Device and method for ablation of cardiac tissue

Information

  • Patent Grant
  • 8414573
  • Patent Number
    8,414,573
  • Date Filed
    Wednesday, October 11, 2006
    18 years ago
  • Date Issued
    Tuesday, April 9, 2013
    11 years ago
Abstract
Methods for delivering precise amounts of fluid into cardiac tissue for the purpose of facilitating ablation of the tissue along a desired lesion line. One method injects fluid through a hollow needle. The injected fluid can be a highly conductive fluid injected in conjunction with radiofrequency ablation to create an ablative virtual electrode. The injected conductive fluid can provide deeper and narrower conduction paths and resulting lesions. Radiofrequency ablation can be performed at the same time as the fluid injection, using the injection device as an electrode, or subsequent to the fluid injection, using a separate device. In some methods, the injected fluid is a protective fluid, injected to protect tissue adjacent to the desired lesion line. Fluid delivery can be endocardial, epicardial, and epicardial on a beating heart. The present methods find one use in performing maze procedures to treat atrial fibrillation.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of devices for cardiac surgery, and more specifically to devices for ablation of cardiac tissue.


BACKGROUND OF THE INVENTION

The present invention is directed toward treatment of tachyarrhythmias, which are heart rhythms in which a chamber or chambers of the heart exhibits an excessively fast rhythm. In particular, the present invention is directed toward treatment of tachycardias, which are due to the presence of ectopic foci within the cardiac tissue or due to the presence of aberrant condition pathways within the cardiac tissue.


There are many medical treatments that involve instances of cutting, ablating, coagulating, destroying, or otherwise changing the physiological properties of tissue. These techniques can be used beneficially to change the electrophysiological properties of tissue. For example, by ablation of cardiac tissue to cure various cardiac conditions. Normal sinus rhythm of the heart begins with the sinoatrial node (or “SA node”) generating a depolarization wave front. The impulse causes adjacent myocardial tissue cells in the atria to depolarize, which in turn causes adjacent myocardial tissue cells to depolarize. The depolarization propagates across the atria, causing the atria to contract and empty blood from the atria into the ventricles. The impulse is next delivered via the atrioventricular node (or “AV node”) and the bundle of HIS (or “HIS bundle”) to myocardial tissue cells of the ventricles. The depolarization of these cells propagates across the ventricles, causing the ventricles to contract. This conduction system results in the described, organized sequence of myocardial contraction leading to a normal heartbeat.


Sometimes aberrant conductive pathways develop in heart tissue, which disrupt the normal path of depolarization events. For example, anatomical obstacles in the atria or ventricles can disrupt the normal propagation of electrical impulses. These anatomical obstacles (called “conduction blocks”) can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called “reentry circuits,” disrupt the normal activation of the atria or ventricles.


The aberrant conductive pathways create abnormal; irregular, and sometimes life-threatening heart rhythms, called arrhythmias. An arrhythmia can take place in the atria, for example, as in atrial tachycardia, atrial fibrillation or atrial flutter. The arrhythmia can also take place in the ventricle, for example, as in ventricular tachycardia.


The lesions used to treat atrial fibrillation, are typically long and thin and are carefully placed to interrupt the conduction routes of the most common reentry circuits. More specifically, the long thin lesions are used to create a maze pattern that creates a convoluted path for electrical propagation within the left and right atria. The lesions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The-lesions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony. Several surgical approaches have been developed with the intention of treating atrial fibrillation. One particular example is known as the “maze procedure,” as is disclosed by Cox, J L et al. in “The surgical treatment of atrial fibrillation. I. Summary” Thoracic and Cardiovascular Surgery 101 (3), pp. 402-405 (1991); and also by Cox, J L in “The surgical treatment of atrial fibrillation. IV. Surgical Technique”, Thoracic and Cardiovascular Surgery 101 (4), pp. 584-592 (1991), both of which are incorporated by reference herein in their entireties. In general, the “maze” procedure is designed to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a prescribed pattern of incisions about the tissue wall. In the early clinical experiences reported, the “maze” procedure included surgical incisions in both the right and the left atrial chambers. However, more recent reports predict that the surgical “maze” procedure may be substantially efficacious when performed only in the left atrium, such as is disclosed in Sueda et al., “Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated With Mitral Valve Disease” (1996), which is incorporated herein by reference in its entirety.


When modifying the electrophysiological properties of cardiac tissue by ablation, or by other means of destroying tissue to create lesions, physicians must carefully place the lesions. Otherwise, tissue will be unnecessarily destroyed. In addition, the heart is in close proximity to nerves and other nervous tissue and the destruction of this tissue will result in severe harm to the patient. Anatomical methods are used to locate the areas to be ablated or otherwise modified. In other words, the physician locates key structures such as the mitral valve annulus and the pulmonary veins. Lesions are typically formed that block propagations near these structures. Additional lesions are then formed which connect these lesions and complete the so-called “maze pattern.” However, the exact lesion pattern, and number of lesions created, can vary from patient to patient.


The surgical “maze procedure” as performed in the left atrium generally includes forming vertical incisions from the two superior pulmonary veins and terminating in the region of the mitral valve annulus, traversing the inferior pulmonary veins en route. An additional horizontal line also connects the superior ends of the two vertical incisions. Thus, the atrial wall region bordered by the pulmonary vein ostia is isolated from the other atrial tissue. In this process, the mechanical sectioning of atrial tissue eliminates the precipitating conduction to the atrial arrhythmia by creating conduction blocks within the aberrant electrical conduction pathways.


Although successful at treating AF, the surgical maze procedure is quite complex and is currently performed by only a few skilled cardiac surgeons in conjunction with other open heart procedures. Tools that could reliably duplicate the Maze incisions by other means (e.g. radiofrequency, laser, microwave, ultrasound energy) will reduce the time and invasiveness required for the maze procedure and make it more accessible to more surgeons. Problems faced by these methods, however, include (a) the creation of continuous, linear lesions in the atria for the prevention of atrial fibrillation, (b) minimization of clotting and thromboembolism, (c) the effect of heat loss due to circulating blood, (d) minimization of lesion width and minimization of atrial debulking, (e) conforming to an irregular myocardial thickness, (f) adaptability to a variety of lesion geometries and (g) usefulness from either the eridocardial surface of an open heart, or the epicardial surface of a beating heart.


Injection of alcohol into heart tissue has also been employed to ablate cardiac tissue. Alcohol may be delivered to blood vessels supplying the tissue to be ablated, as described in “Transcoronary Chemical Ablation of Arrhythmias”, by Nellens et al, Pace Vol. 15, pages 1368-1373, September 1992. Alternatively, alcohol can be delivered directly to the tissue to be ablated by means of a needle inserted through a catheter, as described in “Chemical Ablation by Subendocardial Injection of Ethanol via Catheter—Preliminary Results in the Pig Heart”, by Weismuller et al, European Heart Journal, Volume 12, pages 1234-1239, 1991.


SUMMARY OF THE INVENTION

This invention relates to a device and method for ablation of cardiac tissue in which a hand-held instrument having a hollow needle is used to deliver precise amounts of liquids into cardiac tissue for purposes of ablation of the tissue along a desired lesion line.


In one aspect of the invention, a reciprocating needle device like that disclosed in U.S. Pat. No. 4,204,438, which is incorporated by reference in its entirety, is used to repeatedly penetrate cardiac tissue and deliver a cytotoxic agent to the cardiac tissue. The cytotoxic agent is used to “draw” a lesion on the myocardium by the repeated introduction of the needle and injection of cytotoxic fluid while moving the tip of the device along the desired lesion pattern. Because of the motor-driven reciprocating action of the device, the lesion pattern can be completed rapidly by the surgeon. A manually operated switch on the housing of the device is capable of energizing and de-energizing the device as desired by the operator and an eccentric drive advances and retracts the needle from the housing. The depth of needle penetration can be adjusted to control the depth at which the cytotoxic fluid is delivered to the tissue but preferably the depth of needle penetration enables the cytotoxic fluid to be injected into the tissue so that it extends through the entire thickness of the tissue. The hollow needle is filled with the cytotoxic agent. The cytotoxic fluid can be loaded into the needle a little at a time or it can be filled by means of a fluid reservoir. The delivery of the fluid can occur passively as the needle is inserted into the tissue or it can be actively injected into the tissue according to needle position. The fluid delivery can be performed endocardially, epicardially, and epicardially on a beating heart.


In yet another aspect of the invention, a non-reciprocating metering needle assembly like that disclosed in U.S. Pat. No. 4,719,825, which is incorporated by reference in its entirety, is use to repeatedly penetrate cardiac tissue and deliver a cytotoxic agent to the cardiac tissue. After the hollow needle has been inserted into the myocardial tissue, the device is activated by the operator to deliver a predetermined, metered amount of the cytotoxic agent into the myocardium. The needle is then withdrawn from the cardiac tissue and advanced to a second location along the desired lesion pattern where it is inserted into the myocardium and another predetermined metered amount of cytotoxic agent is dispensed into the myocardial tissue. In this manner, the device is advanced stepwise along the desired lesion line by the operator in order to complete the lesion.


In yet another aspect of the invention, a device as described above is utilized in combination with radiofrequency ablation. The needle can be connected to one pole of a radiofrequency generator while the other pole of the generator is connected to a large indifferent electrode. Rather than a cytotoxic agent, the needle delivers a conductive liquid such as a saline solution that creates an ablative virtual electrode when delivered into the tissue through the needle. The device is advanced along a desired lesion line on the tissue as the needle is advanced into and retracted from the tissue. Delivery of the conductive liquid and the ablative radiofrequency energy is synchronized to form the virtual electrode and ablate the tissue along the desired lesion line.


In yet another aspect of the invention, a device as described above is utilized in combination with a conventional radiofrequency ablation device such as the Cardioblate® pen sold by Medtronic., Inc. Rather than a cytotoxic agent, the needle delivers a conductive liquid such as a hypertonic saline solution to the tissue. The device is advanced along a desired lesion line on the tissue as the needle is advanced into and retracted from the tissue. Delivery of the conductive liquid is made into the tissue along the desired lesion line. The conductive tip of the Cardioblate pen is then drawn along the desired lesion line while applying radiofrequency energy to the tissue. The hypertonic saline solution that creates a low impedance electrical pathway to ground such that the resultant lesion is deeper and narrower than would normally result from the use of the conventional radiofrequency ablation device.


In yet another aspect of the invention, a device as described above is utilized in order to deliver a protective fluid in order to protect certain areas of cardiac tissue, such as tissue near vessels and valves. For example, a hypotonic fluid can be used as a protective fluid in order to increase the electrical impedance of the tissue to be protected relative to the surrounding tissues, essentially insulating the protected tissue from the electrical current of the radiofrequency ablation device. This aspect of the invention can be combined with one or more of the other aspects of the invention in which a conductive liquid is delivered to a first portion of cardiac tissue along a desired lesion line and a protective fluid is delivered to a second portion of cardiac tissue spaced apart from the desired lesion line. This can be readily accomplished by a device having a plurality of spaced-apart needles with centrally located needles delivering the conductive liquid and other needles on one or both sides of the centrally located needles which deliver the protective fluid. As the radiofrequency ablation device, such as the Cardioblate pen, is advanced along the desired lesion line a narrower and deeper lesion would result with this technique.


In yet another aspect of the invention, a device as described above is utilized in order to deliver an ink or dye to the cardiac tissue in order to identify the position of the lesion line on the cardiac tissue and to identify portions of tissue along the lesion line where the lesion has been completed. For example, the ink or dye can be added to the cytotoxic fluid in order to identify portions of tissue which have received the cytotoxic fluid and that those portions create a complete lesion along the desired lesion line. Alternatively, the ink or dye can be added to the conductive liquid in order to identify the portions of tissue which has been ablated by the radiofrequency energy of a virtual electrode. Again the completeness of the lesion line is indicated by the presence of the ink or dye. Alternatively, the ink or dye can be added to the conductive liquid in order to identify the position of the desired lesion line so that the Cardioblate pen or other radiofrequency ablation device can be guided along the line that has been established by the delivery of the conductive fluid. In yet another aspect, the ink or dye can be thermochromic such that it changes color when heated to a temperature which indicates that a lesion has been formed by the application of radiofrequency energy. Typically, temperatures above about 50 to 55 degrees C. are required to cause cell death in an ablative lesion made by radiofrequency ablation and the photochromic material would preferably change color in that temperature range.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a prior art device suitable for use in the present invention



FIG. 2 is a perspective view of a prior art device suitable for use in the present invention.



FIG. 3 is a schematic view of a device with a reciprocating needle operating according to the invention.



FIG. 4 is a side sectional view of a needle delivering a fluid into tissue according to the invention.



FIG. 5 is a side sectional view of fluid delivered according to the invention that has diffused into tissue near its point of delivery.



FIG. 6 is a side sectional view showing needles delivering fluid according to the invention into tissue at varying depths.



FIG. 7 is a side sectional view of a needle delivering fluid according to the invention during reciprocation of the needle.



FIG. 8 is a side view of a distal portion of a needle showing multiple fluid openings for delivery of fluid according to the present invention.



FIG. 9 is a side sectional view of a lesion created by the application of radiofrequency energy according to the invention.



FIG. 10 is a fragmentary, schematic, side sectional view of a linear array of needles which can be used for delivering protective fluid about a delivered cytotoxic and/or conductive fluid.



FIG. 11 is a schematic view of the heart showing various maze lesions that can be formed according to the invention.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered identically. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Several forms of the invention have been shown and described, and other forms will now be apparent to those skilled in art. It will be understood that embodiments shown in drawings and described below are merely for illustrative purposes, and are not intended to limit the scope of the invention as defined in the claims which follow.


This invention relates to a device and method for ablation of cardiac tissue in which a hand-held instrument having a hollow needle is used to deliver precise amounts of liquids into cardiac tissue for purposes of ablation of the tissue along a desired lesion line. FIGS. 1 and 2 show prior art devices suitable for the practice of the present invention. FIG. 1 shows a reciprocating needle device 1 as disclosed in U.S. Pat. No. 4,204,438. The reciprocating needle device 1 includes a motor housing 10 and a needle housing 12. The needle housing 12 has an opening 14 through which a needle reciprocates. The device 1 may be held by hand by a surgeon and used to repeatedly penetrate cardiac tissue by a reciprocating action of the needle and deliver a cytotoxic agent to the cardiac tissue. FIG. 2 shows a non-reciprocating metering needle device 20 like that disclosed in U.S. Pat. No. 4,719,825. The metering needle device 20 has a barrel portion 22 that can be held by hand, a tip portion 24 through which a needle 26 extends and a switch 28. A surgeon can advance the needle 26 into myocardial tissue and then deliver a metered amount of a cytotoxic agent from the needle 26 by activating the switch 28 on the metering needle device 20. Some tattoo pens are also believed suitable for practicing the present invention. The tattoo pens preferably provide a longer than conventional needle travel path and also provide a stronger than conventional driving force for driving the needle or needles through the longer path.


The cytotoxic agent is an agent which has cytotoxic properties and can be delivered as an injectable liquid or a liquid suspension. Preferably the cytotoxic substance has potent cytotoxic properties that destroys cell function without affecting protein structure and scaffolding. Also preferably, the cytotoxic agent has limited and controllable diffusion properties through extracellular spaces. Also preferably the cytotoxic agent has a fleeting effect such that the compound washes out of the systemic circulation quickly. Alkylating agents such as cytotaxan or melphalan or their active metabolites are preferred.


The cytotoxic agent is used to “draw” a lesion on the myocardium by the repeated introduction of the needle and injection of cytotoxic fluid while moving the tip of the device along the desired lesion pattern. FIG. 11 shows some possible generally linear lesion patterns 110 that are capable of interrupting conductive pathways 112 and 114.


Referring now to FIGS. 3-5, a reciprocating needle device 30 can have a reservoir 32 and a hollow, reciprocating needle 34 through which the fluid 36 can be delivered into myocardial tissue 38. The needle 34 may be tapered to allow for easy penetration of the tissue 38 and delivery of fluid 36 into the tissue 38. Following delivery of the fluid, the needle is withdrawn and the fluid 36 diffuses into the tissue 38. Needles 34a-34c also represent varying depth needles included within an array or linear array of needles. The needle array can be advanced along the desired lesion path and the needles inserted together, insuring multiple fluid delivery depths along the path. Such a phased linear array of needles also can reduce the force required to enter the myocardium, relative to a constant dept array, as the time of entry into the tougher outer layer occurs at different times.


Referring now to FIGS. 6-8, the depth of penetration for needles 34a-c can be adjusted to control the depth at which the cytotoxic fluid 36 is delivered to the tissue 38 through injection ports or orifices 37. The needle 34d can also be adjusted to deliver the cytotoxic fluid as the needle 34d is inserted and/or withdrawn in order to provide delivery of fluid 36 at various depths. Also, the needle may be provided with injection ports or openings 42 which will deliver fluid from a plurality of side openings or ports along the length of the needle 34e. The delivery of the fluid can therefore occur passively as the needle is inserted into the tissue or it can be actively injected into the tissue according to needle position.


Referring now to FIG. 9, the device can also be utilized in combination with radiofrequency ablation. An ablative lesion 44 can be created in tissue 48 by a needle connected to a radiofrequency generator (not shown) as a conductive fluid 46 is delivered through the needle 49 into the tissue 48. Rather than a cytotoxic agent, the needle delivers a conductive liquid such as a saline solution that creates an ablative virtual electrode when delivered into the tissue through the needle. The device is advanced along a desired lesion line on the tissue as the needle is advanced into and retracted from the tissue. Delivery of the conductive liquid and the ablative radiofrequency energy can be synchronized to form the virtual electrode and ablate the tissue along the desired lesion line.



FIG. 10 illustrates a linear array of needles 50 including an injection manifold 52. Linear array 50 includes outer needles 54, 56, 58, and 60, and inner needles 62 and 64. Inner needles 62 and 64 are fed by a first fluid delivery lumen 66 while outer needles 54-60 are fed by a second fluid delivery lumen 68. The inner needles can deliver a conductive and/or cytotoxic fluid, while the outer needles can deliver a protective fluid, described below.


Referring now to FIG. 11, some possible generally linear lesion patterns 110 are shown that are capable of interrupting conductive pathways 112 and 114. The lesion patterns can be made as described above or in combination with a conventional radiofrequency ablation device such as the Cardioblate pen sold by Medtronic, Inc. (not shown). Rather than a cytotoxic agent, the needle delivers a conductive liquid such as a hypertonic saline solution to the tissue. The device is advanced along a desired lesion line 110 on the tissue as the needle is advanced into and retracted from the tissue. Delivery of the conductive liquid is made into the tissue along the desired lesion line 110. The conductive tip of the Cardioblate pen is then drawn along the desired lesion line 110 while applying radiofrequency energy to the tissue. The hypertonic saline solution that creates a low impedance electrical pathway to ground such that the resultant lesion is deeper and narrower than would normally result from the use of the conventional radiofrequency ablation device.


A protective fluid can also be used when making the linear lesions 110 in order to protect certain areas of cardiac tissue, such as tissue near vessels and valves like the pulmonary veins 116. For example, a hypotonic fluid can be used as a protective fluid in order to increase the electrical impedance of the tissue to be protected relative to the surrounding tissues, essentially insulating the protected tissue from the electrical current of the radiofrequency ablation device. Alternatively, the protective fluid can be a thermally protective fluid such as a chilled fluid which protects tissue adjacent to the intended lesion from being overheated. This aspect of the invention can be combined with one or more of the other aspects of the invention in which a conductive liquid is delivered to a first portion of cardiac tissue along a desired lesion line and a protective fluid is delivered to a second portion of cardiac tissue spaced apart from the desired lesion line. This can be readily accomplished by a device having a plurality of spaced-apart needles with centrally located needles delivering the conductive liquid and other needles on one or both sides of the centrally located needles which deliver the protective fluid, as discussed with respect to FIG. 10. As the radiofrequency ablation device, such as the Cardioblate pen, is advanced along the desired lesion line a narrower and deeper lesion would result with this technique.


Also, the device as described above can be utilized in order to deliver an ink or dye to the cardiac tissue in order to identify the position of the lesion line 110 on the cardiac tissue and to identify portions of tissue along the lesion line 110 where the lesion has been completed. For example, the ink or dye can be added to the cytotoxic fluid in order to identify portions of tissue which have received the cytotoxic fluid and that those portions create a complete lesion along the desired lesion line. Alternatively, the ink or dye can be added to the conductive liquid in order to identify the portions of tissue which has been ablated by the radiofrequency energy of a virtual electrode. Again the completeness of the lesion line is indicated by the presence of the ink or dye. Alternatively, the ink or dye can be added to the conductive liquid in order to identify the position of the desired lesion line so that the Cardioblate pen or other radiofrequency ablation device can be guided along the line that has been established by the delivery of the conductive fluid. Dyes such as those used for tattoos are believed suitable, as are some tissue dyes. Toluene blue and methylene blue are examples of dyes believed suitable for use in the present invention.


In yet another aspect, the ink or dye can be thermochromic such that it changes color when heated to a temperature which indicates that a lesion has been formed by the application of radiofrequency energy. Typically, temperatures above about 50 to 55 degrees C. are required to cause cell death in an ablative lesion made by radiofrequency ablation and the photochromic material would preferably change color in that temperature range.


In still another aspect, the injected fluid can include a viscous enhancing agent or fluid added to reduce or retard fluid diffusion after delivery. Reducing the diffusion of a cytotoxic and/or conductive fluid can reduce the width of the resulting lesion. Reducing the diffusion of a protective fluid can maintain the protective fluid in a desired position adjacent the cytotoxic and/or conductive fluid, to serve its protective function. Viscous fluids such as dextrose or glycerol may be added to increase the viscosity of a delivered fluid. The viscous fluids or agents can provide a fluid viscosity of at least about twice that of water.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein.

Claims
  • 1. A method for ablation of myocardial tissue defining opposing surfaces separated by a thickness, the method comprising: providing a hand-held instrument having a hollow needle;selecting one of the opposing surfaces for penetration by the needle;selecting a desired line of ablation on the selected surface of the myocardial tissue;applying the needle to the tissue at a portion of the desired line of ablation such that it penetrates the selected surface and into the thickness;delivering a predetermined amount of fluid into the penetrated tissue to facilitate ablation of the tissue along the desired lesion line; andapplying radiofrequency ablation through the needle.
  • 2. A method according to claim 1 wherein the needle delivers a conductive liquid.
  • 3. A method according to claim 2 wherein the conductive liquid is a saline solution that creates an ablative virtual electrode when delivered in combination with the application of radiofrequency ablation.
  • 4. A method according to claim 1 wherein the needle is moved relative to the selected surface along the desired lesion line as the needle is advanced into and retracted from the tissue.
  • 5. A method according to claim 4 wherein the liquid and the ablative radiofrequency energy are synchronized to form a virtual electrode and ablate the tissue along the desired lesion line.
  • 6. A method according to claim 1 also comprising completing delivery of fluid along the desired lesion line and subsequently applying to the desired lesion line radiofrequency ablation.
  • 7. A method according to claim 6 wherein the fluid is a hypertonic saline solution.
  • 8. A method according to claim 1 wherein the fluid is a protective fluid which increases the electrical impedance of the myocardial tissue.
  • 9. A method according to claim 8 wherein the protective fluid is delivered to tissue near a heart valve.
  • 10. A method according to claim 8 wherein the protective fluid is delivered to tissue near a blood vessel.
  • 11. A method according to claim 8 wherein the fluid is a hypotonic fluid.
  • 12. A method according to claim 1, wherein the fluid comprises an electrically conductive liquid mixed with a viscosity enhancing agent.
  • 13. A method according to claim 1, wherein the provided hand-held instrument further comprises a needle array comprising a plurality of hollow needles in addition to the hollow needle, where in the applying includes applying the plurality of needles to penetrate the tissue, wherein the delivering includes delivering electrically conductive fluid into the penetrated tissue through two of the plurality of needles.
  • 14. A method according to claim 1, wherein the step of applying the needle includes: advancing the needle through the selected surface and into the thickness; andretracting the needle from the thickness and back through the selected surface;wherein the steps of advancing and retracting include moving the needle through a linear travel path.
  • 15. A method according to claim 14, wherein the hand-held instrument includes a needle housing forming an opening through which the needle reciprocates, and further wherein the steps of advancing and retracting include subjecting the needle to a linear reciprocating movement relative to the needle housing.
  • 16. A method for ablation of myocardial tissue comprising: providing a hand-held instrument having an injection port for injecting fluid into myocardial tissue;selecting a desired linear line of ablation on a surface of the myocardial tissue;applying the injection port through the surface and into the tissue at a portion of the desired line of ablation;delivering a predetermined amount of fluid into the myocardial tissue to facilitate ablation of the tissue along the desired lesion line; andapplying radiofrequency ablation through the injection device.
  • 17. A method according to claim 16 wherein the injection device delivers a conductive liquid.
  • 18. A method according to claim 17 wherein the conductive liquid is a saline solution that creates an ablative virtual electrode when delivered in combination with the application of radiofrequency ablation.
  • 19. A method according to claim 16 wherein the injection port is moved along the desired lesion line on the tissue as the fluid is injected into the tissue.
  • 20. A method according to claim 19 wherein the liquid and the ablative radiofrequency energy are synchronized to form a virtual electrode and ablate the tissue along the desired lesion line.
  • 21. A method according to claim 16 also comprising completing delivery of fluid along the desired lesion line and subsequently applying to the desired lesion line radiofrequency ablation.
  • 22. A method according to claim 21 wherein the fluid is a hypertonic saline solution.
  • 23. A method according to claim 21 wherein the fluid is a protective fluid which increases the electrical impedance of the myocardial tissue.
  • 24. A method according to claim 23 wherein the protective fluid is delivered to tissue near a heart valve.
  • 25. A method according to claim 23 wherein the protective fluid is delivered to tissue near a blood vessel.
  • 26. A method according to claim 23 wherein the fluid is a hypotonic fluid.
  • 27. A method according to claim 16, wherein the fluid comprises a viscosity enhancing agent.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 10/356,868, filed on Feb. 3, 2003, now U.S. Pat. No. 7,294,143 which claims priority to U.S. provisional patent application Ser. No. 60/381,217, filed on May 16, 2002, titled DEVICE AND METHOD FOR ABLATION OF CARDIAC TISSUE, herein incorporated by reference in their entirety. The present invention is related to commonly assigned U.S. patent application Ser. No. 10/356,909, filed on Feb. 3, 2003, now U.S. Pat. No. 7,118,566, titled DEVICE AND METHOD FOR NEEDLE-LESS INTERSTITIAL INJECTION OF FLUID FOR ABLATION OF CARDIAC TISSUE.

US Referenced Citations (370)
Number Name Date Kind
3736936 Basiulis et al. Jun 1973 A
3807403 Stumpf et al. Apr 1974 A
3823575 Parel Jul 1974 A
3823718 Tromovitch Jul 1974 A
3827436 Stumpf et al. Aug 1974 A
3830239 Stumpf Aug 1974 A
3859986 Okada et al. Jan 1975 A
3862627 Hans, Sr. Jan 1975 A
3886945 Stumpf et al. Jun 1975 A
3907339 Stumpf et al. Sep 1975 A
3910277 Zimmer Oct 1975 A
3913581 Ritson et al. Oct 1975 A
3924628 Droegemueller et al. Dec 1975 A
4018227 Wallach Apr 1977 A
4022215 Benson May 1977 A
4061135 Widran et al. Dec 1977 A
4063560 Thomas et al. Dec 1977 A
4072152 Linehan Feb 1978 A
4082096 Benson Apr 1978 A
4204438 Binaris et al. May 1980 A
4207897 Lloyd et al. Jun 1980 A
4248224 Jones Feb 1981 A
4275734 Mitchiner Jun 1981 A
4278090 van Gerven Jul 1981 A
4377168 Rzasa et al. Mar 1983 A
4519389 Gudkin et al. May 1985 A
4598698 Siegmund Jul 1986 A
4601290 Effron et al. Jul 1986 A
4664110 Schanzlin May 1987 A
4719825 LaHaye et al. Jan 1988 A
4736749 Lundback Apr 1988 A
4779611 Grooters et al. Oct 1988 A
4802475 Weshahy Feb 1989 A
4815470 Curtis et al. Mar 1989 A
4872346 Kelly-Fry et al. Oct 1989 A
4916922 Mullens Apr 1990 A
4917095 Fry et al. Apr 1990 A
4936281 Stasz Jun 1990 A
4946460 Merry et al. Aug 1990 A
5013312 Parins et al. May 1991 A
5029574 Shimamura et al. Jul 1991 A
5044165 Linner et al. Sep 1991 A
5078713 Varney Jan 1992 A
5080102 Dory Jan 1992 A
5080660 Buelina Jan 1992 A
5100388 Behl et al. Mar 1992 A
5108390 Potocky et al. Apr 1992 A
5147355 Freidman et al. Sep 1992 A
5178133 Pena Jan 1993 A
5207674 Hamilton May 1993 A
5217860 Fahy et al. Jun 1993 A
5222501 Ideker et al. Jun 1993 A
5224943 Goddard Jul 1993 A
5228923 Hed Jul 1993 A
5231995 Desai Aug 1993 A
5232516 Hed Aug 1993 A
5254116 Baust et al. Oct 1993 A
5263493 Avitall Nov 1993 A
5269291 Carter Dec 1993 A
5275595 Dobak, III Jan 1994 A
5277201 Stern Jan 1994 A
5281213 Milder et al. Jan 1994 A
5281215 Milder Jan 1994 A
5281218 Imran Jan 1994 A
5295484 Marcus et al. Mar 1994 A
5309896 Moll et al. May 1994 A
5316000 Chapelon et al. May 1994 A
5317878 Bradshaw et al. Jun 1994 A
5318525 West et al. Jun 1994 A
5322520 Milder Jun 1994 A
5323781 Ideker et al. Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5324286 Fowler Jun 1994 A
5334181 Rubinsky et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5348554 Imran et al. Sep 1994 A
5353783 Nakao et al. Oct 1994 A
5354258 Dory Oct 1994 A
5361752 Moll et al. Nov 1994 A
5385148 Lesh et al. Jan 1995 A
5396887 Imran Mar 1995 A
5397304 Truckai Mar 1995 A
5400770 Nakao et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5403309 Coleman et al. Apr 1995 A
5403311 Abele et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5423807 Milder Jun 1995 A
5423811 Imran et al. Jun 1995 A
5427119 Swartz et al. Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5435308 Gallup et al. Jul 1995 A
5437651 Todd et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443470 Stern et al. Aug 1995 A
5450843 Moll et al. Sep 1995 A
5452582 Longsworth Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5469853 Law et al. Nov 1995 A
5472876 Fahy Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478330 Imran et al. Dec 1995 A
5486193 Bourne et al. Jan 1996 A
5487385 Avitall Jan 1996 A
5487757 Truckai et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5497774 Swartz et al. Mar 1996 A
5498248 Milder Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505730 Edwards Apr 1996 A
5516505 McDow May 1996 A
5520682 Baust et al. May 1996 A
5522870 Ben-Zion Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5545195 Lennox et al. Aug 1996 A
5545200 West et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
5555883 Avitall Sep 1996 A
5558671 Yates Sep 1996 A
5560362 Silwa, Jr. et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5571088 Lennox et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573532 Chang et al. Nov 1996 A
5575766 Swartz et al. Nov 1996 A
5575788 Baker et al. Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5578007 Imran Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5590657 Cain et al. Jan 1997 A
5595183 Swanson et al. Jan 1997 A
5607462 Imran Mar 1997 A
5617854 Munsif Apr 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5656029 Imran et al. Aug 1997 A
5658278 Imran et al. Aug 1997 A
5671747 Connor Sep 1997 A
5673695 McGee et al. Oct 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5676693 Lafontaine Oct 1997 A
5678550 Bassen et al. Oct 1997 A
5680860 Imran Oct 1997 A
5681278 Igo et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5687737 Branham et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690611 Swartz et al. Nov 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5697928 Walcott et al. Dec 1997 A
5713942 Stern Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5720775 Lanard Feb 1998 A
5722402 Swanson et al. Mar 1998 A
5730074 Peter Mar 1998 A
5730127 Avitall Mar 1998 A
5730704 Avitall Mar 1998 A
5733280 Avitall Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5735290 Sterman et al. Apr 1998 A
5755760 Maguire et al. May 1998 A
5769846 Edwards et al. Jun 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788636 Curley Aug 1998 A
5792140 Tu et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800428 Nelson et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836947 Fleischman et al. Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5844349 Oakley et al. Dec 1998 A
5846187 Wells et al. Dec 1998 A
5846191 Wells et al. Dec 1998 A
5849028 Chen Dec 1998 A
5871523 Fleischman et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873845 Cline et al. Feb 1999 A
5876399 Chia et al. Mar 1999 A
5879295 Li et al. Mar 1999 A
5879296 Ockuly et al. Mar 1999 A
5881732 Sung et al. Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5893848 Negus et al. Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899898 Arless et al. May 1999 A
5899899 Arless et al. May 1999 A
5902289 Swartz et al. May 1999 A
5904711 Flom et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5906587 Zimmon May 1999 A
5906606 Chee et al. May 1999 A
5906613 Mulier et al. May 1999 A
5908029 Knudson et al. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5916214 Cosio et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928191 Houser et al. Jul 1999 A
5931810 Grabek Aug 1999 A
5931848 Saadat Aug 1999 A
5954661 Greenspon et al. Sep 1999 A
5971980 Sherman Oct 1999 A
5971983 Lesh Oct 1999 A
5993447 Blewett et al. Nov 1999 A
6007499 Martin et al. Dec 1999 A
6012457 Lesh Jan 2000 A
6016811 Knopp et al. Jan 2000 A
6042556 Beach et al. Mar 2000 A
6063081 Mulier May 2000 A
6064914 Trachtenberg May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071279 Whayne et al. Jun 2000 A
6088894 Oakley Jul 2000 A
6096037 Mulier Aug 2000 A
6113592 Taylor Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6120496 Whayne et al. Sep 2000 A
6142993 Whayne et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6156033 Tu et al. Dec 2000 A
6161543 Cox et al. Dec 2000 A
6165174 Jacobs et al. Dec 2000 A
6217528 Koblish et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231518 Grabek et al. May 2001 B1
6235024 Tu May 2001 B1
6237605 Vaska et al. May 2001 B1
6238347 Nix et al. May 2001 B1
6238393 Mulier May 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245064 Lesh et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6264654 Swartz et al. Jul 2001 B1
6270471 Hechel et al. Aug 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6296630 Altman et al. Oct 2001 B1
6302880 Schaer Oct 2001 B1
6302903 Mulier et al. Oct 2001 B1
6311692 Vaska et al. Nov 2001 B1
6312383 Lizzi et al. Nov 2001 B1
6314962 Vaska et al. Nov 2001 B1
6314963 Vaska et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328736 Mulier Dec 2001 B1
6332881 Carner et al. Dec 2001 B1
6358248 Mulier Mar 2002 B1
6361531 Hissong Mar 2002 B1
6364876 Erb et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6371955 Fuimaono et al. Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6385472 Hall et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6409722 Hoey Jun 2002 B1
6413254 Hissong et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6430426 Avitall Aug 2002 B2
6440130 Mulier Aug 2002 B1
6443952 Mulier Sep 2002 B1
6447507 Bednarek et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6461356 Patterson Oct 2002 B1
6464700 Koblish et al. Oct 2002 B1
6471697 Lesh Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6474340 Vaska et al. Nov 2002 B1
6475216 Mulier Nov 2002 B2
6477396 Mest et al. Nov 2002 B1
6484727 Vaska et al. Nov 2002 B1
6488680 Francischelli Dec 2002 B1
6494902 Hoey et al. Dec 2002 B2
6502575 Jacobs et al. Jan 2003 B1
6514250 Jahns Feb 2003 B1
6527767 Wang et al. Mar 2003 B2
6537248 Mulier Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6558382 Jahns May 2003 B2
6584360 Francischelli Jun 2003 B2
6585732 Mulier Jul 2003 B2
6605084 Acker et al. Aug 2003 B2
6610055 Swanson et al. Aug 2003 B1
6610060 Mulier Aug 2003 B2
6613048 Mulier Sep 2003 B2
6645199 Jenkins et al. Nov 2003 B1
6648883 Francischelli Nov 2003 B2
6656175 Francischelli Dec 2003 B2
6663627 Francischelli Dec 2003 B2
6692450 Coleman Feb 2004 B1
6699240 Francischelli Mar 2004 B2
6702811 Stewart et al. Mar 2004 B2
6706038 Francischelli Mar 2004 B2
6706039 Mulier Mar 2004 B2
6716211 Mulier Apr 2004 B2
6736810 Hoey May 2004 B2
6755827 Mulier Jun 2004 B2
6764487 Mulier Jul 2004 B2
6773433 Stewart et al. Aug 2004 B2
6776780 Mulier Aug 2004 B2
6807968 Francischelli Oct 2004 B2
6827715 Francischelli Dec 2004 B2
6849073 Hoey Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6858028 Mulier Feb 2005 B2
6887238 Jahns May 2005 B2
6899711 Stewart et al. May 2005 B2
6911019 Mulier Jun 2005 B2
6916318 Francischelli Jul 2005 B2
6936046 Hissong Aug 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949098 Mulier Sep 2005 B2
6960205 Jahns Nov 2005 B2
6962589 Mulier Nov 2005 B2
20030045872 Jacobs Mar 2003 A1
20030144656 Ocel Jul 2003 A1
20030191462 Jacobs Oct 2003 A1
20030216724 Jahns Nov 2003 A1
20040015106 Coleman Jan 2004 A1
20040015219 Francischelli Jan 2004 A1
20040044340 Francischelli Mar 2004 A1
20040049179 Francischelli Mar 2004 A1
20040078069 Francischelli Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087940 Jahns May 2004 A1
20040092926 Hoey May 2004 A1
20040138621 Jahns Jul 2004 A1
20040138656 Francischelli Jul 2004 A1
20040143260 Francischelli Jul 2004 A1
20040186465 Francischelli Sep 2004 A1
20040215183 Hoey Oct 2004 A1
20040220560 Briscoe Nov 2004 A1
20040236322 Mulier Nov 2004 A1
20040267326 Ocel Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050033280 Francischelli Feb 2005 A1
20050090815 Francischelli Apr 2005 A1
20050143729 Francischelli Jun 2005 A1
20050165392 Francischelli Jul 2005 A1
20050209564 Bonner Sep 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20050267454 Hissong Dec 2005 A1
20060009756 Francischelli Jan 2006 A1
20060009759 Christian Jan 2006 A1
Non-Patent Literature Citations (46)
Entry
Chitwood, “Will C. Sealy, MD: The Father of Arrhythmia Surgery—The Story of the Fisherman with a Fast Pulse,” Annals of Thoracic Surgery 58:1228-1239, 1994.
Gallagher et al., “Cryosurgical Ablation of Accessory Atrioventrical Connections: A Method for Correction of the Pre-excitation Syndrome,” Circulation 55(3): 471-479, 1977.
Sealy, “Direct Surgical Treatment of Arrhythmias: The Last Frontier in Surgical Cardiology,” Chest 75(5): 536-537, 1979.
Sealy, “The Evolution of the Surgical Methods for Interruption of Right Free Wall Kent Bundles,” The Annals of Thoracic Surgery 36(1): 29-36, 1983.
Guiraudon et al., “Surgical Repair of Wolff-Parkinson-White Syndrome: A New Closed-Heart Techique,” The Annals of Thoracic Surgery 37(1): 67-71, 1984.
Klein et al., “Surgical Correction of the Wolff-Parkinson-White Syndrome in the Closed Heart Using Cryosurgery: A Simplified Approach,” JACC 3(2): 405-409, 1984.
Randall et al., “Local Epicardial Chemical Ablation of Vagal Input to Sino-Atrial and Atrioventricular Regions of the Canine Heart,” Journal of the Autonomic Nervous System 11:145-159, 1984.
Guiraudon et al., “Surgical Ablation of Posterior Septal Accessory Pathways in the Wolf-Parkinson-White Syndrome by a Closed Heart Technique,” Journal Thoracic Cardiovascular Surgery 92:406-413, 1986.
Gallagher et al., “Surgical Treatment of Arrhythmias,” The American Journal of Cardiology 61:27A-44A, 1988.
Mahomed et al., “Surgical Division of Wolff-Parkinson-White Pathways Utilizing the Closed-Heart Technique: A 2-Year Experience in 47 Patients,” The Annals of Thoracic Surgery 45(5): 495-504, 1988.
Cox et al., Surgery for Atrial Fibrillation; Seminars in Thoracic and Cardiovascular Surgery , vol. 1, No. 1 (Jul. 1989) pp. 67-73.
Bredikis and Bredikis; Surgery of Tachyarrhythmia: Intracardiac Closed Heart Cryoablation; PACE, vol. 13, pp. 1980-1984.
McCarthy et al., “Combined Treatment of Mitral Regurgitation and Atrial Fibrillation with Valvuloplasty and the Maze Procedure,” The American Journal of Cardiology 71: 483-486, 1993.
Yamauchi et al. “Use of Intraoperative Mapping to Optimize Surgical Ablation of Atrial Flutter,” The Annals of Thoracic Surgery 56: 337-342, 1993.
Graffigna et al., “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” Journal of Cardiac Surgery 8: 108-116, 1993.
Siefert et al., “Radiofrequency Maze Ablation for Atrial Fibrillation,” Circulation 90(4): I-594. Surgical treatment of atrial fibrillation: a review; Europace (2004) 5, S20-S29.
Elvan et al., “Radiofrequency Catheter Ablation of the Atria Reduces Inducibility and Duration of Atrial Fibrillation in Dog,” Circulation 91: 2235-2244, 1995.
Cox et al., “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation. I. Rational and Surgical Results,” The Journal of Thoracic Cardiovascular Surgery 110: 473-484, 1995.
Cox, “The Maze III Procedure for Treatment of Atrial Fibrillation,” Sabiston DC, ed Atlas of Cardiothoracic Surgery, Philadelphia: WB Saunders: 460-475, 1994.
Sueda et al., “Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated with Mitral Valve Disease,” The Annals of Thoracic Surgery 62(6): 1796-1800, 1996.
Tsui et al., “Maze 3 for Atrial Fibrillation: Two Cuts Too Few?” PACE 17: 2163-2166, 1994.
Kosakai et al., “Cox Maze Procedure for Chronic Atrial Fibrillation Associated with Mitral Valve Disease,” The Journal of Thoracic Cardiovascular Surgery 108: 1049-1055, 1994.
Cox et al., “The Surgical Treatment of Atrial Fibrillation, IV Surgical Technique,” J of Thorac Cardiovasc Surg, 1991: 101: 584-593.
Nardella, “Radio Frequency Energy and Impedance Feedback,” SPIE vol. 1068, Catheter Based Sensing and Imaging Technology (1989).
Avitall et. al., “A Thoracoscopic Approach to Ablate Atrial Fibrillation Via Linear Radiofrequency Lesion Generation on the Epicardium of Both Atria,” PACE, Apr. 1996;19(Part II):626,#241.
Sie et al., “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Mitral Valve Surgery. First Experience,” Circulation (Nov. 1996) 96:450,1-675,#3946.
Sie et al., “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Valve Surgery,” Circulation (Nov. 1997) 84:1450,#2519.
Jais et al., “Catheter Ablation for Paroxysmal Atrial Fibrillation: High Success Rates with Ablation in the Left Atrium,” Circulation (Nov. 1996) 94:1-675,#3946.
Cox, “Evolving Applications of the Maze Procedure for Atrial Fibrillation,” Ann Thorac Surg, 1993;55:578-580.
Cox et al. “Five-Year Experience with the Maze Procedure for Atrial Fibrillation,” Ann Thorac Surg, 1993; 56:814-824.
Avitall et al., “New Monitoring Criteria for Transmural Ablation of Atrial Tissues,” Circulation, 1996;94(Supp I):1-493, #2889.
Cox et al., “An 8 1/2 Year Clinical Experience with Surgery for Atrial Fibrillation,” Annals of Surgery, 1996;224(3):267-275.
Haissaguerre et al., “Radiofrequency Catheter Ablation for Paroxysmal Atrial Fibrillation in Humans: Elaboration of a procedure based on electrophysiological data,” Nonpharmacological Management of Atrial Fibrillation, 1997 pp. 257-279.
Haissaguerre et al., “Right and Left Atrial Radiofrequency Catheter Therapy of Paroxysmal Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology, 1996;7(12):1132-1144.
Haissaguerre et al., “Role of Catheter Ablation for Atrial Fibrillation,” Current Opinion in Cardiology, 1997;12:18-23.
Kawaguchi et al., “Risks and Benefits of Combined Maze Procedure for Atrial Fibrillation Associated with Organic Heart Disease,” JACC, 1996;28(4):985-990.
Cox, et al., “Perinodal cryosurgery for atrioventricular node reentry tachycardia in 23 patients,” Journal of Thoracic and Cardiovascular Surgery, 99:3, Mar. 1990, pp. 440-450.
Cox, “Anatomic-Electrophysiologic Basis for the Surgical Treatment of Refractory Ischemic Ventricular Tachycardia,” Annals of Surgery, Aug. 1983; 198:2;119-129.
Williams, et al., “Left atrial isolation,” J Thorac Cardiovasc Surg; 1980; 80: 373-380.
Scheinman, “Catheter-based Techniques for Cure of Cardiac Arrhythmias,” Advances in Cardiovascular Medicine, 1996, ISSN 1075-5527, pp. 93-100.
Sueda et al., “Efficacy of a Simple Left Atrial Procedure for Chronic Atrial Fibrillation in Mitral Valve Operations,” Ann Thorac Surg, 1997;63:1070-1075.
J. Thorac Cardiovascular Surg 1991; 101: 402-5—The Surgical Treatment of atrial fibrillation (Summary of the current concepts of the mechanisms of atrial flutter and atrial fibrillation) by James L. Cox, MD; Richard B. Schuessler, PHD; and John P. Boineau, MD.
J. Thorac Cardiovasc Surg 1991; 101: 584-92—The surgical treatment of atrial fibrillation (Surgical Technique) by James L. Cox, MD.
Ann Thorac Surg 1996; 62: 1796-800 / Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated With Mitral Valve Disease by Taijiro Sueda, MD; Hideyuki Nagata, MD; Hiroo Shikata, MD; Kazumasa Orihashi, MD; Satoru Morita, MD; Masafumi Sueshiro, MD; Kenji Okada, MD and Yuichiro Matsuura, MD.
PACE vol. 15 (Supplement Sep. 1992) pp. 1368-1373 / Transcoronary Chemical Ablation of Arrhythmias by Paul Nellens; Sinan Gursoy; Erik Andries and Pedro Brugada.
European Heart Journal, vol. 12, 1991, pp. 1234-1237 / Chemical ablation by subendocardial injection of ethanol via catheter—preliminary results in the pig heart by P. Weismuller; U. Mayer; P. Richter; F Heieck; M. Kochs and V. Hombach.
Related Publications (1)
Number Date Country
20070032786 A1 Feb 2007 US
Provisional Applications (1)
Number Date Country
60381217 May 2002 US
Divisions (1)
Number Date Country
Parent 10356868 Feb 2003 US
Child 11545829 US