The present invention generally pertains to a system for delivering aerosolized substance to a natural orifice of the body.
Many devices of the prior art focus on a mechanism to allow better aerosol formation and better dispersion in the nasal cavity. Other mechanisms for better delivery focus on special formulations that include materials and structures to allow better absorption in the target tissue.
Each of these strategies has its advantages and disadvantages. For example, improvements to the delivery device can improve bringing the material to the desired area, but neglect the need to enhance the absorption of the compound into and through the mucosal layer. On the other hand, improvements to the composition, the formulation or both can improve absorption into and through the mucosal layer, but may well neglect the difficulty of delivering a sufficient amount of the material to the desired tissue.
It is therefore a long felt need to provide a system which can be optimized for efficient delivery of a substance to a target site, said optimization neglecting neither the need to bring sufficient material to the target site, nor the need to ensure adequate absorption into and through the mucosal layer.
It is an object of the present invention to disclose a system and method for delivering aerosolized substance to a natural orifice of the body.
It is another object of the present invention to disclose a device for delivering a predetermined volume Vsub [ml] of at least one substance, within at least one body cavity of a subject, the device comprising:
(f) the pressure rate dPgas/dT is greater than about 0.001 barg/ms;
(g) the volume rate dVsub/dT is greater than about 0.0001 ml/ms;
(h) the volume rate dVgas/dT is greater than about 0.001 ml/ms;
(i) the predetermined period of time, dT→0; and
(j) dT is in the range of about 0 to 500 millisecond.
It is another object of the present invention to disclose the device, wherein at least one of the following is true:
a. the body orifice is a nasal cavity, the mouth, the throat, an ear, the vagina, the rectum, the urethra, and any combination thereof
b. viscosity η of the substance is in the range of about 1×10−3 poise to about 1 poise;
c. DV50 diameter of particles of the substance, after exit from said device, is less than about 100 μm;
d. DV90 diameter of the particles is less than about 1000 μm;
e. a full width of a plume of aerosol comprising said substance and said gas subtends an angle θ of less than about 25°;
f. particles in the plume have velocities in a range of about 5 m/s to 50 m/s;
g. the pressurized gas comprises air, nitrogen, oxygen, carbon dioxide, helium, neon, xenon and any combination thereof;
h. during dispensing of the at least one substance, a mixture of the predetermined volume Vgas [ml] of the pressurized gas and the predetermined volume Vsub [ml] of the substance entrained within it forms a plume of aerosol; the aerosol having a predetermined distribution, the distribution being either homogeneous or heterogeneous, the heterogeneous distribution is selected from a group consisting of: an arbitrary distribution, a distribution in which the density of at least one substance within the mixture follows a predetermined pattern, and any combination thereof; characteristics of the aerosol selected from a group consisting of: particle size, particle shape, particle distribution, and any combination thereof, are determinable from characteristics of the device selected from a group consisting of: the predetermined volume of the pressurized gas, the predetermined volume of the substance, the predetermined pressure of the pressurized gas, the predetermined orifice size, and any combination thereof;
i. at least one substance is selected from a group consisting of a gas, a liquid, a powder, an aerosol, a slurry, a gel, a suspension and any combination thereof; and
j. at least one substance is stored under either an inert atmosphere or under vacuum to prevent reactions during storage.
It is another object of the present invention to disclose the device, wherein said volume is a container.
It is another object of the present invention to disclose the device, wherein the container is a capsule having a main longitudinal axis, the capsule comprising a number n of compartments, the capsule configured to contain the predetermined volume Vsub [ml] of the at least one substance, the volume Vsub [ml] of the at least one substance containable in at least one of the n compartments; at least one of the following being true:
It is another object of the present invention to disclose the device, wherein the container comprises a port fluidly connectable to the exterior of the device, the port configured such that at least one substance is insertable into the chamber via the port.
It is another object of the present invention to disclose the device, wherein the device comprises a port cover configured to provide an air-tight closure for the port, the port cover slidable along the device, rotatable around the device, rotatable around a hinge on the exterior of the device and any combination thereof.
It is another object of the present invention to disclose the device, wherein, when the substance is delivered into a tube, at least one of the following is true:
It is another object of the present invention to disclose a device for delivering a predetermined amount Msub [mg] of at least one substance within at least one body cavity of a subject, the device comprising:
(f) the pressure rate is greater than about 0.001 barg/ms;
(g) the amount rate dMsub/dT is greater than about 0.0001 mg/ms;
(h) the volume rate dVgas/dT is greater than about 0.001 ml/ms;
(i) the predetermined period of time, dT→0; and
(j) dT is in the range of about 0 to 500 millisecond.
It is another object of the present invention to disclose the device, wherein at least one of the following is true:
It is another object of the present invention to disclose the device, wherein said volume is a container.
It is another object of the present invention to disclose the device, wherein the container is a capsule having a main longitudinal axis, the capsule comprising a number n of compartments, the capsule configured to contain the predetermined mass Msub [mg] of the at least one substance, the mass Msub [mg] of the at least one substance containable in at least one of the n compartments; at least one of the following being true:
It is another object of the present invention to disclose the device, wherein the container comprises a port fluidly connectable to the exterior of the device, the port configured such that a substance is insertable into the chamber via the port.
It is another object of the present invention to disclose the device, wherein the device comprises a port cover configured to provide an air-tight closure for the port, the port cover slidable along the device, rotatable around the device, rotatable around a hinge on the exterior of the device and any combination thereof.
It is another object of the present invention to disclose the device, wherein, when the substance is delivered into a tube, at least one of the following is true:
It is another object of the present invention to disclose a method of delivering a predetermined volume Vsub [ml] of at least one substance within at least one body cavity of a subject, comprising:
(g) the pressure rate is greater than about 0.001 barg/ms;
(h) the volume rate dVsub/dT is greater than about 0.0001 ml/ms;
(i) the volume rate dVgas/dT is greater than about 0.001 ml/ms;
(j) the predetermined period of time, dT→0; and
(k) dT is in the range of about 0 to 500 millisecond.
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, wherein said volume is a container.
It is another object of the present invention to disclose the method, additionally comprising steps of providing the container comprising a capsule having a main longitudinal axis, the capsule comprising a number n of compartments, configuring the capsule to contain the predetermined volume Vsub [ml] of the at least one substance, containing the volume Vsub [ml] of the substance in at least one of the n compartments; additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, additionally comprising step of inserting the predetermined volume Vsub [ml] of the at least one substance into the container via a port fluidly connectable to the exterior of the device.
It is another object of the present invention to disclose the method, additionally comprising step of providing an air-tight closure for the port, and of moving the port cover relative to the device in at least one motion selected from a group consisting of: sliding the port cover along the device, rotating the port cover around the device, rotating the port cover around a hinge on the exterior of the device and any combination thereof.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering the substance into a tube and measuring the distance L the substance travels down the tube; and additionally comprising at least one of the following steps:
It is another object of the present invention to disclose a method of delivering a predetermined amount Msub [mg] of at least one substance within at least one body cavity of a subject, comprising:
a. providing a device comprising:
said pressure rate is greater than about 0.001 barg/ms;
(g) said amount rate dMsub/dT is greater than about 0.0001 mg/ms;
(h) said volume rate dVgas/dT is greater than about 0.001 ml/ms;
(i) said predetermined period of time dT→0; and
(j) dT is in the range of about 0 to 500 millisecond.
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
l. a dose-response curve for brain concentration having a fit selected from a group consisting of logarithmic, parabolic, exponential, sigmoid, power-low, and any combination thereof; of said substance when administered nasally via said device.
It is another object of the present invention to disclose the method, wherein said volume is a container.
It is another object of the present invention to disclose the method, additionally comprising step of providing said container comprising a capsule having a main longitudinal axis, said capsule comprising at least one compartment, said compartment configured to contain said predetermined amount Msub [mg] of said at least one substance.
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method as defined above, additionally comprising step of selecting the cross-sectional shape of said at least one compartment from a group consisting of: wedge shaped, circular, oval, elliptical, polygonal, annular, and any combination thereof.
It is another object of the present invention to disclose the method, additionally comprising step of inserting said predetermined amount Msub [mg] of said at least one substance into said container via a port fluidly connectable to the exterior of said device.
It is another object of the present invention to disclose the method, additionally comprising step of providing an air-tight closure for said port, and of moving said port cover relative to said device in at least one motion selected from a group consisting of: sliding said port cover along said device, rotating said port cover around said device, rotating said port cover around a hinge on the exterior of said device and any combination thereof.
It is another object of the present invention to disclose the method, additionally comprising step of selecting said substance from a group consisting of a gas, a liquid, a powder, an aerosol, a slurry, a gel, a suspension and any combination thereof.
It is another object of the present invention to disclose the method, additionally comprising step of storing at least one said substance under either an inert atmosphere or under vacuum, thereby preventing reactions during storage.
It is another object of the present invention to disclose the method, additionally comprising step of selecting said viscosity 11 such that, after steps of delivering said substance into a tube and measuring the distance L said substance travels down the tube, L is substantially independent of viscosity η of said substance.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L=a6aP+b6a where L is in cm and P is in barg and selecting a6a to be in a range of about 0 to about 116 and b6a to be in a range of about 0 to about 306.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L=a6bP3−b6bP2+c6b P where L is in cm and P is in barg and selecting a6b to be in a range of about 6.5 to about 9.75, b6b, to be in a range of about −65 to about −97.5 and c6b to be in a range of about 202 to about 303.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L=a6cPb6c where L is in cm and P is in barg and selecting a6c to be in a range of about 0 to about 902 and b6c to be in a range of about 0 to about 3.72.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L=a7a Vgas+b7a and selecting a7a to be in a range of about 0 to about 10 and b7a to be in a range of about 165 to about 282.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L=b7bVgas/(a7b+Vgas) where L is in cm and P is in barg and selecting am to be in a range of about −0.26 to about 2.05 and b7b to be in a range of about 235 to about 350.
It is another object of the present invention to disclose the method, additionally comprising steps of delivering said substance into a tube, measuring the distance L said substance travels down the tube, L a7cVgasb7c where L is in cm and P is in barg and selecting a7c to be in a range of about 0 to about 320 and b7c to be in a range of about 0 to about 0.96.
It is another object of the present invention to disclose the method, additionally comprising step of calculating said pressure P from P=ap1Vsub−bp1, where L is in cm and P is in barg and ap1 is in a range from 1 to 20,000 and bp1 is in a range from 1 to 2.
It is another object of the present invention to disclose the method, additionally comprising step of calculating said release time T from
T=a
v2
±b
v2(Vgas+Vsub),
where av2 is in a range of −100 ms to 100 ms and bv2 is in a range of −5 to 5, the units of Vgas and Vsub being ml, Vsub being Msubmsub, where msub is the molecular weight of the substance.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a device capable of improving the transfer of medicament to a predetermined desired location and to provide a device capable of improving the delivery of medicament through the tissue.
In the present invention, a combination of parameters and forces such as pressure, gas/air volume orifice diameter enable the formation of optimized aerosol characteristics for both improved delivery of aerosol to the target area (such as the olfactory epithelium in the nasal cavity) and enhanced absorption at that area for better delivery to a desired tissue (such as the brain).
The term ‘ul’ or ‘μm’ hereinafter refers to the unit micro liters.
The term ‘capsule’ or ‘container’ hereinafter refers to a container configured to contain a flowable substance. The term flowable refers hereinafter to any liquid, gas, aerosol, powder and any combination thereof. It should be emphasized that the term capsule can also refer to a predefined volume within the same in which a flowable substance is placed. In other words, the predefined volume is sized and shaped to enclose a predefined volume of said substance.
The term ‘plurality’ hereinafter refers to an integer greater than or equal to one.
The term ‘olfactory epithelium’ hereinafter refers to a specialized epithelial tissue inside the nasal cavity. The olfactory epithelium lies in the upper top portion of the nasal cavity.
The term ‘substance’ hereinafter refers to any substance capable of flowing. Such a substance can be a granular material, including a powder; a liquid; a gel; a slurry; a suspension; and any combination thereof.
The term ‘gas’ refers to any fluid that can be readily compressed. Gases as used herein include, but are not limited to, air, nitrogen, oxygen, carbon dioxide, helium, neon, xenon and any combination thereof. Devices charged by hand will typically use air as the carrier gas.
The term ‘channel’ hereinafter refers to a passageway allowing passage of a fluid through at least a portion of a mixing mechanism. The channel can be disposed within a portion of the mixing mechanism, forming a closed bore; it can be on an exterior of a portion of the mixing mechanism, forming a groove on the portion of the mixing mechanism, and any combination thereof.
The term ‘about’ refers hereinafter to a range of 25% below or above the referred value.
The term ‘biologic’ or ‘biologic response modifier’ hereinafter refers to material manufactured in or extracted from biological sources such as a genetically engineered protein derived from human genes, or a biologically effective combination of such proteins.
All pressures herein are gauge pressures, relative to atmospheric pressure. Pressure units will be written herein using the standard abbreviation for “gauge’, namely, “g”. For example, atmospheric pressure is 0 barg and a pressure of 1 bar above atmospheric is 1 barg.
The term ‘release time’ refers hereinafter to the time for the drug and carrier gas to substantially completely exit the device. Typically, the release time is affected by the activation time and reflects the time for the device to reconfigure from the ACTIVE configuration to the INACTIVE configuration or vice versa.
The terms ‘the device’, ‘the present device’, ‘the SipNose device’ and ‘SipNose’ will be used interchangeably to refer to the device of the present invention.
In all of the embodiments of the device shown hereinbelow, identical numbers refer to identical functions.
All figures shown herein are illustrative and none is to scale.
The present invention teaches a device for delivering a predetermined amount of a substance, preferably comprising a medication or combination of medications, into a body orifice of a subject, the orifice comprising any of the body's natural orifices, including a nostril, the mouth, the ear, the throat, the urethra, the vagina, the rectum and any combination thereof.
In preferred embodiments of the device, the device comprises a delivery mechanism and a medicament capsule, as described hereinbelow. The device can apply a broad range of drugs and materials to the nasal cavity for local effect, deliver a broad range of drugs and materials through the nasal cavity to the systemic circulation, deliver a broad range of drugs and materials through the nasal cavity to the central nerve system (CNS) the brain, spinal cord and associated nerves, and any combination thereof.
The drugs to be applied could be, but are not limited to, pharmaceuticals, natural compounds, biologics, hormones, peptides, proteins, viruses, cells, stem cells and any combination thereof.
However, it should be emphasized that the device can be provided alone as well as in combination with a capsule.
In some cases the capsule would be provided with a known medicament within the same and in other cases the capsule would be ‘filled’ with the medicament just before use.
In some embodiments of the present invention, the device operating characteristics and the substance characteristics can be jointly optimized to maximize uptake of the substance at the desired site. In preferred variants of such embodiments, uptake is further optimized by exploiting synergies between delivery characteristics generated by the device and by the formulation or composition of the delivered material
In some embodiments, the substance comprises one or more agents to optimize delivery through the mucosal membrane by means of mucoadhesive agent and/or a permeability enhancer agent and/or a particulate formulation in the nano-particle or macro-particle range, and any combination thereof. In such embodiments, the combination of the device and substance enhance the delivery of the active agent to the target area (nasal epithelium and more specifically olfactory epithelium) and from there to the target tissue (for example the brain).
A non-limiting example is a composition comprising a drug to be delivered and at least one chemical permeation enhancer (CPE). In a preferred embodiment, the composition contains two or more CPEs which, by using a nasal delivery device, affect in an additive manner or behave synergistically to increase the permeability of the epithelium, while providing an acceptably low level of cytotoxicity to the cells. The concentration of the one or more CPEs is selected to provide the greatest amount of overall potential (OP). Additionally, the CPEs are selected based on the treatment. CPEs that behave primarily by transcellular transport are preferred for delivering drugs into epithelial cells. CPEs that behave primarily by paracellular transport are preferred for delivering drugs through epithelial cells. Also provided herein are mucoadhesive agents that enable the extension of the exposure period of the target tissue/mucus membrane to the active agent, for the enhancement of delivery of the active agent to and through the mucus membrane.
In contrast to prior-art nasal delivery devices and technologies, the devices of the present invention can produce a fine aerosol in the nasal cavity or other desired body orifice at the target area and at the location of the target tissue instead of producing the aerosol only within the device or immediately after exit from the device. Utilizing the pressure as a driving force and the air as a carrier allows the material to be released from the nozzle as a mixture of aerosol and a pre-aerosolized state. The properties of the resultant aerosol are typically dependent on the properties of the device and of the medium into which the device is discharged. The properties of the device which affect the aerosol characteristics are the delivery pressure, the volume of the delivery gas, the characteristics of its orifice and time to activate.
In some embodiments, the aerosol properties are fairly independent of the delivered substance, while, in other embodiments, the pressure, volume, orifice characteristics, and delivered substance properties can be co-optimized.
In prior-art devices the aerosol is produced in proximity exit of the device. Typically, the aerosol comprises a wide “fan” of aerosol and a low driving force. Therefore, large droplets typically deposit very close to the exit from the device, while smaller droplets tend to quickly contact the walls of the passage, so that deposition is typically predominantly close to the delivery end of the device, with little of the substance reaching desired sites deeper in the body orifice, such as the middle and superior turbinates of the nose.
In contrast, in the present device, the pre-aerosolized mixture of gas and substance exits the device with a significant driving force as a mixture of aerosol and preaerolized material (fluid or powder). When the preaerosolized material hits the walls of the nasal passages, it “explodes” into a fine aerosol that is capable of being driven by the pressure deep into the nasal passages to deposit in the desired region.
Typical prior art devices release aerosolized medicament. However, all have severe limitations.
The LMA MAD nasal atomizer (
Devices such as nasal pumps (
The Simply Saline Nasal Mist (
The Optinose breath powered delivery device (
Unlike the device of the present invention, none of the prior-art devices provide accurate control of all of the delivery parameters, which include dose volume, carrier volume, pressure, and delivery velocity.
A further advantage of the device of the present invention (the SipNose device) is that, unlike the prior art devices, it can be configured to accurately deliver large volumes (>100 ul) at high pressure, such that the high-velocity aerosol can be as reliably and reproducibly produced for large volumes as for small.
The embodiments disclosed below disclose non-limiting examples of devices and methods for providing the predetermined volume of gas at the predetermined pressure.
The embodiments disclosed in
The characteristics of the aerosol, namely its size, shape and velocity, depend on the speed of exit of the gas from the chamber, the volume of air delivered, the characteristics of the delivery orifice and the activation time. The speed of exit of the gas from the chamber and the volume of air delivered depend on the pressure of the gas in the chamber in the loaded state, on the volume of the chamber in the loaded state, and on the characteristics of the fluid connection between the chamber and the delivery orifice. The less change there is in these characteristics during an activation and between activations, the more reliable and the more reproducible the device will be. Therefore, in controlling the characteristics of the fluid connection, the time taken to open the valve needs to be taken into consideration. In devices of the current invention, the valve opening times are both reproducible and short and are not in any way dependent on the user, so that the delivery comprises a short, reproducible, high velocity pulse of the gas.
The non-activated state and the loaded state appear identical; they differ in that, in the loaded state the chamber contains pressurized gas whereas, in the non-activated state, the chamber does not contain pressurized gas.
In some embodiments, including embodiments intended for use in emergencies or daily home use, the device is a single-use device with only two states, a loaded state and an activated state. The device is provided in the loaded state; activation of the trigger mechanism discharges the gas and substance.
In other embodiments, the device is provided in the pre-activated state. The user transforms the device into the loaded state, pressurizing the gas, and activates the trigger mechanism to discharge the gas and substance.
Capsules can be single-compartment or multi-compartment. Single-compartment capsules can comprise a flexible silicone tube, preferably sealed at both ends.
Multi-compartment capsules can contain different components of a substance in the different compartments; at least one compartment can contain a carrier gas, and any combination thereof.
In some embodiments, there is a single capsule for the carrier gas and the substance. Some embodiments have separate capsules for substance and gas.
Some embodiments have the gas held in a gas holding chamber. The gas holding chamber can be filled at the time of manufacture or can be filled to the predetermined pressure by a charging mechanism.
Some embodiments have the substance held in a holding chamber. The holding chamber can be filled at the time of manufacture or can be filled by a filling mechanism such as, but not limited to, a syringe.
It should be emphasized that the present invention refers to both one compartment capsules as well as multi-compartment capsules.
In multi-compartment capsules, walls divide the capsule into compartments. The compartments can have approximately the same volume or different volumes, and the same thickness or different thicknesses; if circular, they can have the same diameter or different diameters. They can have the same area at the end faces, or different areas.
The compartments, taken together, can form a large fraction of the volume of the capsule, or they can form a small fraction of the volume of the capsule.
Compartment walls can be equally spaced, either angularly or linearly, or they can be unequally spaced. Spacings can be arbitrary, they can be regular, they can follow a pattern, and any combination thereof.
Compartments can be near the edge of the capsule or at other positions within the capsule.
Before use, the compartments are preferably hermetically sealed to prevent mixing of the substances contained therein.
Compartment walls can be substantially similar in shape to the capsule walls (for non-limiting example, lenticular walls within a lenticular capsule) or at least one of the compartments' walls' shape differs from the shape of the cross-section of the capsule. (For non-limiting example, a lenticular wall within a circular capsule.)
Compartment walls can be non-frangible or frangible. Frangible walls permit mixing or reaction of the contents of adjacent compartments before the substances leave the compartments.
Compartments can, but need not, have a frangible membrane at at least one end.
Any compartments can contain one substance or a mixture of substances; any two compartments can contain the same substance or mixture thereof, or different substances or mixtures thereof.
The material of any combination of capsule walls and compartment walls can be rigid, semi-flexible, flexible and any combination thereof. Flexible or semi-flexible compartment or capsule walls can reduce dead space—regions of low gas flow—in the air path during activation.
In the embodiment shown in
In the embodiment schematically illustrated in
In the embodiment schematically illustrated in
In practice, the embodiment illustrated in
In some embodiments, there is no central compartment (140).
In the exemplary embodiment shown, the auxiliary compartments are hollow, containing a substance. In other embodiments, at least one of the auxiliary compartments (150, 155) is comprised of solid material, thereby forming part of the structure of the capsule.
In preferred embodiments, the central compartment (140) and the central auxiliary compartment (155) are solid, forming a solid central core for the structure. The remaining compartments (130, 150) comprise substance, where, in preferred embodiments, the compartments (130) contain a substance such as a medicament and the auxiliary compartments (150) contain a propellant, preferably compressed gas.
In the exemplary embodiment shown in
In the exemplary embodiment shown in
These embodiments are merely exemplary; any combination of the above arrangements can be used.
In the exemplary embodiments shown, the walls separating the compartments are planar. In other embodiments, the walls can form a curve, either regular or irregularly shaped.
The main longitudinal axis of at least one of the compartments can be parallel to the main longitudinal axis of the capsule, it can be spirally disposed it can be at an angle to the main longitudinal axis of the capsule, and any combination thereof.
The main longitudinal axes of the compartments can be straight, they can form regular curve, they can form irregular curves, and any combination thereof. For any pair of compartments, the main longitudinal axes can be the same or they can be different.
In most embodiments, at least part of the upstream closure surface (not shown) and the downstream closure surface (not shown) of the capsule are frangible or otherwise removable, such that, when broken or otherwise removed, the medications can be delivered to the desired deposition site. In a variant of these embodiments, different portions at least one closure surface have different breaking strengths, such that the different portions can be broken at different times during delivery of the medication, enabling either differential mixing of medical formulations in different compartments or differential delivery of the medications in at least two of the compartments.
In some embodiments, at least part of the side surface of the capsule is frangible, enabling yet another mixing path or delivery path.
Capsules can be cylindrical with circular cross-section, as shown, cylindrical with oval, elliptical, lenticular, or polygonal cross-section, with the polygon having at least three sides and not more than about 20 sides. The polygon can be a regular or irregular.
Capsules can be spherical, elliptical, ovoid, pillow-shaped, football-shaped, stellate and any combination thereof. Capsules can form regular or irregular shapes.
Compartments can have substantially constant cross-section through the device or the cross-section can vary in area, in shape, or in any combination thereof.
In this exemplary embodiment, the mixing mechanism (1020) comprises spirally-disposed air channels (1022) at the periphery of the mixing mechanism (1020). The central part of the mixing mechanism (1020) is solid, forcing the carrier gas and the substances to pass through the channels (1022). By narrowing the channel through which the gas passes and by changing the direction of the gas flow, mixing of the substances is enhanced. The mixing mechanism (1020) fits within the tegument (110) of the capsule (100) and mixing occurs within the capsule (100).
In some embodiments, a single channel is used. This can have a cross-section which is annular, circular, polygonal, lenticular, pie-shaped irregular, or any combination thereof. The channel main longitudinal axis can pass through any part of the capsule. Non-limiting examples include a circular cross-section with main longitudinal axis at the capsule center, and an annular cross-section at the periphery of the capsule, with main longitudinal axis at the capsule center.
In some embodiments, the capsule comprises two units, one comprising at least one substance and one comprising the mixing mechanism, such that the substances exit the compartments and are then mixed in the mixing mechanism.
In other embodiments, the mixing mechanism (1020) comprises channels disposed throughout its cross-section.
Channels can be arbitrarily arranged across a cross-section, regularly arranged across a cross-section, or irregularly arranged across a cross-section.
Channels can be linearly disposed, parallel to the main longitudinal axis of the capsule; or linear and disposed at an angle to the main longitudinal axis of the capsule.
The main longitudinal axis of at least one channel can be curved with respect to the main longitudinal axis of the mixing mechanism, with respect to an axis perpendicular to the main longitudinal axes, or any combination thereof.
Any combination of the above channel shapes can be used.
The shape of a channel cross-section can be substantially the same along the length of the channel, the shape can change along the length of the channel, the size of the cross-section can change along the length of the channel, and any combination thereof.
Shapes of the cross-sections of the channels can vary in the same manner along the length of the channel, or they can vary in different manners.
Shapes of the cross-sections of the channels can be the same for all the channels, or the shapes of the cross-sections of at least two channels can be different.
Sizes of the cross-sections of the channels can vary in the same manner along the length of the channel, or they can vary in different manners.
Sizes of the cross-sections of the channels can be the same for all the channels, or the sizes of the cross-sections of at least two channels can be different.
In some embodiments, the mixing mechanism (1020) comprises a plurality of longitudinal sections, with the sections having fluidly connected channels, but the channels are differently disposed longitudinally. For non-limiting example, a two-section device can have spirally disposed channels with left-handed spirals in the first section and right-handed spirals in the second section.
In some embodiments, there are different numbers of channels in the two sections. In other embodiments, there are the same number of channels in the two sections.
In other multi-section mixing mechanisms (1020), sections comprising channels are fluidly connected by substantially channel-free regions.
Mixing mechanisms can comprise between 1 and 10 regions. Individual regions can have any of the channel dispositions described hereinabove.
In some embodiments, mixing can be done by an integral mixing mechanism, either a single-section or a multi-section device. In other embodiments, mixing can be done by disposing a plurality of single-section mechanisms end-to-end, either abutting each other or with spacers to provide channel-free regions.
During the process of mixing, the first and second flowable substances can be mechanically mixed with each other and with the air or other gas, they can be reacted with each other, and any combination thereof.
In some embodiments, reaction of at least one flowable substance can be enhanced by a catalyst deposited on or part of the walls of the mixing region.
Criteria of the capsule, whether single-compartment or multi-compartment, can be optimized to include: ensuring that a single dose of the substance is delivered in its entirety, ensuring that the single dose contains the predetermined amount of the substance, ensuring that the dose is delivered to the desired region of the nose, and ensuring that delivery of the dose causes the minimum possible discomfort to the patient. Any combination of these criteria can be optimized for each particular combination giving rise to a different embodiment of the capsule.
The capsule can also be optimized for ease of insertion into a delivery device, for ease of removal from a delivery device, for stability of the contents during storage, for resistance of the capsule materials to environmental degradation, for resistance to undesired fracture, for reliability of use, for completeness of mixing, for completeness of reaction, and any combination thereof.
In some embodiments, the capsule comprises a filter configured to remove from the air at least one selected from a group consisting of particles, particulates, bacteria, viruses, moisture, and undesired gases before the air contacts the user. Such a filter, by preventing unpleasant odors or tastes from reaching the user and by preventing particles or particulates from reaching the user, can make the experience of using the device much more pleasant for the user and much safer. By removing bacteria and viruses, infection of the user can be prevented.
In some embodiments, the capsule contains only a single dose of the substance, the capsule being replaced after each use. In other embodiments, the capsule contains multiple doses of the substance, preferably packed separately, so that the dose is fresh for each use.
During dispensing of the substance, the gas passing through the capsule entrains the substances contained within the compartments such that the substances have a predetermined distribution within the dispensed mixture, where the predetermined distribution can be a homogeneous distribution or a heterogeneous distribution. Heterogeneous distributions can be: an arbitrary distribution, a distribution in which the dispersion of the at least one substance within the mixture follows a predetermined pattern, and any combination thereof.
According to another embodiment of the present invention, movement of air into the chamber during transformation of the device into said pre-activated state creates a vacuum in the region near or in the capsule.
In some embodiments, the loading region of the device comprises at least one filter to remove from the air (or other gas) at least one selected from a group consisting of particles, particulates, bacteria, viruses, moisture, and undesired gases before the air contacts the user.
Preferably, the air or gas is filtered on entrance to the air chamber from the outer environment (the room, the surrounding area). Alternatively or additionally, air can be filtered on exit from the air chamber, while within the loading air chamber, and any combination thereof.
The device comprises a hollow upstream portion (1881) fluid-tightly connected to a hollow downstream portion (1889). In this embodiment, the activation mechanism (1880) comprises a cup-shaped insert (1884) fitting snugly and fluid-tightly within the hollow interior of the device. The outer rim of the insert (1884) is preferably fixed to the outer wall of the activation mechanism (1880), with its inner rim (1885) able to slide on an inner wall (1886), preferably tubular, of the activation mechanism (1880). In the activation mechanism's (1880) closed position, a stop (1882) is firmly held by the inner rim (1885) of the insert.
The inner wall of the activation mechanism (1880) comprises a throughgoing bore (1883). In some variants of this embodiment, a flexible tube (1888) is fluid-tightly fixed to the wall (1886) such that there is flexible tubing in at least the portion of the wall abutting the stop (1882). In other variants of this embodiment, the flexible tube (1888) passes through the bore (1883).
In preferred variants of this embodiment of an activation mechanism, in the closed position, the stop (1882) fits into and sits in a hole in the inner wall (1886). In other variants, the stop (1882) fits into and sits in a depression in the inner wall (1886).
When the activation mechanism (1880) is in the closed position, the flexible tube (1888) is pinched between the stop (1882) and the inner side of the throughgoing bore (1883).
When the activation mechanism (1880) is activated, the insert (1884) slides up along the wall, releasing the stop (1882) so that the pinched region in the flexible tube (1888) is released, thereby releasing the pressurized gas and dispensing the substance.
In the embodiment shown in
In some embodiments, flexible filling material such as, but not limited to, flexible tubing, can be placed within the region of the device (not shown) containing the substance to be delivered in order to reduce dead space within the device. Reducing dead space will not affect the characteristics of the aerosol formed after release, but it will decrease pressure loss and increase air speed within the device, thereby substantially reducing residual substance remaining within the device after completion of activation, either within the capsule or adhering to the interior walls of the device, e.g., within the nozzle. It is well known in the art that residual material within a delivery device can be released on subsequent uses of the device and that the amount of such residual material released during a given use of a device is extremely variable. Therefore, minimizing residual substance within the device will increase the accuracy and reproducibility of delivery, thereby increasing its repeatability and reliability, both by maximizing the fraction of the substance actually delivered from the current capsule and by minimizing the amount of residual substance on the walls of the device.
It should be noted that the capsules (disclosed hereinbelow) are designed so as to avoid residual volume within the capsule itself, since, even in the case of a single dose or disposable capsule there are safety issues involved in disposing of capsules containing residual amounts of hazardous drugs or other hazardous component in the composition.
Other trigger mechanisms include, but are not limited to, a releasable catch, a pressable button a detectable predetermined sound pattern, a detectable predetermined light pattern, a moveable lever, a slider moveable from a first position to a second position, a rotatable knob is rotated, a releasable latch configured and any combination thereof.
The predetermined sound pattern can be: a constant-pitch sound, a varying-pitch sound, a constant volume sound, a varying volume sound and any combination thereof.
The predetermined light pattern can be: a constant-color light, a varying-color light, a constant brightness light, a varying brightness light and any combination thereof.
In some embodiments, the device comprises a unidirectional valve such that gas can flow from the charging mechanism to the delivery end, but is unable to flow in the reverse direction.
In some embodiments, a substance to be dispensed (which can comprise any number of materials) can be stored within a capsule, either as the substance to be dispensed or as a precursor or precursors, with the capsule placeable within the device, as described hereinbelow. In such embodiments, the capsule is ruptured during activation, either all at once or in stages, thereby dispensing the substance.
In other embodiments, a substance, prepared in a conventional matter, is introducible into a holding chamber within the device and, on activation of the device, the substance is dispensed. Embodiments of this kind can be used as emergency dispensing devices, since any flowable substance can be introduced into the holding chamber and since the holding chamber, which has no facilities for separating precursors or for providing an inert atmosphere in the chamber, is not intended for long-term storage of substances.
In some embodiments, the capsule chamber in which the capsule can be placed can also function as a holding chamber, so that the substance can be dispensed either from the capsule or directly from the holding chamber.
In other embodiments, an insert can be placed within the capsule chamber, with the interior of the insert being a holding chamber.
An embodiment of the activation mechanism a dispensing device (1000) into which any flowable substance is introducible is shown in
In this embodiment, the means of loading the substance into the device is a syringe (2000). The syringe (2000) can be placed in the injection port (2100,
In some embodiments, the syringe is left in the injection port. In other embodiments, a cover (2300) is provided for the injection port, so that, after loading the substance into the chamber, the injection port can be sealed by means of the cover. As shown in the embodiment of
In some embodiments, the substance is stored in a capsule or in a sealed compartment in the device. Before or during activation, the capsule or sealed compartment is breached and pressure on the capsule (e.g., by pressing a button to move the piston of a built-in syringe) forces the contents into a dispensing chamber (2200). Dispensing gas passing through the dispensing chamber (2200) then entrains the substance and delivers it.
In some embodiments of a device with separate storage chamber and holding chamber, the capsule comprises a syringe or a syringe like compartment, a rubber piston and seals. The longitudinal axis of the syringe and piston are at right angles to the longitudinal axis of the device. Pressure on the piston moves the substance from the syringe into the holding chamber, in a manner similar to the syringe (2000) and holding chamber (2200) in
In the embodiment shown, a pinch triggering mechanism is used, as shown hereinabove in
In reference to
In the exemplary embodiment of both
In preferred embodiments, the distal end of the tip extension does not comprise any longitudinal protruberances, being substantially flat in the area around the opening (1113) and, where non-planar, extending proximally from the plane of the opening.
In order to prevent material from escaping from the nasal passages or entering undesired areas in the nasal cavity, in some embodiments, the nozzle comprises a medial extension, an expandable portion (1120).
In the exemplary embodiments of
The nozzle tip and the tip extension (1110) have a number of holes (1112, 1113) which fluidly connect the bore of the nozzle (1100) to the exterior of the device, allowing material to exit from the interior of the device. In the exemplary embodiments shown, there is a hole (1113) (
In some embodiments, the extension (1110) can be padded, can comprise soft material, can comprise flexible material and any combination thereof.
Extensions, both tip extensions and medial extensions, can have a number of functions. A non-limiting list of such functions is (1) ensuring proper positioning of the nozzle (1100) in the nasal passages, where the proper position can be the nozzle (1100) centralized in the nasal passages, the nozzle (1100) touching a predetermined portion of the nasal passages, or the nozzle (1100) closer to a predetermined portion of the nasal passages, (2) sealing the nasal passages so that material can not escape therefrom, (3) sealing the nasal passage so that substance does not contact undesired portions thereof, (4) sealing the nasal passage so that substance remains in a predetermined region of the nasal passage, (5) reducing the discomfort of contact between the nozzle and the nasal passages, especially in embodiments where the extension is intended to seal against the walls of the nasal passages, by providing a soft and/or flexible contact region and any combination thereof. Proper positioning can be for the purpose of improving delivery of a substance to a predetermined area, preventing clogging of the holes by nasal secretions, preventing clogging of the holes by contact with the nasal passages, mucosa and any combination thereof.
Nozzle extensions, both those that are expanded during the activation procedure and those that have a predetermined shape and do not expand, can either (1) be attached to the nozzle in a way that they are removed from the nasal cavity with the nozzle tip itself, or (2) have the option of being releasable from the nozzle tip so that they stay in the nasal cavity until they are pulled out by the user or by a caregiver, or any combination thereof. In embodiments where at least one nozzle extension remains in a nasal cavity, preferably, the nozzle extension or extensions are removed after a predetermined time, preferably a short time.
In some embodiments, the holes (1112) in the nozzle (1100) do not lie substantially in a plane perpendicular to the main longitudinal axis of the nozzle (1100). In such embodiments, the holes (1112) can lie along a line parallel to the main longitudinal axis of the nozzle (1100), along a line forming a spiral around the nozzle (1100), irregularly in the distal portion of the nozzle (1100), regularly spaced in the distal portion of the nozzle (1100), and any combination thereof.
Therefore, dispersion of the drug can be substantially from a ring perpendicular to the main longitudinal axis of the nozzle (1100) (holes (1112) around the edge of the extension (1110), from a circle perpendicular to the main longitudinal axis of the nozzle (1100) (holes (1113) in the distal tip of the nozzle (1100), from a line (holes (1112) parallel to the main longitudinal axis of the nozzle (1100) or in a spiral around the main longitudinal axis of the nozzle (1100), or from at least part of the surface of a volume extending along the side of the nozzle (1100).
In some embodiments, the size of the tip extension (1110) is selected so that the extension (1110) is in contact with the nasal passages substantially along its entire circumference. In such embodiments, material exiting holes (1113) in the distal tip of the nozzle (1100) or holes (1112) on the distal face of the extension (1110) can not reach regions proximal to the extension (1110) and will reach only regions deeper in the nasal passages than the extension (1110). In such embodiments, the substance will reach the upper parts of the nasal passages.
Material exiting from holes (1112) in locations where the extension (1110) is in contact with the nasal passages will deposit directly on the walls of the nasal passages. In such embodiments, deposition is in a very narrow band; the location of the band can be tailored for the material of interest.
Material exiting holes (1112) proximal to the region of the extension (1110) in contact with the walls of the nasal passages will be unable to reach locations distal to the region of the extension (1110) in contact with the walls of the nasal passages and will therefore deposit in the lower parts of the nasal passages.
Returning to
The expandable portion (1120) is preferably inflated after insertion of the device into the nasal passage. Inflation can be before or at the time of activation of the device.
It should be noted that the embodiments of the device are not limited to the exemplary embodiments shown in
In embodiments where delivery is to a nostril, delivery of the substance can be improved by inducing sniffing in the user.
Sniffing (short, sharp breaths through the nose, for example, when smelling something) is highly correlated with soft palate (Velum) position. Sniffs are rapidly modulated in an odorant-dependent fashion by a dedicated olfactomotor system, and affect the position of the soft palate at the posterior end of the nasal cavity. When sniffing through the nose, the palate is in its upper position to cause separation between the nasal cavity and the oral cavity.
In addition to conscious control, sniffing may be reflexively elicited by chemicals, functioning as either irritants or odors in the nose. Overall sniff duration and pattern can be modulated in real time to optimize olfactory perception. When the olfactory system encounters a concentrated odorant, sniff vigor is reduced and sniff time is reduced; when it encounters a diluted odorant, sniff vigor is increased and duration lengthened. Odorant pleasantness also affects sniffing; sniff vigor and duration increase when smelling a pleasant odor and decrease when smelling an unpleasant odor.
In preferred embodiments, the device disclosed herein can release odorant into the nasal cavity of the user in order to reflexively elicit sniffing. The odorant can be a single odorant or a mixture of odorants and can comprise compounds from different chemical families, for non-limiting example:
Also aromatic compounds of alcohols, aldehydes, esters, ketones, lactones, and thiols.
In preferred embodiments, the substance is contained within a capsule. The capsule can have a single compartment or it can be multi-compartment. The capsule can contain a broad range of drugs and materials. The aromatic compound can be stored in the nozzle, or the nozzle or a portion thereof can be impregnated with aromatic compound, so as to trigger the closing of the velum when the nozzle tip is being placed in the nasal cavity. The delivery can be for local effect, to the systemic circulation, to the central nerve system (CNS), to the brain, preferably via the olfactory epithelium, to the spinal cord and associated nerves, and any combination thereof.
As described hereinabove, the drugs and materials to be delivered can be, but are not limited to, pharmaceuticals, natural compounds, biologics, hormones, peptides, proteins, viruses, cells, stem cells and any combination thereof.
The stored substance or substances can be stored as a liquid, an aerosol, a powder, a slurry, a suspension, or a gel, if thin enough. The substance or substances can be stored either with or without a carrier; the carrier can be a liquid, a gas or a powder.
The substance as delivered can comprise a powder, a mixture of liquid and powder, a mixture of gas and powder, a mixture of powders, a liquid, a mixture of liquid and gas, a mixture of liquids, a gas, or a mixture of gases.
The stored substance or substances can be packaged to minimize degradation, for example, by packaging it in vacuum or under an inert atmosphere. Preferably, capsules are single-use so that a single, controllable dose can be delivered with each use of the device. Capsules can be placed in the container of the device, or the container can comprise the capsule.
Use of an inert gas for the carrier for delivery of the medication obviates the possibility of interactions between the user and the delivery carrier; allergies to carriers, especially in medications used for chronic illnesses, are a growing problem. Furthermore, the delivery carrier is in contact with the medicament for no more than a few seconds and more commonly for no more than a few milliseconds, thereby minimizing degradation of the medicament due to interactions with the delivery carrier.
Examples of drugs and materials deliverable using the device are given hereinbelow. All examples listed below are exemplary and are not limiting.
Deliverable drugs and materials include: treatments for allergic rhinitis; treatments for osteoporosis; vaccinations and immunizations; sexual dysfunction drugs; treatments for B12 deficiency; smoking cessation; treatment of gynecological problems; treatment of other women's health issues; general anesthetics; local anesthetics; opioid analgesics; agonist-antagonists and antagonists; antitussives; drugs used in the treatment of motor disorders; antiepileptics; drugs used in affective disorders; antipsychotics (neuroleptics); sedative-hypnotics, anxiolytics, and centrally acting muscle relaxants; treatments for anxiety disorders; skeletal muscle relaxants; treatments for Parkinson's disease; treatments for Alzheimer's disease; treatment for pain and anti migraine treatment.
Medicaments for treatment of allergic rhinitis include: steroids, including corticosteroids, Flonase, Patanase, Beconase, Anihistamine, Astelin, Otrivin™, Livostin, Theramax, Avamys, Lufeel, Sinofresh, Nasonex, Nasocort and Veramyst.
Medicaments for treatment of osteporosis include: Miacalcin, Fortical and Stadol.
Medicaments for vaccinations and immunizations include: LAVIN, and influenza vaccines including FluMist.
Medicaments for smoking cessation include: NasalFent.
Other medicaments which can be delivered include: calcitonin and parathyroid hormone.
Neurotransmitters and neuromodulators that can be delivered include: acetylcholine (ACH), Anticholinergic drugs, adenosine triphosphate (ATP), aspartate (Asp), beta-amyloid, beta-endorphin, bradykinin, dopamine (DA), L-DOPA, Carbio-Dopa, epinephrine, dynorphins, endomorphins, enkephalins, 5-hydroxytryptamine (5-HT), Sumatriptan, Imitrex, Migranal, Zolmitriptan, Zomig, Gamma-aminobutyric acid (GABA), glutamate (glu), glycine, histamine, leptin, nerve growth factor and other growth factors), norepinephrine, nitric oxide, and Substance P.
General anesthetics which can be delivered include: alfentanil, desflurane, enflurane, etomidate, fentanyl, halothane, isoflurane, ketamine, methohexital, methoxyflurane, midazolam, lorazepam, diazepam morphine, nitrous oxide (N2O), propofol, sevoflurane, Sufentanil, Sublimase, and thiopental.
Local anesthetics which can be delivered include: benzocaine, bupivacaine, cocaine, lidocaine, prilocaine, procaine, ropivacaine, and tetracaine.
Opioid analgesics, agonist-antagonists, and antitussives which can be delivered include: agonists, codeine, diphenoxylate, fentanyl, heroin and other opiods, hydrocodone, 1-alpha-acetyl-methadol, levomethadyl acetate, loperamide, meperidine, methadone, morphine, oxycodone, d-propoxyphene, combinations of opioids plus acetaminophen and asa, and tramadol.
Agonist/antagonists and antagonists which can be delivered include: buprenorphine, butorphanol, nalbuphine, nalorphine, naloxone, naltrexone, nalmefene, pentazocine, codeine, dextromethorphan, and hydrocodone.
Drugs used in the treatment of Parkinson's disease and motor disorders which can be delivered include: amantadine, apomorphin, baclofen, benzodiazepines, benztropine, bromocriptine, carbidopa, cyclobenzaprine, dantrolene, dopamine, entacapone, haloperidol, L-DOPA, pergolide, pramiprexole, ropinerole, selegiline (deprenyl), trihexyphenidyl, rasagiline, azilect, selegiline, ladostigil, rotigotine, neupro, mono amine oxidase inhibitor, and COMT inhibitor.
Antiepileptics which can be delivered include: acetazolamide, carbamazepine, clonazepam, diazepam, ethosuximide, felbamate, gabapentin, Lamotrigine, lorazepam, phenobarbital, phenytoin, primidone, tiagabine, topiramate, valproic acid, Vigabatrin and Midazolam.
Drugs used in affective disorders which can be delivered include: antidepressants, amitriptyline, bupropion, citalopram, clomipramine, desipramine, fluoxetine, fluvoxamine, imipramine, nortriptyline, paroxetine, phenelzine, sertraline, trazodone, tranylcypromine, venlafaxine, antimanic drugs, carbamazepine, lithium carbonate and valproic acid.
Antipsychotics (neuroleptics) which can be delivered include: chlorpromazine (CPZ), clozapine, fluphenazine, haloperidol, olanzapine, quetiapine, risperidone, sertindole, thioridazine, thiothixene and ziprasidone.
Sedative-hypnotics, anxiolytics, and centrally acting muscle relaxants which can be delivered include: alprazolam, chloral hydrate, diphenhydramine, flumazenil, flurazepam, hydroxyzine, lorazepam, oxazepam, phenobarbital, temazepam, triazolam, zaleplon and zolpidem.
Anxiety disorders and skeletal muscle relaxants which can be delivered include: alprazolam, chlorazepate, chlordiazepoxide, diazepam, flumazenil (antagonist), lorazepam, and oxazepam.
Treatments for Alzheimer's disease which can be delivered include: donepezil, galantamine, rivastigmine, Tacrine, Detemir, Novolin, Humulin, Insulin, insulin like hormone, an insulin analog such as NPH Insulin, Lispro, Aspart, Detemir Insulin, Glulisin, Glargin Insulin, Insulin degludec, BDNF, GDNF, MIBG, anti cancer agents, anti cancer drugs, dopamine agonist and dopamine antagonist.
Other drugs which can be delivered include: amphetamine, caffeine, ephedrine, methamphetamine, methylphenidate, phentermine, sibutramine, disulfiram, ethanol, methanol, naltrexone, atropine, scopolamine, ketamine, lysergic acid diethylamide (LSD), MDMA (methylene dioxy-methyl amphetamine), mescaline, phencyclidine (PCP), donabinol, marijuana/THC, organic solvents, nicotine, Pentobarbital, neuroprotective compounds, neuroprotective peptides, neuroprotective factors, davunetide, anti schizophrenic drugs, anti depression drugs, comtan, Entacopone, anti ADHD agents, anti ADHD drugs such as Methylphenidrate (ritalin), and anti-autism and anti-autism symptoms drugs.
Other materials that can be delivered include: both purified natural and synthetic biologics, peptides, proteins, antibodies, cells including stem-cells, parts of cells, nanoparticles and microparticles. The nanoparticles and microparticles can comprise drugs; they can be carriers for drugs, cells or parts of cells; and any combination thereof.
In preferred embodiments, the substance comprises permeation enhancers to improve penetration of the active components of the substance through the mucosal membranes.
In some formulations, the formulation can comprise polymeric microparticles comprising at least one active agent and a permeation enhancer, where the active agent is selected from a group consisting of a peptide, a protein, an antibody, nucleic acid, small molecules, cells and any combination thereof.
A great number of penetration enhancers are known in the literature.
One such penetration enhancer is Hyaluronic acid (also referred to as HA or hyaluronan), which is a polysaccharide that occurs naturally in the body. Due to its exceptional water-binding, visco-elastic and biological properties, HA can improve the attributes, such as, but not limited to, the absorption characteristics, of existing formulations and can also add new attributes to existing formulations. Inclusion of HA can be advantageous when developing new formulations.
When used for drug delivery and targeting, HA can provide clear advantages over traditional polymeric substances such as synthetic polymers such as, but not limited to, poly(ethylene glycol), poly(lactic acid), poly(glycolic acid), poly Acrylic Acid and Poly-(N-isopropylacrylamide), or other biopolymers such as chitosan and alginate.
HA's benefits in the drug delivery area include, but are not limited to:
Other penetration enhancers include, but are not limited to the following:
A group containing: a fatty acid, a medium chain glyceride, surfactant, steroidal detergent, an acyl carnitine, Lauroyl-DL-carnitine, an alkanoyl choline, an N-acetylated amino acid, esters, salts, bile salts, sodium salts, nitrogen-containing rings, and derivatives. The enhancer can be an anionic, cationic, zwitterionic, nonionic or combination of both. Anionic can be but not limit to: sodium lauryl sulfate, sodium decyl sulfate, sodium octyl sulfate, N-lauryl sarcosinate, sodium carparate. Cationic can be but not limit to: Cetyltrimethyl ammonium bromide, decyltrimethyl ammonium bromide, benzyldimethyl dodecyl ammonium chloride, myristyltimethyl ammonio chloride, deodecyl pridinium chloride. Zwitterionic can be but not limit to: decyldimethyl ammonio propane sulfonate, palmityldimethyl ammonio propane sulfonate. Fatty acid including but not limit to: butyric, caproic, caprylic, pelargonic, capric, lauric, myristic, palmitic, stearic, arachidic, oleic, linoleic, linolinic acid, their salts, derivatives and any combinations or glyceride, monoglyceride, a diglyceride, or triglyceride of those fatty acids. Bile acids or salts, including conjugated or un conjugated bile acids, such as but not limited to: cholate, deoxycholate, tauro-cholate, glycocholate, taurodexycholate, ursodeoxycholate, tauroursodeoxycholate, chenodeoxycholate and their derivatives and salts and combinations. Permeation enhancer as comprises a metal chelator, such as EDTA, EGTA, a surfactant, such as sodium dodecyl sulfate, polyethylene ethers or esters, polyethylene glycol-12 lauryl ether, salicylate polysorbate 80, nonylphenoxypolyoxyethylene, dioctyl sodium sulfosuccinate, saponin, palmitoyl carnitine, lauroyl-l-carnitine, dodecyl maltoside, acyl carnitines, alkanoyl cjolline and combinations. Other include but not limited, 3-nitrobenzoate, zoonula occulden toxin, fatty acid ester of lactic acid salts, glycyrrhizic acid salt, hydroxyl beta-cyclodextrin, N-acetylated amino acids such as sodium N-[8-(2-hydroxybenzoyl)amino]caprylate and chitosan, salts and derivatives and any combinations.
Other enhancers include: formulations of water in oil, formulations of oil in water; emulsions, double emulsions, micro-emulsions, nano-emulsions, water in oil emulsions, oil in water emulsions; steroidal detergent, and an acylse; to allow better absorption in the mucosal tissue, better permeation and absorption in the target cells, better stability of the encapsulated drug/active ingredient.
Some embodiments comprise, either alone or in combination with a penetration enhancer, a mucoadhesive agent such as, but not limited to, bioadhesive proteins, carbohydrates and mucoadhesive polymers
In the capsule of the present invention, the device comprises at least one compartment, and preferably a plurality of compartments, each containing a flowable substance. The delivery device is designed to rupture the compartments such that the flowable substances are mixed with a carrier, preferably air, and delivered to a predetermined deposition site, typically, but not exclusively, in the nasal passages.
Medicaments may be supplied as liquids, as powders, or as aerosols. In the preferred embodiment, the medicament is supplied in a single-dose capsule. In other embodiments, the medicament is supplied in a multi-dose capsule means, the multi-dose capsule configured to provide a single dose per activation.
In preferred embodiments, the flowable-substance capsule has a plurality of compartments. A compartment can contain at least one medicament, at least one medicament precursor, carrier gas, compressed gas, and any combination thereof.
The different compartments can contain different medicaments, with the plurality of medicaments delivered to the nostril or other delivery site in a single dose. In this manner, a plurality of medicaments may be supplied to the nostril in a single injection, with interactions occurring between the medicaments at most during the short time between activation of the device and the delivery of the substances and their deposition at the target site.
In some embodiments, interactions between components are unwanted. In such embodiments, a sequential release will utilize the short time period between release of the components and their absorption in the body to prevent such unwanted interactions and/or reactions.
In other embodiments, mixing and/or reactions are desired. In such embodiments, the reactions can occur all at once, by rupturing all of the compartments at the same time and mixing/interacting the components, either in the aerosol or in at least one mixing chamber. In other embodiments, a component can be added by needle insertion at a desired time before use, either into an empty compartment or into an occupied compartment (so that a desired reaction can occur). In other embodiments, the compartment walls rupture in a predetermined order, so that mixing/interaction occurs in stages, in a predetermined order. Mixing/interaction can occur in a compartment or compartments, in a mixing chamber, in the air passages of the device, in the aerosol, in the nasal (or other) passages of the body, and any combination thereof.
As a non-limiting example, a medicament can comprise four components, stored in four compartments of a capsule. Prior to activation, a fifth component is injected into compartment 1. After a predetermined time, the device is activated and the walls between compartment 1 and compartment 2 are broken, allowing mixing of 5/1 and 2. This followed by rupture of the walls surrounding component 3, which then mixes with 5/1/2 and reacts with 2. The last walls to rupture are those surrounding compartment 4; material 4 remains in a separate part of the aerosol and deposits on the nasal passages after deposition of 5/1/2/3.
In another example, precursor A mixes with precursor B to form intermediate C, and, subsequently, intermediate C mixes with precursor D to form final product E.
Mixing or reactions or release of components from different compartments can occur simultaneously, in different linked compartments, or they can occur sequentially, as in the example above. Any combination of sequential and simultaneous reactions and/or mixing and/or release can be used. Components can arrive at the deposition site simultaneously, either mixed or unmixed, sequentially, and any combination thereof.
It should be noted that there can be a predetermined delay of some fractions of a second between rupturing of walls of different compartments, in order to, for non-limiting example, allow complete mixing of one set of components or allow a reaction between one set of components to go to completion before the next mixing/reaction starts or the delivery starts.
In some embodiments, the device or, preferably, the capsule, comprises a mixing mechanism or mixing chamber, so that, as described above, components of the composition can mix and/or react during the activation process, enabling components to be stored separately and/or to be stored as stable precursors, but to deliver a predetermined treatment comprising at least one medicament to a predetermined delivery site.
In preferred embodiments of the device, the mixture of aerosol and pre-aerosolized mist is formed within the nozzle, with the hole at the lateral end of the nozzle having little effect on either the shape of the dispersion plume or the velocity of the aerosol.
An experimental setup to demonstrate the location of formation of the mist is shown in
Representation before activation is shown in the center of
An embodiment of a pressurized air carrier for providing controlled drug delivery to the nasal cavity.
Other embodiments can be used for delivery to the ear, mouth, throat and rectum.
In this embodiment of the device, the following parameters were variable, over the ranges given:
Another important consideration, not investigated in this example, is the location of the nozzle in the body orifice, for non-limiting example, the depth of insertion of the nozzle in the nasal cavity.
In practice, at least one of: the pressure, air volume and time between charging and activation can be optimized based on the characteristics of the compound, drug or medicament such as, but not limited to, the volume, density, viscosity, state of matter, drug formulation, and any combination thereof. The compound can be a liquid, a powder or any combination thereof. Pressure, air volume, time between charging and activation, and location of the orifice together with the characteristics of the delivered substance; all of the above contribute to the final distribution of aerosolized matter in the nasal cavity, or, in other words, the pattern of deposition of the aerosolized matter in the nasal cavity following discharge of the matter from a device with given predetermined parameters.
Other criteria which can be optimized include, but are not limited to, droplet size, droplet size distribution, droplet size as a function of time, and droplet size distribution as a function of time, plume geometry, pattern characteristics and particles' velocities.
The material as delivered is then a predetermined volume of the selected medicament in a predetermined form within a carrier comprising a predetermined volume of air/gas, with the volume of air/gas condensed at a predetermined pressure.
Tests showing the effect of changing pressure, air volume and time between charging and activation are given below. Deposition was measured in models that mimicked at least one aspect of the human nasal cavity (structure, friction, air flow, surface area or surface mucosa).
Model 1
A 36 cm long plastic tube with an inner diameter of 0.6 cm was used as a model for nasal friction and air resistance in the nasal cavity. The length of the aerosol distribution was measured, as well as the characteristics of the aerosol distribution.
2 mg/ml Methylene Blue in saline was used. The dye distribution pattern in the tube and the amount of dye that reached the end of the tube were observed.
In reference to
In reference to
Delivery of the liquid dye through the end of the tube (2620), as determined by its deposition on the absorbent (2630), was more efficient for the air volume of 18 cc, as shown by the stronger color (showing more deposited material) and more-even distribution in
In reference to
In reference to
In reference to
Model 2
A nasal cast model was used to provide a more realistic comparison to the average human nasal cavity. Material dispersion and penetration into the nasal cavity layers was found to be dependent on the pressure and air volume and the form and characteristics of the material deposited.
Model 3
The effects of air volume and air pressure on the distribution of 99mTC-DTPA aerosol in the nasal cavity and nasopharynx were examined using SPECT-CT for two human volunteers.
In both cases, the deposited material comprised 300 microliters of DTPA; 1.75 mc (milli Ciri) and the air volume was 20 ml. A pressure of 6 barg was used for the results shown in
In
The pressure affected the distribution and thus the absorption of the aerosolized drug in the human body.
As shown hereinabove, the location and distribution of deposition of a desired substance and the characteristics of the substance on deposition are controllable by controlling parameters such as pressure, air volume, substance volume and nozzle shape.
In all known other mechanisms of creating aerosols, an orifice is placed at the end of a nozzle and the inner diameter of the device's nozzle and, especially, its orifice, is the main parameter that influences aerosol formation and the aerosol's characteristics. In contrast, in the present invention, no orifice is needed. More than that, putting a conventional orifice at the end of the nozzle will actually limit the forces reaching the liquid or powder being dispensed, and thus will reduce the ability to create the desired fine aerosol at the target site. Thus, the large diameter tubing that can be used in the present invention, about an order of magnitude larger than the diameter of commonly-used tubes and orifices, results in the desired fine aerosol, carried efficiently into the nasal cavity with droplet median diameters (DV50) on the order of 1-100 micrometer.
In the present invention, the aerosol is created as a result of the air volume-pressure parameters of the device and is influenced by the nasal cavity resistance rather than primarily by the orifice diameter.
In order to model nasal friction and air resistance and as a model for aerosol formation in the nasal cavity, a 36 cm long glass tube with an inner diameter of 2 cm, filled with oil up to 22 cm of its length, was used.
Theoretical analysis has indicated that 5 cm of tube is equivalent to about 0.1-0.5 cm of the nasal passages; therefore the 22 cm. tube would approximately simulate the full depth of a nasal passage.
The test material was 200 microliter of Methylene Blue liquid solution.
The liquid solution was discharged from a device into the base of the tube and pictures and videos were taken in order to be able to follow the process of aerosol formation. The length of the deposition region, the aerosol distribution and the diameter of the aerosol droplets were determined as a function of time.
The Methylene blue solution was injected into the tube using a syringe.
In contrast,
In
In reference to
In
A comparison of
In
Two minutes later, (
In reference to
In reference to
In the following examples, results were obtained in a set of experiments made using the device, where, in each example, one parameter is changed and all others are fixed.
In Examples 4-11, the distance the aerosol migrated was measured in a plastic tube with an inner diameter of 0.5 cm and 345 cm long. Measurements were done at room temperature.
For Examples below, in Examples 4-9, the substance was a liquid and 100 microliters of saline were used for each activation of the device unless otherwise stated, and in Examples 10-11, the substance was a powder.
A. Liquid Aerosol Experiments
For a SipNose device, for an orifice diameter of 0.8 mm and an air volume of 3 ml, the effect of pressure on the distance the aerosol migrates is shown in Table 2 and
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
For a SipNose device, the effect of orifice diameter on the distance the aerosol migrates is shown in Table 3 and
For constant pressure and air volume, the larger the orifice diameter, up to about 0.8 mm, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
The effect of the amount of drug on the distance the aerosol migrates is shown in Table 4 and fits to the SipNose data are shown
In all cases, the aerosol migrates significantly further down the tube for the SipNose device than for the commercial devices.
For the SipNose device, the point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
The effect of the viscosity of the sample on the distance the aerosol migrates is shown in Table 5 and
It is clear that, over the range of viscosities investigated, the viscosity has no more than a negligible effect on the migration distance.
For viscosity in the range tested, from about 0.9 to about 23 cP, viscosity had no effect on the distance the aerosol migrates.
The effect of the volume of air in the sample on the distance the aerosol migrates is shown in Table 6 and
For constant orifice diameter and pressure, the larger the gas volume, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
The effect of the duration of activation on the distance the aerosol migrates is shown in Table 7 and
Table 7 and
Table 7 and
B. Powder Release Experiments
The effect of pressure on the distance the powder migrates is shown in Table 8 and
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
Similarly to the liquid substance example (Example 3,
Similarly to the liquid substance example (Example 3,
The effect of air volume on the distance the powder migrates is shown in Table 9 and
For constant pressure and orifice diameter, the larger the air volume, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
Similarly to the liquid substance example (Example 3,
Similarly to the liquid substance example (Example 3,
In the nasal cast experiments, a model of the human nose was used, with slices of 1 cm each. In the following experiments, the distribution of the material (liquid aerosol or powder) was measured for a nasal cast model.
The effect of air volume on the depth the sample reaches in the nasal cast model is shown in Table 10 and
The point at (0,0) (3330) was not a measured point, but is shown for reference, as a penetration of 0 layers would be expected for an air volume of zero (no delivery gas). The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows a linear fit to the measured data. Over the range of air volumes of interest, between about 5 ml and about 19 ml, the depth of penetration into the nasal cast increases substantially linearly with air volume, although the irregularities of the nasal passages, as reflected in the nasal cast, might have suggested a sublinear relationship.
According to another embodiment, the fit can be selected from a group consisting of logarithmic, parabolic, exponential, sigmoid, power-low, and any combination thereof.
In contrast to prior-art nasal delivery devices and technologies, the devices of the present invention can produce a fine aerosol in the nasal cavity or other desired body orifice at the target area and at the location of the target tissue instead of immediately after exit from the device. Utilizing the pressure as a driving force and the air as a carrier allows the material to be released from the nozzle as a combination of material in a pre-aerosolized state and an aerosol. The properties of the resultant aerosol are typically dependent on the properties of the device and of the medium into which the aerosol is discharged. The properties of the device which affect the aerosol characteristics are the delivery speed, the volume of the delivery gas, and the characteristics of the delivery orifice.
In some embodiments, the aerosol properties are fairly independent of the delivered substance, in other embodiments, the pressure, volume, orifice characteristics and delivered substance properties can be co-optimized.
In prior-art devices the aerosol is produced at the exit to the device. Typically, the aerosol comprises a wide dispersion of particle sizes, a wide “fan” of aerosol and a low driving force. Therefore, the large droplets typically deposit very close to the exit from the device; smaller droplets tend to quickly contact the walls of the passage, so that deposition is typically predominantly close to the exit from the device, with little of the substance reaching desired sites deeper in the orifice, such as the turbinates of the nose,
In contrast, in the present device, the aerosol and pre-aerosolized mixture of gas and substance exits the device with a significant driving force, when the preaerosolized fluid hits the walls of the nasal passages, it “explodes” into a fine aerosol that is capable of being driven by the pressure deep into the nasal passages to deposit in the desired region.
In reference to
The plume angle is the total angle subtended by the plume, as shown by the angle α in
In
The SipNose device has a much narrower plume than the two commercial devices. The plume angles for the commercial devices, the Alrin™ from Teva (
All the above parameters allow the aerosol to better deposit in the area of interest—such as the area of the olfactory epithelium in the nasal cavity; and to be better absorbed by the target tissue such as the brain.
In all cases, the SipNose device produces a spray pattern covering a well-defined area of the screen. A large number of particles reach the screen and, in the coverage area, this is significantly more than for any of the commercial devices.
Commercial devices F and J are the best of the prior-art devices, with a reasonable amount of the aerosol reaching the screen, but the distribution is very much wider than for the SipNose device, covering virtually the entire screen. Commercial devices H and I are the worst of the prior-art devices, with very little of the aerosol even reaching as far as the screen.
Tables 11 and 12 show plume characteristics for the SipNose device for different operating parameters and an orifice size of 0.8 mm (Table 11) and for four commercial devices (Table 12).
Significant differences were seen between the properties of the plumes between the SipNose device and the commercial devices; small, if any, overlap was seen between the plume angles, the plume heights or the plume velocities. For the SipNose devices, the range of plume angles was 5° to 25°, the range of plume heights 3 cm from the device was 1 to 20 mm, the range of plume heights 6 cm from the device was 5 mm to 25 mm and the range of plume velocities was 5 m/s to 50 m/s. For the commercial devices, the plume angles were over 33°, the plume heights 3 cm from the device were over 18 mm, the plume heights 6 cm from the device were over 29 mm and the plume velocities were less than 5 m/s.
Lispro Insulin is delivered to the brain with the SipNose device and can be specifically detected.
In
The results of the experiment are shown in
From
1. Lispro Insulin delivery to the brain with the SipNose device is highly efficient when compared to I/V administration
2. Insulin delivery to the brain with the SipNose direct-nose-to-brain approach results in Insulin in both anterior and posterior parts of the brain.
These results are summarized in Table 13.
SipNose aerosol droplets have a mean diameter in the typical range of other nasal delivery devices, and even smaller. Replacement of the saline with a high viscosity solution of 23 cP appears to have made little difference to the particle size distribution.
For the range of parameters used, the delivery parameters appear to have little effect on the particle size.
An example of the droplet size distribution is given in
Tables 14 and 15 show droplet size distributions averaged over 10 repeats for 100 ul and 400 ul saline in two SipNose devices (23-11 for 100 ul and 23-12 for 400 ul) for parameters 6 barg pressure, 19 ml of gas, and 0.8 mm orifice diameter. In all cases shown, low variability was seen for the 10 repeats of the measurements.
Table 16 shows an example of the reproducibility for the SipNose device. The measurements were done by weighing, and part of the variability shown probably depends on the measurement technique.
SipNose aerosol droplets have a mean diameter in the typical range of other nasal delivery devices, and even smaller.
Although the droplets have a small diameter, the width of the aerosol plume is very narrow, and this allows the aerosol to be better distributed in the inner part of the nasal cavity, without depositing at the front of a cavity such as the nasal cavity.
The SipNose device shows high consistency
In reference to
In reference to
For the SipNose device, 8 ml of gas was used. For the first SipNose experiment (solid line), the pressure was 2 barg and for the second SipNose experiment, (dashed line), the pressure was 6 barg. It can be seen that the release time was less than 300 ms even for the larger volumes.
In reference to
The release times were less than 300 ms for the SipNose device, even for the lower pressure and higher volume, significantly less than the 1.5 s to 20 s needed with the commercial devices.
In all of the SipNose experiments, over a range of pressures from 2 barg to 10 barg, a range of gas volumes from 2 ml to 12 ml and a range of drug volumes from 100 μl to 500 μl, significantly less than 0.5 s was needed to empty the SipNose device of drug plus gas. This is significantly less than the more than 1.5 s needed by even the fastest of the commercial devices.
In some embodiments, the release time is less than 1 s.
In some embodiments, it is less than 0.5 s.
In preferred embodiments, the release time is between 100 ms and 500 ms.
It should be emphasized that any embodiment of the present invention and any variant thereof can be used for both for humans (medical use) and animals. Thus, any of the devices as disclosed above and any variant thereof can be used for veterinary applications as well as (human) medical applications.
The pressure rate ΔP/Δt for a SipNose device with 0.8 mm orifice and a gas volume of 8 ml and for saline delivered by the Alrin™ nasal pump and the Simply Saline™ nasal pump is shown in Table 17. For the simply Saline™ nasal pump, there is no pre-defined release time. Release begins when an activation button is pressed and continues as long as the button remains depressed.
It is clear that the pressure rate for the SipNose device is on the order of 2 orders of magnitude greater than for the commercial devices.
The pressure as a function of time for pressures above 2 barg for a gas volume of 8 ml, a drug volume of 0.1 ml and an orifice diameter of 0.8 mm can be calculated from
P=471Vsub−1.5
The pressure as a function of time for pressures above 2 barg for a gas volume of 8 ml, a drug volume of 0.5 ml and an orifice diameter of 0.8 mm can be calculated from
P=8510Vsub−1.5
In general, for an orifice diameter of 0.8 mm and pressures above 2 barg, the pressure can be calculated from
P=a
p1
V
sub
−bp1
where ap1 is in a range from 1 to 20,000 and bp1 is in a range from 1 to 2.
The drug volume rate ΔVsub/Δt is shown in Table 18. For the SipNose device, the orifice diameter was 0.8 mm orifice and the gas volume was 8 ml.
The release time for a pressure of 2 barg, a gas volume of 8 ml and an orifice diameter of 0.8 mm can be calculated from
T=37+exp(2+0.018Vsub)
The release time for a pressure of 6 barg, a gas volume of 8 ml and an orifice diameter of 0.8 mm can be calculated from
T=−2.9+2 exp(2.86+0.025Vsub)
In general, for an orifice diameter of 0.8 mm, the release time if the drug volume only is varied can be calculated from
T=a
v1
+b
v1 exp(cv1+dv1Vsub)
where av1 is in a range from −50 to 50, bv1 is in a range from 0.1 to 5, cv1 is in a range from 1 to 5 and dvi is in a range from 0.01 to 0.05.
The gas volume rate ΔVgas/Δt is shown in Table 19. For the SipNose device, the orifice diameter was 0.8 mm. For the SipNose device, the pressure was 2 barg, while, for the MAD Nasal device, the device was pressed by hand; the delivery pressure was not measured.
The release time for the SipNose device, for a pressure P of 2 barg and a drug volume Vsub of 100 μl can be calculated from
T=−38+1.43Vgas
The release time for the SipNose device for a pressure P of 2 barg and a drug volume Vsub of 500 μl can be calculated from
T=68.5−0.367Vgas
The release time for the SipNose device, for a pressure P of 6 barg and a drug volume Vsub of 100 μl can be calculated from
T=−20+1.11Vgas
The release time for the SipNose device, for a pressure P of 6 barg and a drug volume Vsub of 500 μl can be calculated from
T=−16+0.182Vgas
In general, for an orifice diameter of 0.8 mm, the release time can be calculated from
T=a
v2
+b
v2
V
gas
where av2 is in a range of −100 to 100 and bv2 is in a range of −5 to 5.
Carrying distance and spread width area were compared for the SipNose device and two commercial devices, the Alrin and the Otrivin devices, by firing them at a target (9200) 50 cm from the tip of the nozzle (9100) of the device being fired.
For the SipNose device (
For the Alrin device (
For a distance between nozzle and target of 30 cm, dispensing 100 μl a liquid in a carrier volume, the penetration of the aerosol through 4 mm of a fabric medium was compared for different operating conditions for the SipNose device and three commercial devices, the Alrin, the MAD Nasal from Wolfe Tory and the Otrivin devices. In all cases, the aerosol from the SipNose device penetrated the 4 mm of fabric (
The diameter of the inner (more dense) area was measured for different operating conditions for the SipNose device, and the total diameter was measured for four commercial devices, the Otrivin device from Novartis, the Otrimer device from Novartis, the Alrin device from Teva and the MAD device from Wolfe Tory.
As shown in
Four tests were made with a valve that opened slowly (opening time>500 msec). In two cases, where the diameter of the open valve was small (0.22 mm), no aerosol was formed. In the other two cases (valve diameter 0.8 mm, open squares), the plume was wide (12 and 10 cm). This indicates that, in preferred embodiments, the valve opening time should be less than 500 msec and that, as long as the opening time is in this range, the plume with is both much narrower than that for the commercial devices and is better defined.
For the SipNose device, the pressure before activation was, within 1%, the same each time (6.13±0.02 bar) whereas, for the Otrimer delivery device, the pressure decreased each time the device was used; the pressure before the last activation was less than 60% of the initial pressure (first activation, 6.14 bar, last activation, 3.57 bar).
Furthermore, for the SipNose device, the pressure was completely discharged for each activation (pressure after=0 each time; ratio current/first=1). For the Otrimer delivery device, on the other hand, only a small fraction of the pressure was discharged. The pressure difference was less than 5% of the pressure before activation for the first activation and decreased with activation number, being less than 1% for the fifth activation.
Other types of delivery devices include pressurized metered dose inhalers (pMDIs), dry powder inhalers and nebulizers.
In a pMDI, the delivery pressure will necessarily decrease with activation number, as a portion of the fixed initial pressure is discharged on each activation. Dry powder inhalers tend to have poor repeatability because the patient inhales to deliver the medication, which is inherently poorly controllable. As demonstrated above, nasal sprays tend to have a fairly long “recovery time”, decreasing repeatability for subsequent activations.
Nebulizers can have good repeatability. In a typical nebulizer, a gas at high pressure flows through the device, combines with an aerosol, and is then delivered to the patient. If a regulator is used to control the pressure of the gas flowing through the device, the repeatability of the nebulizer can be as good as the accuracy and reliability of the regulator.
The Respimat® Soft Mist inhaler from Boehringer Ingelheim is a carrier-free inhaler. It comprises a medicament cartridge with a stiff outer shell and a flexible inner bag which contains the medicament and a holder. The holder comprises a bottom part, into which the cartridge fits, which is rotatable relative to the upper part. Rotating the bottom part tensions a spring, which moves the cartridge downward toward the base of the device. This induces pressure in the region between the base and the cartridge and forces air through a hole in the base of the cartridge, compressing the flexible inner bag and causing the liquid medicament to rise through a capillary tube into a holding chamber.
Pressure on a triggering device releases the spring and activates the device. The released spring contracts back to its inactivated position, which pushes the cartridge and attached capillary tube upward into the holding chamber. A non-return valve prevents the medicament from returning to the flexible bag. The increased pressure on the medicament in the holding chamber forces the medicament through a nozzle, thereby atomizing it.
Unlike the SipNose device, the Respimat device is designed to produce a low-velocity, “soft” mist with a velocity of less than 30 cm/sec, compared to the velocities of over 10 m/sec for the SipNose device. For the Respimat device, a high-velocity mist is disadvantageous and is to be avoided.
In the Respimat device, the quality of the aerosol is controlled by the design of the nozzle, with the small particle size produced by a number of small openings in the nozzle.
A comparison was made of the efficacy of delivery of the anesthetic Midazolam, when used for pre-medication, between an embodiment of the SipNose device of the present invention and a prior-art device, the commercial nasal pump based on positive displacement (as the pump used for Alrin™ delivery) and the MAD Nasal from Wolfe Tory.
Comparison with nasal pump (using 5 mg/ml solution): For a pre-medication procedure with commercial nasal pump (positive displacement pump), in order to achieve the desired dose of 3 mg Midazolam, the delivery device was inserted into a nostril and an aliquot of Midazolam is delivered. The delivery device is then inserted into the opposite nostril and a second aliquot of Midazolam is delivered. This is repeated twice more with a 30 sec intervals between each cycle, for a total of six aliquots of Midazolam, three in each nostril. In oppose to that, for SipNose device delivery, a single dose of 0.6 ml was delivered to one nostril.
Comparison with MAD (using a 1 mg/ml solution): For a pre-medication procedure with MAD atomizer, in order to achieve the desired dose of 1.4 mg Midazolam, the delivery device was delivered to one nostril and an aliquot of Midazolam within a volume of 1.4 ml was delivered. For SipNose device delivery the Midazolam was delivered in 2 separate aliquots of 0.7 ml, one to each nostril.
In order to determine the efficacy of anesthetization a BIS EEG monitoring was used, where the BIS values for brain activity are calculated from the EEG activity. Awake, unsedated individuals typically have BIS values>97. Mildly sedated individuals typically have BIS values in the 80's, moderately sedated individuals typically have BIS values in the 70's, while fully sedated individuals typically have BIS values below about 70; BIS values between about 45 and about 60 are commonly used for general anesthesia during the maintenance phase of an operation.
Two comparisons were made between the commercial device and the present, SipNose, device. In the first, 3 mg of Midazolam was administered and the commercial device was a commercial nasal pump (positive displacement), in the second, 1.4 mg of Midazolam was administered and the commercial device was a MAD applicator.
As can be seen from Table 21, the SipNose device effectively sedated the patient in all 8 cases, while the commercial nasal pump was only effective for 3 out of 4 patients. In no case were there adverse events. The mean onset times are not significantly different for the SipNose device and the commercial device, since the range of variability is large.
The administration time was significantly shorter for the SipNose device, 1 sec vs. 1 min.
The rate of sedation was greater with the SipNose device, with a minimum BIS of 74.5±9 for the SipNose device compared to a minimum BIS of 87.5±5.3 for the commercial device.
If sleep scores are taken for the patients, where a 1 means the patients was not sleepy, 2 means that the patient is sleepy or calm, and 3, that the patient is sleeping, the SipNose device (
In the second comparison, the total dose of Midazolam was 1.4 mg in a total volume of carrier of 1.4 ml. For the SipNose device, it was administered in two aliquots of 0.7 ml, whereas it was administered in one aliquot for the commercial MAD Nasal atomizer from Wolfe Tory. Midozolam was administered to four patients, two with the SipNose device and two with the commercial MAD device.
As shown in Table 22, sedation is better with the SipNose device; sedation failed entirely for Patient 2 with the commercial device. For this lower dose, the onset time was significantly shorter for the SipNose device (3 and 5 min vs. 20 and 8 min).
Even for this lower dose, where the SipNose administration was in two aliquots and the commercial device administration was in a single aliquot, administration time was lower for the SipNose device, with each aliquot administered in 1 sec, rather than the 7-10 sec for administration of a single aliquot with the commercial device.
In addition to the BIS values, a sleeping score was found by observation of the patients. The sleeping score was 3 for SipNose administration and averaged 1.5 for the commercial nasal pump.
As can be seen from this example, the SipNose device is at least as good as the commercial device in terms of efficacy and onset time for the delivery of the small molecule Midazolam, with onset time being no greater for the SipNose device than for the commercial device. The SipNose device appears to be more reliable in inducing anesthesia, with no failures in 10 patients compared to 2 failures and one partial failure in 6 patients with the commercial devices. Administration of a single aliquot is faster with the SipNose device, approximately 1 sec vs. approximately 10 sec for the commercial device.
In addition, larger does can be administered in a single aliquot with the SipNose device, reducing the number of aliquots needed for delivery of a total dose and thereby decreasing the chances of error in administration and the discomfort of the patient. The more rapid administration (1 sec vs. 7-10 sec or 1 min) will also reduce patient discomfort and reduce chances of error (e.g., releasing a patient before an aliquot is completely delivered).
In this example, epileptic seizures were induced in rats by administration of 47.5-50 mg/kg of Pentylenetetrazol (PTZ) for 5 min before the start of treatment with Midazolam. The Midazolam was administered either via IV or using a SipNose device, via the nasal passages. There were two dosing levels, 0.6 mg/kg (
In all cases, the Racine grading standard was used to determine the severity of the seizures. PZT was at t=−5 min; the start of treatment was at time t=0.
Treatment consisted of saline (control, diamonds), Midazolam administered by IV (triangles) or Midazolam administered nasally by a SipNose device (squares).
0.6 mg/kg
As can be seen in
6 mg/kg
As can be seen in
For this larger dose, the IV and SipNose responses were more alike; both remained below a Racine severity of 0.5. no seizures were seen (Racine score 0) for the entire time period between about time t=10 min and time t=60 min.
In this example, doses of Midazolam between about 0.6 mg/kg and about 6 mg/kg were administered to rats and the concentration of Midazolam in the brain was measured 60 minutes after administration.
As shown in
In other cases, the dose-response curve may not be linear, even if the amount reaching the target location (e.g., the brain) increases linearly with increasing dose, since, for some drugs, a subjects' dose-response curve will be non-linear (e.g., no response below a threshold, response independent of dose for doses above a threshold, etc.).
Epileptic seizures were induced in rats by administration of Pentylenetetrazol (PTZ) and the severity of the seizures was measured 60 minutes after administration of Mizadolam. Doses of Mizadolam varied from zero to 6 mg/kg with SipNose nasal delivery device and with an I/V administration. Brain concentrations of Midazolam were measured and a correlation between brain concentration and convulsions score is shown in
As can be seen from
As the examples disclosed hereinabove demonstrate, the SipNose device is stable with respect to minor changes in device parameters (e.g., pressure, volume, etc.); minor changes in device parameters do not significantly change the results.
Case study of a patient age of 39 years old, suffering from epileptic seizures (SE) was treated with a dose of 2 mg Midazolam with sipNose delivery device to deliver Midazolam via the nasal cavity.
Administration of Midazolam was done by administrating of 1 ml of Midazolam to each nostril in a carrier volume of 1 ml. EEG recordings were measured before (
As can be seen, administration of the drug via the SipNose nasal delivery device results in reducing the repetitive un-normal brain activity during the seizures. Brain activity is back to normal 3 min following administration which reflects a fast onset and efficient delivery of the drug to its targets in the brain.
In the foregoing description, embodiments of the invention, including preferred embodiments, have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described to provide the best illustration of the principals of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.
The present application is a continuation of U.S. Ser. No. 14/733,143 filed Jun. 8, 2015 which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/117,986, filed Feb. 19, 2015, and U.S. Provisional Patent Application No. 62/077,246, filed Nov. 9, 2014, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62077246 | Nov 2014 | US | |
62117986 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14733143 | Jun 2015 | US |
Child | 17346112 | US |