation readings” or “initial readings”) may be made in an analog signal form and continue for a given time period and/or a number of observations set forth at device 100. For example and in one embodiment, device 100 may be set to facilitate observation/reading logic 203 to obtain a fixed number or range of observation readings over an unlimited period of time (such as set to obtain 5 observations, 10 observations, 40-50 observations, etc.) or an unlimited number of observation readings over a fixed period or range of time (such as set to obtain any number of values for 5 seconds, 10 seconds, 30-60 seconds, etc.).


It is contemplated that embodiments are not limited to any of the wavelengths, emission angels, observation readings, time periods, etc., and that any of such values may be set to be fixed, varied, or adjusted or modified, etc., as deemed necessary or appropriate by or based on, for example, updated research, medical opinions, medical personnel, patient or end-user needs, etc. In one embodiment, these settings, variances, and adjustments, etc., may be programmed-in as default values and/or set at the time of manufacturing while, in another embodiment, these values may be set or changed via settings adjustment logic 219 as facilitated by an external or physical adjustment component 235 that is capable of being used by an individual (e.g., system administrator, computer programmer, medical personnel (such as a doctor, a nurse, etc.), etc.).


Placing the finger at placement area 231 and into the light path going through the insulated emission and receiving cavities may reduce the effects of the external light causing variation in the wavelength at the time of the light being received at reception component 243. In some embodiments, placement area 231 may include an optional biometric sensor 247 to sense certain biometric features of the person, such as fingerprints, etc., to have and maintain glucose reading data relating to each person using device 100. This variation may be considered an interruption and used for calibration that may set the absolute value for the next coming signals for the same finger. This signal may then be converted into digital information in the form of numbers that may be treated by mathematical algorithms using predictive values of the sample.


For example and in one embodiment, as aforementioned, any number of interruptions are sensed in a wave form (e.g., analog signal) and noted as observation readings by observation/reading logic 203. These readings are then provided to signal conversion logic 205 where the analog signals are converted into digital signals for further evaluation and processing by processing engine 207. For example, if device 100 was preset such that observation/reading logic 203 was programmed to take 10 observation readings on the same finger over a time period of 10 seconds, then these 10 observation readings may all be converted from analog signals to digital signals by signal conversion logic 205 before they are sent to processing engine 207.


At processing engine 207, in one embodiment, the digital signals are put through a calibration process including producing a number of absolute values using absolute value computation module 211. The calibration process may further include using error rectification module 213 for identifying and rectifying any errors encountered during calculation of absolute values by applying or introducing various coefficients to the calculation process so that proper absolute values may be produced. In one embodiment, as will be further described below, various components and algorithms (e.g., software programs, mathematical formulae, etc.) may be used to perform the various tasks of calibration logic 209 and other components 215, 217 of processing engine 207. In one embodiment, absolute value computation module 211 may be used to calculate an average of the absolute values. Using the above example, an absolute value may be obtained for each of the 10 observation readings and the 10 absolute values may then be divided by 10 to obtain the average absolute value.


For example, using monitoring mechanism 110, one or more of the mathematical formulae discussed below may be applied to obtain a sample of a number of sample absolute values, such as 999, 998, 999, 997 and 999, and these values may then be used to calculate an average absolute value, such as 998.4 which may be rounded down to 998, in this example, and known as a sensor value. In some embodiments, a mean absolute value may be obtained instead of or in addition to the average absolute value. In one embodiment, this average absolute value may then be applied to one or more formulate or algorithms to compute a final glucose reading, where the formulae/algorithms may take into consideration any number and type of values, such as (but not limited to) time periods, observations readings, raw values, absolute values, etc., and other values, variables, coefficients, and constants, etc., to arrive to the final glucose (“GL” or “Gl”) reading. For example, in one embodiment, a final Gl reading may be calculated as 90 mg/dL based on the average absolute value of 998 and other relevant values, such as, using a formula, having multiplied 998 by 0.828 and then deducting from 917 to arrive at 90 mg/dL (e.g., 917−(0.828*998)) which is then displayed. However, it is contemplated that any of the aforementioned computations, including any final glucose reading calculations, may be performed using any number and type of formulae and algorithms, including (but not limited to) the ones aforementioned and disclosed below.


In one embodiment, predictive analysis logic 215 performs additional processing to convert the average absolute value into a final glucose reading (also referred to as “final reading”). As will be further described below, in one embodiment, various components and algorithms (e.g., software programs, mathematical formulae, etc.) may be used to perform the various tasks of predictive analysis logic 215 to obtain the final glucose reading. At sampling device and presentation logic 217, the final glucose reading may then be prepared for presentation by at display screen 245. For example, the final reading may be presented in any number of presentation forms, such as purely in numbers, words/text or characters, colors (e.g., red for high or low, blue or green for normal, etc.), symbols (such as an up-down arrow showing a trend or a number higher or lower than a threshold number for a particular user (e.g., patient)), graphical presentations (e.g., line graph, pie chart, bar chart, etc.), etc.


Blood sugar/glucose levels are typically measured in milligrams per deciliter (e.g., mg/dL). For example, a blood glucose range for a normal fasting person (e.g., no food for eight hours) may be 70 and 99 mg/dL, such as 80 mg/dL. In some embodiments, this final reading may be displayed on display screen 245 on its own or along with any number or type of other sets of data, such as a green circle or a smiley face for normal reading, a written or textual statement, such as “normal level”, etc., person's name, final reading history, etc. Similarly, a fasting blood glucose range for a pre-diabetic person is regarded as 100-125 mg/dL and any reading within that range, such as 110 mg/dL, may be displayed on display screen 245 on its own or along with any number and type of other sets of data, such as a red flashing light for warning, a written or textual statement, such as “pre-diabetic condition detected”, etc., person's name, final reading history, etc.


In embodiment, the final glucose reading may be displayed on display screen/device 245 (as shown in FIG. 4C) and it is contemplated that embodiment are not limited to any particular type of display screen 245 may include any number and type of display screens or devices, such as (but not limited to) liquid crystal display (CLD) display, organic light-emitting diode (OLED) display, light-emitting diode (LED) display, electroluminescent display (ELD), plasma display panel (PDP), surface-conduction electron-emitter display (SED), carbon nanotubes, quantum dot display, interferometric modulator display (IMOD), etc.


Additional Technical Description


In one embodiment, following techniques and/or algorithms may be employed to facilitate mechanism 110 and elements 112 to perform various tasks and functions as described above; however, it is contemplated that embodiments are not limited to merely the following techniques or algorithms.


Acquisition Method


In some embodiments, the various techniques, components, and/or algorithms employed and used in the aforementioned processing of acquiring observation readings and absolute values and producing the final glucose readings may use (but not limited to) one or more of the following:


Lambert's Law


The proportion of incident light absorbed by a transparent medium may be independent of the intensity of the light (such as provided that there is no other physical or chemical change to the medium) and accordingly, successive layers of equal thickness may transmit an equal proportion of the incident energy.


Beer's Law


The absorption of light may be directly proportional to both the concentration of the absorbing medium and the thickness of the medium in the light path. A combination of the two laws (e.g., known jointly as the Beer-Lambert Law) may define the relationship between absorbance (A) and transmittance (T). In one embodiment, the light at the resonance wavelength of initial intensity, Io, may be focused on the flame cell containing ground state atoms. The initial light intensity may be decreased by an amount determined by the atom concentration in the flame cell and the light may then be directed onto the detector where the reduced intensity, I, is measured. In one embodiment, the amount of light absorbed may be determined by comparing I to Io.


Further, several related terms may be used to refer to the amount of light absorption that may have taken place. For example, “transmittance” may be used to refer to the ratio of the final intensity to the initial intensity and serve as an indication of the fraction of the initial light which passes through the flame cell to fall on the detector. Similarly, “percent transmission” may refer to the transmittance expressed in percentage terms, such as:







%





T

=

100
×

I

I
o







These terms are easy to visualize on a physical basis, such as “absorbance” may refer to a mathematical quantity, such as:






A
=

log


(


I
o

I

)






Further, absorbance may refer to characterizing light absorption in absorption spectrophotometry, as this quantity may follow a linear relationship with concentration. Beer's Law may be used to define this relationship as:





A=abc


In A=abc, A may refer to the absorbance, where a may refer to the absorption coefficient, a constant which is characteristic of the absorbing species at a specific wavelength, where b may refer to the length of the light path intercepted by the absorption species in the absorption cell, and where c may refer to the concentration of the absorbing species. Further, this equation states that the absorbance may be directly proportional to the concentration of the absorbing species for a given set of instrumental conditions.


Source Handling


In on embodiment, near Infra-Red (Near-IR) spectroscopy may be used by mechanism 110 and/or elements 112 to perform non-invasive blood glucose monitoring. For example, NIR diffuse reflectance spectroscopy may involve the illumination of a spot on the body with low-energy near-IR light (e.g., 750-2500 nm), where the light may be partially absorbed and scattered, according to its interaction with chemical components within the tissue of the finger, before being transmitted to be detected by detection (interruption) logic 201.


Infrared Spectroscopy


In one embodiment, spectroscopy may be used for identifying molecules as each molecule may have its own characteristic band where radiation may be absorbed at a specific wavelength. In this case, for example, the glucose absorption curves may be small and have artifacts from various layers of tissues. In one embodiment, mechanism 110 may perform one or more processes for monitoring glucose using several absorption frequencies, where the light is partially absorbed and scattered, according to its interaction with chemical components within the tissue of the finger, before being reflected back to detection (interruption) logic 201. It is contemplated that detection (interruption) logic 201 may facilitate a detector (not shown) for detection of interruption, where the detector may be part of monitoring elements 112, such as independently placed or being part of light sensor 241.


Light Scattering


In one embodiment, the skin of the finger may be radiated with infrared radiation and its scattering may be observed via observation/reading logic 203, wherein the presence of glucose may change the effects of the scattering and thus providing a useful way of monitoring concentrations.


Near-IR and Tissue Optical Properties


Furthermore, water, which is regarded as a major component of biological tissues, may have a simple infrared (IR) spectrum and a rich combination and overtone spectrum that can be extended into the near-IR. The assignment of the near-IR absorption bands for water may be used, where the intensity of the near-IR absorption bands for water may be sensitive to solute concentration and temperature. For example, it decreases as solute concentration increases because of the change in the molar ratio of water. The 600-1100 nm region of the spectrum may represent a window between the hemoglobin or glucose and visible absorption bands and water IR absorption, where the light can penetrate deep enough into the tissue to allow a spectral measurement or a therapeutic procedure. This spectral region may then be used for oxygen saturation, pulse oximetry, laser-Doppler flow measurements, etc.


Furthermore, processes, such as transport equation and diffusion theory, etc., may unfold description of the path of photons through human tissue as it expresses light propagation in tissues by a set of spectroscopic properties; the absorption coefficient, μa, the scattering coefficient, μs, the refractive index of the cells and the interstitial fluid; and the anisotropy factor g (the average cosine of the angle at which a photon is scattered). Another set of properties may include transport properties, such as the reduced scattering coefficient μs′, where μs′=μs [1−g]. The absorption coefficient, μa, equals the absorbance per unit path length, 2.303 εC cm31 1, where ε is the molar absorptivity and C is the molar concentration. The scattering coefficient μs=σρ where σ is the scattering cross-section and ρ is the number density of the particle. It has the same unit as μa (cm−1) and is equivalent to the product of an absorptivity caused by scattering and the concentration of the scattering centers.


In one embodiment, various methods that are used for measuring the optical properties of tissues (e.g., μs, μa, and g) may include transmission, diffuse and localized reflectance, frequency domain measurement, etc.


Effect of Glucose on Absorption Properties of Tissues


It is contemplated that glucose may affect the measured transmitted or reflected signal by absorption of light at the overtone and combination band wavelengths, where light absorption may be expressed as I=Icεa−u, where l is the effective path length in the medium, and μa is the absorption coefficient. Further, changes in glucose concentration may influence the measured μa of tissue through changes in absorption corresponding to water displacement (e.g., absorption decreases as glucose concentration increases) or changes in its intrinsic absorption (e.g., absorption increases as glucose concentration increases). Changes in μa because of water displacement may be nonspecific, and analytics with higher molecular weights may displace more water than is done by glucose. Changes in the temperature and hydration status of the body may affect water absorption bands and act as noise sources for an NI glucose measurement. The glucose μa in the near-IR may be low and can be much smaller than that of water. However, its magnitude may be too small to allow for direct absorption measurements at wavelengths <1400 nm Attenuation of light (<1400 nm) in a small body part, such as an average-sized human finger, may vary in the range of 3-4 absorbance units, and the expected change in absorbance because of a 5 mmol/L change in glucose concentration may be ˜10−5 absorbance units.


Effect of Glucose on Tissue Scattering


Changes in glucose concentration may affect the intensity of light scattered by tissue, where the reduced scattering coefficient of a tissue can be expressed in a function form as:







us


-

f


(

ρ
,
a
,


n





cells


n





medium



)






Where ρ is the number density of scattering cells in the observation volume, a is the diameter of the cells, n cells is their refractive index, and n medium is the refractive index of interstitial fluid. Changes in the n medium may not be specific for a particular analysis and affected by any change in the total concentration of solutes in blood and interstitial fluid. During the hyperglycemic phase, the glucose concentration may change frequently, whereas other analytic concentrations may change comparatively at a slower rate. It may be possible to relate δμs′ to changes in glucose concentration over a short time span. The measured nth water may decrease as the temperature increases. This can affect n cells/n medium in tissue and presents a source of error in scattering measurements. Values of μs′ are reported to decrease with the increasing concentrations of glucose and other sugars in tissue-simulating phantoms because of their effect on n medium. Short Wavelength near infrared (640-1000 nm) spectra of aqueous solution of D-glucose may be monitored, where the Observation yields that maximum absorption may occur in the range of 920-950 nm, so the selected wavelength for device 100 of FIG. 1 may be 940 nm and then used for non-invasive glucometry.


Monitoring device 100 may further include any number and type of touch/image components, where these touch/image components may include (but not limited to) image capturing devices (e.g., one or more cameras, etc.) and image sensing devices, such as (but not limited to) context-aware sensors (e.g., temperature sensors, feature measurement sensors, etc.) working with one or more cameras, environment sensors (such as to sense background colors, lights, etc.), biometric sensors, such as biometric sensor 247 (to detect fingerprints, etc.), and the like. Monitoring device 100 may also include one or more software applications to allow for sharing of user glucose information with the user (e.g., patient), user's family members or friends, medical personnel (e.g., user's doctor, nurse, etc.), etc., via email, text, voice, social network websites (e.g., Facebook®, Google+®, Twitter®, etc.), communication applications (e.g., Skype®, Tango®, Viber®, etc.), etc., offering one or more user interfaces (e.g., web user interface (WUI), graphical user interface (GUI), touchscreen, etc.) via display screen or device 245, while ensuring compatibility with changing technologies, parameters, protocols, standards, etc.


Communication/compatibility logic 221 may be used to facilitate dynamic communication and compatibility between monitoring device 100 and any number and type of other similar monitoring devices or other types of computing devices (such as a mobile computing device, a desktop computer, a server computing device, etc.), medical devices, storage devices, databases and/or data sources (such as data storage devices, hard drives, solid-state drives, hard disks, memory cards or devices, memory circuits, etc.), networks (e.g., cloud network, the Internet, intranet, cellular network, proximity networks, such as Bluetooth, Bluetooth low energy (BLE), Bluetooth Smart, Wi-Fi proximity, Radio Frequency Identification (RFID), Near Field Communication (NFC), Body Area Network (BAN), etc.), wireless or wired communications and relevant protocols (e.g., Wi-Fi®, WiMAX, Ethernet, etc.), connectivity and location management techniques, software applications/websites, (e.g., social and/or business networking websites, such as Facebook®, LinkedIn®, Google+®, Twitter®, etc., business applications, etc.), programming languages, etc., while ensuring compatibility with changing technologies, parameters, protocols, standards, etc.


It is contemplated that any number and type of components may be added to and/or removed from monitoring mechanism 110 and/or monitoring elements 112 to facilitate various embodiments including adding, removing, and/or enhancing certain features. For brevity, clarity, and ease of understanding of monitoring mechanism 110 and monitoring elements 112, many of the standard and/or known components, such as those of a computing device, are not shown or discussed here. It is contemplated that embodiments, as described herein, are not limited to any particular technology, topology, system, architecture, and/or standard and are dynamic enough to adopt and adapt to any future changes.



FIG. 3A illustrates a transaction sequence 300 for facilitating non-invasive blood glucose monitoring using non-invasive glucose monitoring device 100 of FIG. 1 according to one embodiment. Transaction sequence 300 may be performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic, etc.), software (such as instructions run on a processing device), or a combination thereof. In one embodiment, transaction sequence 300 may be performed by monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 1. The processes of transaction sequence 300 are illustrated in linear sequences for brevity and clarity in presentation; however, it is contemplated that any number of them can be performed in parallel, asynchronously, or in different orders.


Embodiments provide for monitoring device 100 having monitoring mechanism 110 and monitoring elements 112 of FIG. 1 for monitoring of blood glucose in persons without having to pierce the skin (e.g., finger) or having the need for drawing blood. Referring to various components of monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 2, in one embodiment, method 300 begins at processing block 301 with a light source, such as light source 237, transmitting light at a fixed wavelength through an emitting focused beam at block 303. At block 305, a light path is generated and, at block 307, when a finger is placed at a placement area, such as placement area 231, the finger interrupts the light path while the light passes through the finger and is detected by a photo sensor, such as photo sensor 241, through a light receiving focused beam at block 309.


In one embodiment, at block 313, the light may be receive at a peripheral interface controller, such as peripheral interface controller 233, as analog signals and is then detected, such as by detection (interruption) logic 201, and processed by monitoring mechanism 110 at block 315. For example, at block 317, calibration of signals (e.g., digital signals converted from analog signals) and further processing of data is performed via calibration logic 209. Further, at block 319, a number absolute values corresponding to the detected signals are computed and then an average absolute value is obtained by absolute value computation logic 211. At block 321, predictive analysis logic 215 samples through the processes of blocks 317 and 319 and obtains a final glucose reading for the user placing the finger. At block 323, sample device and presentation logic 217 facilitates presentation of the final glucose reading at a display screen, such as display screen 245.



FIG. 3B illustrates a method 340 for facilitating non-invasive blood glucose monitoring using non-invasive glucose monitoring device 100 of FIG. 1 according to one embodiment. Method 340 may be performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, programmable logic, etc.), software (such as instructions run on a processing device), or a combination thereof. In one embodiment, method 340 may be performed by monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 1. The processes of method 340 are illustrated in linear sequences for brevity and clarity in presentation; however, it is contemplated that any number of them can be performed in parallel, asynchronously, or in different orders.


Embodiments provide for monitoring device 100 having monitoring mechanism 110 and monitoring elements 112 of FIG. 1 for monitoring of blood glucose in persons without having to pierce the skin (e.g., finger) or having the need for drawing blood. Referring to various components of monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 2, in one embodiment, method 340 begins at block 341 when turning on of a non-invasive glucose monitoring device, such as monitoring device 100 of FIG. 1, by turning on an on-off switch. At block 343, upon turning on of the monitoring device, an infrared light is generated at a light source (e.g., infrared LED) within the monitoring device and passes through, for example, a couple of light beams, such as an emitting bean and a receiving beam, before reaching a light or photo sensor also within the monitoring device. In one embodiment, the infrared light may be of different wavelength as deem necessary and appropriate based on one or more factors described earlier in this document; for example, these wavelengths may range from (but not limited to) 640 nm to 1000 nm and, for example, a particular wavelength, such as 940 nm, may be chosen from the range.


At block 345, a finger (such as an index finger or any other finger or a thumb, a toe, etc.) of a user (e.g., any individual, such a healthy individual, a patient, etc.) may be placed within a placement area of the monitoring device to facilitate glucose monitoring of the user. In some embodiments, the placement area may contain one or more sensors, such as biometric sensor, to sense the human finger and other features relating to the user, such as fingerprints, etc., that can reveal certain information about the user, such as their age, gender, race, ethnicity, medical history, such as cardiovascular problems, previous glucose readings, etc. At block 347, in one embodiment, the interruption in the light flow is detected as the infrared light is interrupted by the finger being placed in the placement area which is in the path of the light flowing on the emitting and receiving beams.


At block 349, observation readings relating to any number of light interruptions are detected and read in a wave form, such as in the form of analog signals. For example, 5-10 interruptions may be observed and read within a period of 10 seconds. At block 351, these analog signals are converted into digital signals. In one embodiment, at block 353, the digital signals are processed to generate corresponding absolute values and any errors associated with any of the absolute values detected during the processing are rectified by applying different coefficients to the various processes or processing algorithms. At block 355, an average of the absolute values is obtained. At block 357, in one embodiment, the average absolute value is calculated into a final glucose reading which is then displayed at a display screen of the monitoring device at block 359.



FIG. 4A illustrates a front/side view of monitoring device 100 of FIG. 1 according to one embodiment. It is to be noted that for the sake of brevity, clarity, and ease of understanding, several details already discussed with reference to the preceding FIGS. 1-3B are not discussed or repeated here with reference to FIGS. 4A-4D. In the illustrated embodiment, monitoring device 100 may include monitoring mechanism 110 and monitoring elements 112 of FIG. 1 to perform one or more tasks to facilitate non-invasive blood glucose monitoring as described throughout this document, such as with reference to FIGS. 1-4. In one embodiment, monitoring device 100 may include a computing system having one or more processing devices, logic including and/or based on software, hardware, and/or any combination of software and hardware, such as firmware.


In the illustrated embodiment, a front/side view of monitoring device 100 is shown to have top chamber 401 and bottom chamber 403. As illustrated, a symmetrical portion from both top and bottom chambers 401, 403 may be removed to make place for placement area 231 where, for example, a finger may be placed for monitoring of glucose. As aforementioned, embodiments provide for novel and innovative technique for monitoring of glucose without having to follow the conventional techniques of piercing or pinching fingers with a needle like instrument to obtain one or more drops of blood for testing purposes. In one embodiment, top and bottom chambers 401, 403 may be connected or joined together in the back with a roller-like connector 405 so that the two chambers 401, 403 may be easily opened or closed for easy placement of fingers, thumbs, toes, etc.


For example, FIG. 4B illustrates a side view of monitoring device 100 of FIG. 1 having a finger 494 (e.g., a human finger) placed in placement area 231 while top and bottom chambers 401, 403 and brought together such that finger 494 is firmly, yet gently, held in place to interrupt the infrared light running on beams between top and chambers 401, 403 as further described with reference to FIG. 2. Once a number of observations reading have been taken or a given time period for testing has expired, top and bottom chambers 401, 403 may then be pulled away from each other to release finger 494 as illustrated in FIG. 4B As aforementioned with respect to FIG. 2, placement area 231 may include one or more sensors, such as biometric sensor 247, etc.



FIG. 4C further illustrates a top/back view of monitoring device 100 of FIG. 1 showing display device/screen 245, as part of top chamber 401, to display readings relating to monitoring of glucose, hemoglobin, heart rate, body temperature, blood pressure, etc., as well as other information, such as patient name, identification number, age, medical history, historical final readings in numbers or text or graphs or charts, lights or symbols (e.g., circles, bars, animated figures, etc., for providing messages or warnings (e.g., red circle for a glucose reading that is too high, yellow flashing light for a glucose reading that is too low, a happy face for normal, etc.), and the like. Display screen 245 may further display other relevant information, such as real-time number of observation readings, monitoring time period in real-time, current time, current outside or room temperature, names or identification numbers of medical personnel (e.g., patient's doctor, nurse, etc.), and the like.


Now referring to FIG. 4D, it illustrates an unassembled view of monitoring device 100 of FIG. 1. As illustrated, monitoring device 100 includes top chamber 401, bottom chamber 403, connector 405, base 407, placement area 231 including top portion 411 that is attached to top chamber 401 and bottom portion 413 that is attached to bottom chamber 403, display device/screen 245, and processor 102 which may the same as or similar to processor 502 of FIG. 5. In one embodiment and as further described with reference to FIG. 2, monitoring elements 112 may be placed in any number of places within or coupled to monitoring device 100. For example, display screen 245 may be part of top chamber 401, as illustrated, or another part of monitoring device 100 or a separate display device (e.g., compute monitor, camera display, television, medical equipment screen, etc.) may be coupled to or placed in communication with monitoring device 100. Similarly, processor 102 may be part of top chamber 501, as illustrated, or bottom chamber 503 or, for example, a separate computing device may be coupled to or placed in communication with monitoring device 100.


Further, display screen 245 may also be used to serve as a user interface (e.g., GUI, WUI, touchscreen, etc.) for inputting and/or outputting information, such as user (e.g., patient) data including, for example, name, identification number, historical figures, names or codes of prescription drugs, date of last checkup, doctor/nurse name, etc. In one embodiment, display screen 245 may include a touchscreen (e.g., an interactive touchscreen) for inputting, outputting, editing, etc., information by touching display screen and further, display screen may offer a virtual keyboard that may be touched input information and set user preferences (e.g., font size, color, clock or no clock, overall user preference of data/information to be displayed via display screen 245, etc.).


It is contemplated that top and bottom chambers 401, 403 and various other parts of monitoring device 100 may be made from any number and type of materials, such as plastic, rubber, silicon, glass, iron, steel, etc., or any combination thereof and that monitoring device 100 is not limited to any particular number or type of material. It is contemplated that monitoring device 100 may further include other monitoring elements 112, such as peripheral interface controller 233 (e.g., inside bottom chamber 503), adjustment control component 233 (e.g., externally at top chamber 501), light source 237 including emission control component 239 (e.g., inside top chamber 501), light sensor 241 including reception control component 243 (e.g., inside bottom chamber 503), etc. Moreover, any number of components or parts (e.g., one or more of processors, memory, operating systems, display screens, sensors, cables, connectors, scanners, sensors, readers, etc.) may be added to or removed from monitoring device 100 to perform various tasks relating to non-invasive blood glucose monitoring as described throughout this document.



FIG. 5 illustrates a diagrammatic representation of a machine 500 in the exemplary form of a computer system, in accordance with one embodiment, within which a set of instructions, for causing machine 500 to perform any one or more of the methodologies discussed herein, may be executed. Machine 500 may be the same as or similar to or contained within monitoring device 100 employing monitoring mechanism 110 and/or monitoring elements 112 of FIG. 1 according to one embodiment. In alternative embodiments, machine 100 may be connected (e.g., networked) to other machines either directly, such as via media slot or over a network, such as a cloud-based network, a Local Area Network (LAN), a Wide Area Network (WAN), a Metropolitan Area Network (MAN), a Personal Area Network (PAN), an intranet, an extranet, or the Internet. The machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment or as a server or series of servers within an on-demand service environment, including an on-demand environment providing multi-tenant database storage services.


Certain embodiments of the machine may be in the form of a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, switch or bridge, computing system, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines (e.g., computers) that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


The exemplary computer system 500 includes one or more processors 502, a main memory 504 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc., static memory 542, such as flash memory, static random access memory (SRAM), volatile but high-data rate RAM, etc.), and a secondary memory 518 (e.g., a persistent storage device including hard disk drives and persistent multi-tenant data base implementations), which communicate with each other via a bus 530. Main memory 504 includes instructions 524 (such as software 522 on which is stored one or more sets of instructions 524 embodying any one or more of the methodologies or functions of monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 1 and other figures described herein) which operate in conjunction with processing logic 526 and processor 502 to perform the methodologies discussed herein.


Processor 502 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 502 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 502 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 502 is configured to execute the processing logic 526 for performing the operations and functionality of monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 of FIG. 1 and other figures discussed herein. Further, processor 502 and memory 504 may be the same as or similar to processor 102 and memory 104, respectively, of FIG. 1.


The computer system 500 may further include a network interface device 508, such as a network interface card (NIC). The computer system 500 also may include a user interface 510 (such as a video display unit, a liquid crystal display (LCD), or a cathode ray tube (CRT)), an alphanumeric input device 512 (e.g., a keyboard), a cursor control device 514 (e.g., a mouse), a signal generation device 540 (e.g., an integrated speaker), and other devices 516 like cameras, microphones, integrated speakers, etc. The computer system 500 may further include peripheral device 536 (e.g., wireless or wired communication devices, memory devices, storage devices, audio processing devices, video processing devices, display devices, etc.). The computer system 500 may further include a hardware-based application programming interface logging framework 534 capable of executing incoming requests for services and emitting execution data responsive to the fulfillment of such incoming requests.


Network interface device 508 may also include, for example, a wired network interface to communicate with remote devices via network cable 523, which may be, for example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, a parallel cable, etc. Network interface device 508 may provide access to a LAN, for example, by conforming to IEEE 802.11b and/or IEEE 802.11g standards, and/or the wireless network interface may provide access to a personal area network, for example, by conforming to Bluetooth standards. Other wireless network interfaces and/or protocols, including previous and subsequent versions of the standards, may also be supported. In addition to, or instead of, communication via the wireless LAN standards, network interface device 508 may provide wireless communication using, for example, Time Division, Multiple Access (TDMA) protocols, Global Systems for Mobile Communications (GSM) protocols, Code Division, Multiple Access (CDMA) protocols, and/or any other type of wireless communications protocols.


The secondary memory 518 may include a machine-readable storage medium (or more specifically a machine-accessible storage medium) 531 on which is stored one or more sets of instructions (e.g., software 522) embodying any one or more of the methodologies or functions of monitoring mechanism 110 and/or monitoring elements 112 of FIG. 1 and other figures described herein. The software 522 may also reside, completely or at least partially, within the main memory 504, such as instructions 524, and/or within the processor 502 during execution thereof by the computer system 500, the main memory 504 and the processor 502 also constituting machine-readable storage media. The software 522 may further be transmitted or received over network 520 via the network interface card 508. The machine-readable storage medium 531 may include transitory or non-transitory machine-readable storage media.


Embodiments may be provided, for example, as a computer program product which may include one or more machine-readable or computer-readable media having stored thereon machine-executable or computer-executable instructions that, when executed by one or more machines such as a computer, one or more processing devices, a network of computers, or other electronic devices, may result in the one or more machines carrying out operations in accordance with embodiments described herein. A machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs (Compact Disc-Read Only Memories), and magneto-optical disks, ROMs, RAMs, EPROMs (Erasable Programmable Read Only Memories), EEPROMs (Electrically Erasable Programmable Read Only Memories), magnetic or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing machine-executable instructions.


Moreover, embodiments may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of one or more data signals embodied in and/or modulated by a carrier wave or other propagation medium via a communication link (e.g., a modem and/or network connection).


Modules 544 relating to and/or include components and other features described herein (for example in relation to monitoring mechanism 110 and/or monitoring elements 112 of monitoring device 100 as described with reference to FIG. 1) can be implemented as discrete hardware components or integrated in the functionality of hardware components such as ASICS, FPGAs, DSPs or similar devices. In addition, modules 544 can be implemented as firmware or functional circuitry within hardware devices. Further, modules 544 can be implemented in any combination hardware devices and software components.


The techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices (e.g., an end station, a network element). Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals). In addition, such electronic devices typically include a set of one or more processors coupled to one or more other components, such as one or more storage devices (non-transitory machine-readable storage media), user input/output devices (e.g., a keyboard, a touchscreen, and/or a display), and network connections. The coupling of the set of processors and other components is typically through one or more busses and bridges (also termed as bus controllers). Thus, the storage device of a given electronic device typically stores code and/or data for execution on the set of one or more processors of that electronic device. Of course, one or more parts of an embodiment may be implemented using different combinations of software, firmware, and/or hardware.


References to “one embodiment”, “an embodiment”, “example embodiment”, “various embodiments”, etc., indicate that the embodiment(s) so described may include particular features, structures, or characteristics, but not every embodiment necessarily includes the particular features, structures, or characteristics. Further, some embodiments may have some, all, or none of the features described for other embodiments.


In the following description and claims, the term “coupled” along with its derivatives, may be used. “Coupled” is used to indicate that two or more elements co-operate or interact with each other, but they may or may not have intervening physical or electrical components between them.


As used in the claims, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common element, merely indicate that different instances of like elements are being referred to, and are not intended to imply that the elements so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.


The following clauses and/or examples pertain to further embodiments or examples. Specifics in the examples may be used anywhere in one or more embodiments. The various features of the different embodiments or examples may be variously combined with some features included and others excluded to suit a variety of different applications. Examples may include subject matter such as a method, means for performing acts of the method, at least one machine-readable medium including instructions that, when performed by a machine cause the machine to performs acts of the method, or of an apparatus or system for facilitating hybrid communication according to embodiments and examples described herein.


Embodiment 1 includes an apparatus to facilitate non-invasive and non-skin piercing monitoring of blood glucose, comprising: a placement area to receive a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light; observation/reading logic to detect initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part; absolute value computation module of calibration logic to calculate absolute values based on the initial readings; and predictive analysis logic to compute a final glucose reading based on the absolute values.


Embodiment 2 includes the subject matter of Embodiment 1, further comprising a light source to emit the light within the apparatus, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.


Embodiment 3 includes the subject matter of Embodiment 1, further comprising sampling device and presentation logic to prepare the final glucose reading for presentation at a display screen, wherein the display screen to display the glucose reading.


Embodiment 4 includes the subject matter of Embodiment 1, further comprising detection interruption logic to detect the interruptions causing the signals, wherein the signals include analog signals.


Embodiment 5 includes the subject matter of Embodiment 4, further comprising signal conversion logic to convert the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.


Embodiment 6 includes the subject matter of Embodiment 1, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.


Embodiment 7 includes the subject matter of Embodiment 1, further comprising error rectification module of the calibration logic to identify and rectify one or more errors associated with the computation of the absolute values.


Embodiment 8 includes the subject matter of Embodiment 1, wherein the light source includes an emission control component in a top chamber or a bottom chamber of the apparatus to emit the light, and wherein the light sensor includes a reception control component in the top chamber or the bottom chamber of the apparatus to receive the light.


Embodiment 9 that includes a method for facilitating non-invasive and non-skin piercing monitoring of blood glucose comprising: receiving a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light; detecting initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part; calculating absolute values based on the initial readings; and computing a final glucose reading based on the absolute values.


Embodiment 10 includes the subject matter of Embodiment 9, further comprising emitting the light within a glucose monitoring device, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.


Embodiment 11 includes the subject matter of Embodiment 9, further comprising: preparing the final glucose reading for presentation at a display screen; and displaying, via the display screen, the final glucose reading.


Embodiment 12 includes the subject matter of Embodiment 9, further comprising detecting the interruptions causing the signals, wherein the signals include analog signals.


Embodiment 13 includes the subject matter of Embodiment 12, further comprising converting the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.


Embodiment 14 includes the subject matter of Embodiment 9, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.


Embodiment 15 includes the subject matter of Embodiment 9, further comprising identifying and rectifying one or more errors associated with the computation of the absolute values.


Embodiment 16 includes at least one machine-readable medium comprising a plurality of instructions, when executed on a computing device, to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Embodiment 17 includes at least one non-transitory or tangible machine-readable medium comprising a plurality of instructions, when executed on a computing device, to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Embodiment 18 includes a system comprising a mechanism to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Embodiment 19 includes an apparatus comprising means to perform a method as claimed in any preceding claims.


Embodiment 20 includes a computing device arranged to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Embodiment 21 includes a communications device arranged to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Embodiment 22 includes a system comprising: a storage device having instructions, and a processor to execute the instructions to facilitate a mechanism to perform one or more operations comprising: receiving a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light; detecting initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part; calculating absolute values based on the initial readings; and computing a final glucose reading based on the absolute values.


Embodiment 23 includes the subject matter of Embodiment 26, wherein one or more operations further comprise emitting the light within a glucose monitoring device, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.


Embodiment 24 includes the subject matter of Embodiment 26, wherein one or more operations further comprise: preparing the final glucose reading for presentation at a display screen; and displaying, via the display screen, the final glucose reading.


Embodiment 25 includes the subject matter of Embodiment 26, wherein one or more operations further comprise detecting the interruptions causing the signals, wherein the signals include analog signals.


Embodiment 26 includes the subject matter of Embodiment 29, wherein one or more operations further comprise converting the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.


Embodiment 27 includes the subject matter of Embodiment 26, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.


Embodiment 28 includes the subject matter of Embodiment 26, wherein one or more operations further comprise identifying and rectifying one or more errors associated with the computation of the absolute values.


Embodiment 29 includes an apparatus comprising: means for receiving a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light; means for detecting initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part; means for calculating absolute values based on the initial readings; and means for computing a final glucose reading based on the absolute values.


Embodiment 30 includes the subject matter of Embodiment 35, further comprising: means for emitting the light within a glucose monitoring device, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.


Embodiment 31 includes the subject matter of Embodiment 35, further comprising: means for preparing the final glucose reading for presentation at a display screen; and means for displaying, via the display screen, the final glucose reading.


Embodiment 32 includes the subject matter of Embodiment 35, further comprising means for detecting the interruptions causing the signals, wherein the signals include analog signals.


Embodiment 33 includes the subject matter of Embodiment 38, further comprising means for converting the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.


Embodiment 34 includes the subject matter of Embodiment 35, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.


Embodiment 35 includes the subject matter of Embodiment 35, further comprising means for identifying and rectifying one or more errors associated with the computation of the absolute values.


Embodiment 36 includes medical device including a non-invasive non-piercing blood glucose monitoring device arranged to implement or perform a method or realize an apparatus as claimed in any preceding claims.


Any of the above embodiments may be used alone or together with one another in any combination. Embodiments encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.


While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. It is to be understood that the above description is intended to be illustrative, and not restrictive.


The drawings and the forgoing description give examples of embodiments. Those skilled in the art will appreciate that one or more of the described elements may well be combined into a single functional element. Alternatively, certain elements may be split into multiple functional elements. Elements from one embodiment may be added to another embodiment. For example, orders of processes described herein may be changed and are not limited to the manner described herein. Moreover, the actions any flow diagram need not be implemented in the order shown; nor do all of the acts necessarily need to be performed. Also, those acts that are not dependent on other acts may be performed in parallel with the other acts. The scope of embodiments is by no means limited by these specific examples. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of embodiments is at least as broad as given by the following claims.

Claims
  • 1. An apparatus comprising: a placement area to receive a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light;observation/reading logic to detect initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part;absolute value computation module of calibration logic to calculate absolute values based on the initial readings; andpredictive analysis logic to compute a final glucose reading based on the absolute values.
  • 2. The apparatus of claim 1, further comprising a light source to emit the light within the apparatus, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.
  • 3. The apparatus of claim 1, further comprising sampling device and presentation logic to prepare the final glucose reading for presentation at a display screen, wherein the display screen to display the glucose reading.
  • 4. The apparatus of claim 1, further comprising detection (interruption) logic to detect the interruptions causing the signals, wherein the signals include analog signals.
  • 5. The apparatus of claim 4, further comprising signal conversion logic to convert the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.
  • 6. The apparatus of claim 1, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.
  • 7. The apparatus of claim 1, further comprising error rectification module of the calibration logic to identify and rectify one or more errors associated with the computation of the absolute values.
  • 8. The apparatus of claim 1, wherein the light source includes an emission control component in a top chamber or a bottom chamber of the apparatus to emit the light, and wherein the light sensor includes a reception control component in the top chamber or the bottom chamber of the apparatus to receive the light.
  • 9. A method comprising: receiving a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light;detecting initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part;calculating absolute values based on the initial readings; andcomputing a final glucose reading based on the absolute values.
  • 10. The method of claim 9, further comprising emitting the light within a glucose monitoring device, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part.
  • 11. The method of claim 9, further comprising: preparing the final glucose reading for presentation at a display screen; anddisplaying, via the display screen, the final glucose reading.
  • 12. The method of claim 9, further comprising detecting the interruptions causing the signals, wherein the signals include analog signals.
  • 13. The method of claim 12, further comprising converting the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.
  • 14. The method of claim 9, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.
  • 15. The method of claim 9, further comprising identifying and rectifying one or more errors associated with the computation of the absolute values.
  • 16-21. (canceled)
  • 22. A machine-readable medium comprising a plurality of instructions, when executed on a computing device, causes the computing device to perform operations comprising: receiving a body part including a finger, wherein the body part in the placement area causes interruptions in the running of a light;detecting initial readings corresponding to the interruptions, the initial readings including signals, wherein a signal is generated each time the light is interrupted while passing through the body part;calculating absolute values based on the initial readings; andcomputing a final glucose reading based on the absolute values.
  • 23. The machine-readable medium of claim 22, wherein the operations further comprise: emitting the light within a glucose monitoring device, wherein the light is received at a light sensor and runs in beams including an emitting beam and a receiving beam, wherein the final glucose reading is computed without having to pierce or pinch the body part;preparing the final glucose reading for presentation at a display screen; anddisplaying, via the display screen, the final glucose reading.
  • 24. The machine-readable medium of claim 22, wherein the operations further comprise: detecting the interruptions causing the signals, wherein the signals include analog signals; andconverting the analog signals into digital signals, wherein the absolute values are computed based on the initial readings including the digital signals.
  • 25. The machine-readable medium of claim 22, wherein the absolute value computation module is further configured to compute an average absolute value based on the absolute values, wherein the final glucose reading is computed based on the average absolute value.
  • 26. The machine-readable medium of claim 22, wherein the operations further comprise identifying and rectifying one or more errors associated with the computation of the absolute values.
RELATED APPLICATIONS AND CLAIM OF PRIORITY

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/946576, Attorney Docket No. 9755P001Z, entitled “Non-Invasive Blood Glucose Monitor” by Shariq Khoja, et al., filed Feb. 28, 2014, and U.S. Provisional Patent Application No. 61/946580, Attorney Docket No. 9755P002Z, entitled “Non-Invasive Blood Hemoglobin Monitor” by Shariq Khoja, et al., filed Feb. 28, 2014, and the entire contents of the aforementioned applications are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/041788 6/10/2014 WO 00
Provisional Applications (2)
Number Date Country
61946576 Feb 2014 US
61946580 Feb 2014 US