The present invention generally pertains to a system for delivering aerosolized substance to a natural orifice of the body.
In the pharmaceutical and therapeutic areas, nasal delivery is a known and acceptable delivery route that can provide a solution for a wide range of therapeutics and medical indications.
Prior art nasal delivery devices suffer from difficulties in: dose control, delivery accuracy, drug storage, and treatment with multiple medications. Metered dose delivery, where a fixed dose is released in every activation is common in nasal and aerosol delivery of pharmaceuticals. For metered dose delivery, each delivery device is designed to deliver a specific, unchangeable dose per activation. In some therapeutics areas, there is a need for a different dose for each patient, sometimes even for each therapeutic treatment for the same patient. For example: for the pediatric population, the dose often must depend on the weight of the patient. In other cases, such as acute treatment in cases of breakthrough seizures, breakthrough pain, or Parkinson's “off stage”, the treatment should reflect the patient's medical condition.
Loading of a desirable dose to fit a specific need is not common in nasal delivery applications, moreover, one of the main obstacles to providing an adjustable dose in nasal delivery devices, especially when released in the form of an aerosol, is maintaining, over a wide range of dose sizes, reproducible aerosol characteristics in terms of dose released, residual volume, droplet diameter, droplet size distribution and plume geometry.
In many therapeutic areas there is a need to provide the patient with a number of medications during the same treatment. With oral delivery, a patient can consume different pills one after the other, or consume one pill that contains more than one active ingredient/drug (For example: L-Dopa+Carbidopa; Topiramate+Phentermine (like in Qsymia) and more. In injectable and nasal delivery, the ability to mix compounds before or at the time of administration is less common.
In some cases there is a need to store compounds and materials separately in order to maintain stability and functionality. This can conflict with a need to deliver the compounds in a specialized formulation for better user experience and/or better absorption. For example, a drug which is a biologic or protein or an active compound that is not stable in solution can be highly stable as a dry powder. For such drugs, mixture of the dry powder drug with a liquid formations at the time of administration, could provide a homogenous solution to be delivered efficiently to the target tissue. User compliance could be high, since it is effective and provides a positive user experience. Another example is an insoluble compound that is stored in one compartment and is released with, slightly before or slightly after a formulation that will either affect the spread of the compound in the target tissue, or improve the absorption of the compound via the mucosal tissue, or change the adhesion of the compound to the mucosal tissue (to lengthen or shorten the exposure of the mucosal tissue to the compound, or, the formulation can protect the active compound from degradation and/or clearance. However, in the prior art there is no way to provide both long-term separate storage for components of a formulation and automatic mixing of the components at the time of administration.
Obesity and other conditions related to inappropriate intake of food are a common and growing problem. Appetite-suppressant drugs are well known in the art. However, appetite-suppressant drugs given orally has the limitations of first pass metabolism and thus are given in high doses in order to allow sufficient doses to be delivered to the target area (mostly in the brain). This leads to high systemic distribution of the drug that can cause unwanted side effects. Appetite suppressant drugs given parenterally pass to the brain through the blood stream and therefore can also have systematic effects other than the desired suppression of appetite. Furthermore, either with orally or with parenterally delivered drugs, the blood-brain barrier can limit the uptake of the drug to the brain. Appetite-suppressant drugs, as given nasally in the prior art also pass through the blood stream before reaching the brain so that traditional nasal administration can suffer from the same flaws as parenteral and/or oral administration. On top of that, all commercial BED/obesity treatments are chronically administrated, while SipNose's suggested solution is administrated upon demand, for example at the time of the binge. Given the many unwanted side effects of drugs such as topiramate, a solution that enables using a lower dose than the normal one in the field, that will be fast acting and will result in relatively fast clearance upon demand only will increase the safety profile and improve user compliance.
Therefore, a device that can deliver to the brain via the nasal cavity an efficient amount of a drug such as an appetite suppressant can be a valuable adjunct to the treatment of obesity, weight loss and binge eating disorder (BED). As shown below, administration of an odorant in conjunction with the appetite suppressant can enhance the efficacy of the treatment by inducing feelings of satiety in a patient, making the treatment a positive experience to enhance user compliance which is very low in the target populations treated for obesity and BED.
Ramaekers et al. (M G Ramaekers, S Boesveldt, “Odors: appetizing or satiating?Development of appetite during odor exposure over time”, International Journal of Obesity, 2014, nature.com) relates that it is known that exposure to palatable food odors influences appetite responses, either promoting or inhibiting food intake. It is suggested that food odors can be appetizing after a short exposure (of circa 1-3 min), but can become satiating over time (circa 10-20 min). Therefore, the effect of odor exposure on general appetite and sensory-specific appetite (SSA) over time was investigated. In a cross-over study, 21 unrestrained women (age: 18-45 years; BMI: 18.5-25 kg m-2) were exposed for 20 min to eight different odor types: five food odors, two nonfood odors and no-odor. All odors were distributed in a test room at suprathreshold levels. General appetite, SSA and salivation were measured over time. All food odors significantly increased general appetite and SSA, compared with the no-odor condition. The nonfood odors decreased general appetite. All effects did not change over time during odor exposure. Savory odors increased the appetite for savory foods, but decreased appetite for sweet foods, and vice versa after exposure to sweet odors. Neither food odors nor nonfood odors affected salivation. Palatable food odors were appetizing during and after odor exposure and did not become satiating over a 20-min period. Food odors had a large impact on SSA and a small impact on general appetite. Moreover, exposure to food odors increased the appetite for congruent foods, but decreased the appetite for incongruent foods. It may be hypothesized that, once the body is prepared for intake of a certain food with a particular macronutrient composition, it is unfavorable to consume foods that are very different from the cued food.
Yeomans finds (M R Yeomans, “Olfactory influences on appetite and satiety in humans”, Physiology & Behavior. 2006—Elsevier) that odor stimuli play a major role in perception of food flavor. Odor stimuli such as food-related odors have also been shown to increase rated appetite, and induce salivation and release of gastric acid and insulin. However, the ability to identify an odor as food-related and a liking for a food-related odor are both learned responses. In conditioning studies, repeated experience of odors with sweet and sour tastes results in enhanced ratings of sensory quality of the paired taste for the odor on its own. Studies also report increased pleasantness ratings for odors paired with sucrose for participants who like sweet tastes, and conversely decreased liking and increased bitterness for quinine-paired odors. When odors were experienced in combination with sucrose when hungry, liking was not increased if tested sated, suggesting that expression of acquired liking for odors depends on current motivational state. Other studies report sensory-specific satiety is seen with food-related odors. Overall, these studies suggest that once an odor is experienced in a food-related context, that odor acquires the ability to modify both preparatory and satiety-related components of ingestion.
Eseke et al. (E T Massolt, P M van Haard, J F Rehfeld, E F Posthuma, “Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women”, Regulatory peptides, 2010, Elsevier) find that cephalic effects on appetite are mediated by vagal tone and altered gastrointestinal hormones. The study explores the relationship between appetite and levels of gastrointestinal hormones after smelling chocolate and after melt-and-swallow 30 g of chocolate (1.059 oz, 85% cocoa, 12.5 g of sugar per 100 g product). Twelve females (BMI between 18 and 25 kg/m2) participated in two 60-minute study sessions. In the first session, all 12 women ate chocolate; for the second session, they were randomized either to smell chocolate (n=6) or to serve as a control (no eating or smelling; n=6). At the start of the sessions, levels of insulin, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK), but not glucose, correlated with appetite scored on a visual analogue scale (VAS). In contrast, ghrelin levels correlated inversely with scored appetite. Chocolate eating and smelling both induced a similar appetite suppression with a disappearance of correlations between VAS scores and insulin, GLP-1 and CCK levels. However, while the correlation between VAS score and ghrelin disappeared completely after chocolate eating, it reversed after chocolate smelling, that is, olfactory stimulation with dark chocolate (85%) resulted in a satiation response that correlated inversely with ghrelin levels.
Schiffman and Graham find (S S Schiffman and B G Graham, “Taste and smell perception affect appetite and Immunity in the elderly”, European Journal of Clinical Nutrition (2000) 54, Suppl 3, S54-S63) that the losses in taste and smell that occur with advancing age can lead to poor appetite, inappropriate food choices, as well as decreased energy consumption. Decreased energy consumption can be associated with impaired protein and micronutrient status and may induce subclinical deficiencies that directly affect function. Most nutritional interventions in the elderly do not compensate for taste and smell losses and complaints. For example, cancer is a medical condition in which conventional nutritional interventions (that do not compensate for taste and smell losses) are ineffective. Evidence is now emerging that suggests compensation for taste and smell losses with flavor-enhanced food can improve palatability and/or intake, increase salivary flow and immunity, reduce chemosensory complaints in both healthy and sick elderly, and lessen the need for table salt.
Therefore, odorants can be used to enhance a response to appetitive cues so that delivery of an odorant in addition to an appetite suppressant can increase the efficacy of the appetite suppressant.
It is therefore a long felt need to provide a system for the treatment of conditions such as obesity, weight loss and binge eating disorder which can be optimized for efficient delivery of a substance to a target site, said optimization bringing sufficient material to the target site, ensuring adequate absorption into and through the mucosal layer while minimizing unwanted side effects.
It is an object of the present invention to disclose a system and method for delivering an aerosolized substance to a natural orifice of the body. It is another object of the present invention to disclose a device for delivering a predetermined amount Vsub of at least one substance, within at least one body cavity of a subject, said device comprising:
It is another object of the present invention to disclose the device of claim 1, wherein sat least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein at least one of the following is true:
It is another object of the present invention to disclose a device, wherein said predetermined volume has a main longitudinal axis, said predetermined volume comprising a number n of compartments, said predetermined volume configured to contain at least a portion of said predetermined amount Vsub of said at least one substance, said amount Vsub of said at least one substance containable in at least one of said compartments; at least one of the following being true:
It is another object of the present invention to disclose a device, wherein, when said substance is delivered into a tube, at least one of the following is true:
It is another object of the present invention to disclose a method of delivering a predetermined volume Vsub [ml] of at least one substance within at least one body cavity of a subject, comprising:
providing a device comprising:
emplacing said substance in said predetermined volume;
setting said valve in said inactive configuration;
pressurizing said fluid-tight chamber with said gas to said predetermined pressure;
placing said delivery end in proximity to said body cavity;
reconfiguring said valve from said inactive configuration to said active configuration thereby entraining said substance in said predetermined volume Vgas of said pressurized gas;
thereby
delivering said predetermined amount Vsub of said substance and said predetermined volume Vgas of said pressurized gas through said at least one orifice within a predetermined time dtdeliver;
wherein said predetermined amount Vsub of said at least one substance is at an effective amount for treatment of at least one disease selected from a group consisting of: obesity, binge eating disorder and any combination thereof
further wherein said substance is selected from a group consisting of Midazolam, Topiramate and at least one cannabis derivative.
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, wherein at least one of the following is true:
It is another object of the present invention to disclose the method, wherein at least one of the following is true:
It is another object of the present invention to disclose the method, additionally comprising at least one of the following steps:
It is another object of the present invention to disclose the method, wherein said predetermined volume has a main longitudinal axis, said predetermined volume comprising a number n of compartments, said predetermined volume configured to contain at least a portion of said predetermined amount Vsub of said at least one substance, said amount Vsub of said at least one substance containable in at least one of said compartments; at least one of the following being true:
It is another object of the present invention to disclose the method wherein, when said substance is delivered into a tube, at least one of the following is true:
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of said invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a device capable of improving the transfer of medicament to a predetermined desired location and to provide a device capable of improving the delivery of medicament through the tissue.
In the present invention, a combination of parameters and forces such as pressure, gas/air volume orifice diameter enable the formation of optimized aerosol characteristics for both improved delivery of aerosol to the target area (such as the olfactory epithelium in the nasal cavity) and enhanced absorption at that area for better delivery to a desired tissue (such as the brain).
The term ‘μl’ or ‘μm’ hereinafter refers to the unit micro liters.
The term ‘capsule’ or ‘container’ hereinafter refers to a container configured to contain a flowable substance. The term flowable refers hereinafter to any liquid, gas, aerosol, powder and any combination thereof. It should be emphasized that the term capsule can also refer to a predetermined volume within the same in which a flowable substance is placed. In other words, the predetermined volume is sized and shaped to enclose a predetermined volume of said substance.
The term ‘plurality’ hereinafter refers to an integer greater than or equal to one.
The term ‘olfactory epithelium’ hereinafter refers to a specialized epithelial tissue inside the nasal cavity. The olfactory epithelium lies in the upper top portion of the nasal cavity.
The term ‘substance’ hereinafter refers to any substance capable of flowing. Such a substance can be a granular material, including a powder; a liquid; a gel; a slurry; a suspension; and any combination thereof.
The term ‘gas’ refers to any fluid that can be readily compressed. Gases as used herein include, but are not limited to, air, nitrogen, oxygen, carbon dioxide, helium, neon, xenon and any combination thereof. Devices charged by hand will typically use air as the carrier gas.
The term ‘channel’ hereinafter refers to a passageway allowing passage of a fluid through at least a portion of a mixing mechanism. The channel can be disposed within a portion of the mixing mechanism, forming a closed bore; it can be on an exterior of a portion of the mixing mechanism, forming a groove on the portion of the mixing mechanism, and any combination thereof.
The term ‘about’ refers hereinafter to a range of 25% below or above the referred value.
The term ‘biologic’ or ‘biologic response modifier’ hereinafter refers to material manufactured in or extracted from biological sources such as a genetically engineered protein derived from human genes, or a biologically effective combination of such proteins.
All pressures herein are gauge pressures, relative to atmospheric pressure. Pressure units will be written herein using the standard abbreviation for “gauge’, namely, “g”. For example, atmospheric pressure is 0 barg and a pressure of 1 bar above atmospheric is 1 barg.
The term ‘release time’ refers hereinafter to the time for the drug and carrier gas to substantially completely exit the device. Typically, the release time is affected by the activation time and reflects the time for the device to reconfigure from the active configuration to the inactive configuration or vice versa.
The term ‘valve’ refers hereinafter to a device with an inactive configuration and an active configuration. In the inactive configuration, a valve prevents passage of fluid from a container, whereas in the active configuration, the fluid can exit the container. As used herein, the term valve includes both a mechanical valve and a frangible membrane which, when whole, seals a container but which, when broken, allows passage of fluid from the container.
The terms ‘the device’, ‘the present device’, ‘the SipNose device’ and ‘SipNose’ will be used interchangeably to refer to the device of the present invention.
In all of the embodiments of the device shown hereinbelow, identical numbers refer to identical functions.
All figures shown herein are illustrative and none is to scale.
The present invention teaches a device for delivering a predetermined amount of a substance, preferably comprising a medication or combination of medications, into a body orifice of a subject, preferably at least one nasal cavity, although the orifice can comprise any of the body's natural orifices, including a nostril, the mouth, the ear, the throat, the urethra, the vagina, the rectum and any combination thereof.
The device comprises a delivery mechanism. The medicament can be supplied to the device by means of an insertable medicament capsule configured to contain the medicament; at least one integral medicament storage area configured to contain the medicament, an injection port in communication with an integral medicament holding area so that medicament can be injected into the device, and any combination thereof. The device can apply a broad range of drugs and materials to a nasal cavity for local effect, deliver a broad range of drugs and materials through the nasal cavity to the systemic circulation, deliver a broad range of drugs and materials through the nasal cavity to the central nervous system (CNS) (the brain, spinal cord and associated nerves), and any combination thereof.
In some embodiments, the device can deliver a drug such as, but not limited to, Topiramate, Phentamine, GLP-1 and GLP-1 analogs and derivatives and any combination thereof to the nasal passages, preferably for the treatment of at least one of obesity and binge eating disorder. In variants of these embodiments, intranasal delivery of Topiramate, with or without Phentamine, GLP-1 and GLP-1 analogs, provides a treatment when the urge to binge occurs.
Other indications for Topiramate include as an anticonvulsant, treatment of epilepsy, treatment of Lennox-Gastaut syndrome and prevention of migraine.
Topiramate has been in commercial use since 1996 (generic since 2006. It works by affecting the brain and helps to reduce seizure activity, prevent migraine headaches from occurring and was approved by the FDA in combination with phentermine for weight loss. Its immediate delivery to the central nervous system and potential to be effective in low doses to reduce side effects such as somnolence, fatigue and dizziness in over 10% of patients is of great importance, which fits perfectly the intranasal route.
In some embodiments, the device can deliver a drug such as, but not limited to, Midazolam, typically for control of epilepsy and for sedation.
In some embodiments, the device can deliver a drug such as, but not limited to, cannabis, or a cannabis derivative such as, but not limited to, cannabinoids, Cannabidiol and any combination thereof. Cannabis and its derivatives can be used for pain management, especially cancer pain; and for treatment of schizophrenia; eating disorders such as obesity and binge eating disorders; dementia; diabetes; nausea; obsessive compulsive disorder, anxiety, depression. Psychosis and bipolar disorder, Addiction, immune diseases such as multiple sclerosis, arthritis, cancer, obesity, diabetes: Alzheimer's disease; epilepsy, Parkinson's disease; Huntington's disease; graft vs. host disease (GVHD); traumatic brain injury; and inflammation. Other studies indicate that it can be used for neuroprotection and neurogenesis.
Cannabis has a range of therapeutic benefits including as an analgesic for pain, antispasm for multiple sclerosis, anticonvulsive for epilepsy, nausea suppressant for chemotherapy, and appetite stimulant for wasting in HIV/AIDS patients.
There are a variety of ways to consume cannabis. The three most common methods are inhalation via smoking, inhalation via vaporization (vaping), and ingestion of edible products. The mode of administration can impact the onset, intensity, and duration of psychoactive effects, effects on organ systems, and the addictive potential and negative consequences associated with use. Although most medical cannabis users report trying multiple modes, smoking has been the dominant mode of delivery. With smoked cannabis, the psychoactive effects and peak THC blood levels occur in minutes, and the effects last approximately one to four hours.
Smoking users report several advantages for smoked modes of delivery, including greater enjoyment, convenience and ease of use, more immediate and effective relief of symptoms, greater control over dosage, lower dose for desired effect, and whole-body euphoria.
Despite the appeal among users, smoked modes of delivery have several disadvantages. These include social disapproval for smoking and smell, as well as concerns about increased health risks from smoke inhalation. Studies have consistently shown that cannabis smokers report a higher frequency of cough and sputum production, wheezing, and bronchitis compared with non-smokers, as a result of airway inflammation and infection. In addition, some literature reports the presence of lung cancer among heavy cannabis smokers, as well as bullous lung disease and emphysema. Evidence on the long-term respiratory effects of cannabis smoking is complicated by the co-morbidity of cannabis and cigarette smoking (including mixing tobacco and cannabis), as well as time lag in the onset of chronic respiratory diseases. Nevertheless, chronic smoke inhalation from cannabis smoke is likely to reduce respiratory health. Furthermore, smoking allows the user to more effectively self-titrate the dose and desired level of intoxication but portends inhalation of carcinogenic materials and adverse effects on respiratory health
Vaping, defined as “using electricity to heat cannabis products so that the cannabis resin is released as a vapor that is inhaled.” has a similar onset, peak, and duration as smoking and produces a similar “high” feeling.
Vaporization provides delivery characteristics that are similar to smoking, with respect to the time to onset and some sensory effects. However, vaporizers do not heat marijuana to the point of combustion and, therefore, expose users to significantly lower levels of toxicants that are only present in smoke. Chemical analysis, self-reported data, and spirometry testing demonstrate that vaporization of cannabis is less harmful and reduces respiratory effects compared to smoking. Users perceive vaporization similar to smoking in terms of ease of dose titration and fast onset of action, but with fewer side effects. Vaporizing has also been reported to taste better, has no smoke smell, and is more discreet. Therefore, users may prefer vaping instead of smoking as their primary method of administration. These “positive” aspects of vaping and the perception of reduced respiratory system harm could conceivably lead to more frequent consumption or earlier initiation of cannabis, and a concomitant increased risk of developing problematic use or addiction. Common disadvantages associated with vaporizers include greater inconvenience, the difficulty of using vaporizers, and the higher cost.
The long-term health consequences of regularly vaping cannabis are not known but vaping may minimize impact on respiratory function compared with smoking cannabis by reducing the inhalation of combustible smoke and its carcinogenic constituents.
Alternative modes of delivery have the potential to reduce the negative respiratory health risks associated with smoking cannabis. Cannabis can be consumed orally in edibles and oro-mucosally in sprays or tinctures. Eating cannabis (edibles) produces a different pharmacokinetic profile than smoking or vaping. Onset of the effect is delayed to approximately 30 to 60 minutes, peak blood levels of THC occur approximately three hours later, and the effects can last over six hours.
Edibles also allow the user to avoid inhaling smoke; however, it is harder to titrate the intoxicating effects due to the delayed and variable onset of effects. Consequently edibles have recently been tied to cannabis “overdose” following ingestion of additional doses because of the misperception that the initial dose had not produced the desired effect. Availability of edibles has also been associated with increased rates of accidental pediatric ingestion of cannabis and associated adverse effects.
Oral modes of delivery are perceived by users as healthier than smoking, less obvious than smoking since there is no smell, more convenient, and to have longer lasting effects. On the other hand, medical cannabis users have reported that edibles do not provide the same euphoria, are more expensive, difficult to titrate dose and prepare, and have a slow onset of effect.
Advantages of delivery of the above drugs via the SipNose device include: the system is fast acting, with a fast clearance. It provides high efficacy with low doses and has a high efficiency with low side effects. Effectively, this method of treatment functions as an “acute use” treatment rather than a “chronic use” treatment.
In addition, at least one odorant (smellable molecule) can be provided. Delivery of the drug can be combined with delivery of the at least one odorant in order to:
Other functions of an odorant, in addition to or in place of the above, are given hereinbelow.
An odorant for assistance in the treatment of obesity and binge eating disorder can include, but is not limited to: grapefruit, lemon, vanilla, green apple, banana, peppermint, fennel, patchouli, bergamot and any combination thereof.
The odorant can be:
The odorant can be, as disclosed below, a natural smell molecule, a synthetic smell molecule and any combination thereof.
The medicament can comprise a dry powder, a liquid formulation, or a mixture thereof. As disclosed below, any combination of components of the medicament can be stored in any combination of compartments in a container or capsule.
In some embodiments, Cannabis based therapeutics can be delivered, for:
The Cannabis based therapeutic can be a Cannabis based extract, a synthetic compound that includes active ingredients, a derivative of the above. Non-limiting examples include: tetrahydrocannabinol (THC); cannabinoids, such as cannabidiol (CBD), cannabinol (CBN), and tetrahydrocannabivarin (THCV).
The Cannabis based therapeutic can be a pure compound or mix of compounds.
It can be in a liquid oil formulation, in an oil in water formulation, as a dry formulation, mixed with a liquid component, and any combination thereof. Some combinations would be storable in separate compartments in a capsule, as disclosed below.
In some embodiments, Naloxone can be delivered for emergency treatment of drug overdose. Typically, the Naloxone would be stored as a liquid formulation or a dry powder formulation.
In some embodiments, treatments for brain cancers such as Glioblastoma, secondary tumor, brain stem cancer and any combination thereof can be treated via delivery to the brain of medicaments such as, but not limited to, a chemotherapy drug, a biologic, an antibody and any combination thereof. Treatment of brain cancer can be:
If metastasis is to be prevented, the treatment can be by delivery to the brain with the SipNose device of a drug or drugs already used systemically, the delivery to the brain can be of a drug or drugs not already used systemically, and any combination thereof.
Such brain cancer treatment comprises a chronic therapy, to increase the efficacy and reduce the side effects of a long-term treatment.
In some embodiments, vaccination can be provided via the nasal route. Non-limiting examples of vaccines include: an anthrax vaccine, a Hepatitis B vaccine, a Tetanus vaccine, an Influenza vaccine and any combination thereof.
In some embodiments, the treatment can be enhancement of the immune system as a method of treating CNS disorders such as, but not limited to, Alzheimer's disease, Parkinson's disease and any combination thereof, as there is evidence that immune system enhancement can enhance the body's ability to repair the damage caused by the disorder. One proposed mechanism for the means by which enhancement of the immune system works to treat CNS disorders such as Alzheimer's disease and Parkinson's disease is by enhancing the production of autoimmune cells which are targeted to destroy the pathology causing the disorder. Other drugs which can be applied include, but are not limited to, a pharmaceutical, a natural compound, a biologic, a hormone, a peptide, a protein, a virus, a cell, a stem cell and any combination thereof.
However, it should be emphasized that the device can be provided alone as well as in combination with a capsule.
In some cases the capsule would be provided with a known medicament within the same and in other cases the capsule would be ‘filled’ with the medicament just before use.
In some embodiments of the present invention, the device operating characteristics and the substance characteristics can be jointly optimized to maximize uptake of the substance at the desired site. In preferred variants of such embodiments, uptake is further optimized by exploiting synergies between delivery characteristics generated by the device and by the formulation or composition of the delivered material
In some embodiments, the substance comprises one or more agents to optimize delivery through the mucous membrane by means of a mucoadhesive agent, a permeability enhancer agent, a particulate formulation in the nano-particle or macro-particle range, and any combination thereof. In such embodiments, the combination of the device and substance enhance the delivery of the active agent to the target area (nasal epithelium and more specifically olfactory epithelium) and from there to the target tissue (for example the brain).
A non-limiting example is a composition comprising a drug to be delivered and at least one chemical permeation enhancer (CPE). In a preferred embodiment, the composition contains two or more CPEs which, by using a nasal delivery device, affect in an additive manner or behave synergistically to increase the permeability of the epithelium, while providing an acceptably low level of cytotoxicity to the cells. The concentration of the one or more CPEs is selected to provide the greatest amount of overall potential (OP). Additionally, the CPEs are selected based on the treatment. CPEs that behave primarily by transcellular transport are preferred for delivering drugs into epithelial cells. CPEs that behave primarily by paracellular transport are preferred for delivering drugs through epithelial cells. Also provided herein are mucoadhesive agents that enable the extension of the exposure period of the target tissue/mucous membrane to the active agent, for the enhancement of delivery of the active agent to and through the mucous membrane.
In contrast to prior-art nasal delivery devices and technologies, the devices of the present invention can produce a fine aerosol in the nasal cavity or other desired body orifice at the target area and at the location of the target tissue instead of producing the aerosol only immediately after exit from the device. Utilizing the pressure as a driving force and the air as a carrier allows the material to be released from the nozzle as a mixture of aerosol and a pre-aerosolized state. The properties of the resultant aerosol are typically dependent on the properties of the device and of the medium into which the device is discharged. The properties of the device which affect the aerosol characteristics are the delivery pressure, the volume of the delivery gas, the characteristics of its orifice and time to activate.
In some embodiments, the aerosol properties are fairly independent of the delivered substance, while, in other embodiments, the pressure, volume, orifice characteristics, and delivered substance properties can be co-optimized.
In prior-art devices the aerosol is produced in proximity exit of the device. Typically, the aerosol comprises a wide “fan” of aerosol and a low driving force. Therefore, large droplets typically deposit very close to the exit from the device, while smaller droplets tend to quickly contact the walls of the passage, so that deposition is typically predominantly close to the delivery end of the device, with little of the substance reaching desired sites deeper in the body orifice, such as the middle and superior turbinates of the nose.
In contrast, in the present device, the pre-aerosolized mixture of gas and substance exits the device with a significant driving force as a mixture of aerosol and pre-aerosolized material (fluid or powder). When the pre-aerosolized material hits the walls of the nasal passages, it “explodes” into a fine aerosol that is capable of being driven by the pressure deep into the nasal passages to deposit in the desired region.
Typical prior art devices release aerosolized medicament. However, ah have severe limitations.
The LMA MAD nasal atomizer (
Devices such as nasal pumps (
The Simply Saline Nasal Mist (
The Optinose breath powered delivery device (
Unlike the device of the present invention, none of the prior-art devices provide accurate control of all of the delivery parameters, which include dose volume, carrier volume, pressure, and delivery velocity.
A further advantage of the device of the present invention (the SipNose device) is that, unlike the prior art devices, it can be configured to accurately deliver large volumes (>100 ul) at high pressure, such that the high-velocity aerosol can be as reliably and reproducibly produced for large volumes as for small.
The embodiments disclosed below disclose non-limiting examples of devices and methods for providing the predetermined volume of gas at the predetermined pressure.
The embodiments disclosed in
The characteristics of the aerosol, namely its size, shape and velocity, depend on the speed of exit of the gas from the chamber, the volume of air delivered, the characteristics of the delivery orifice and the activation time. The speed of exit of the gas from the chamber and the volume of air delivered depend on the pressure of the gas in the chamber in the loaded state, on the volume of the chamber in the loaded state, and on the characteristics of the fluid connection between the chamber and the delivery orifice. The less change there is in these characteristics during an activation and between activations, the more reliable and the more reproducible the device will be. Therefore, in controlling the characteristics of the fluid connection, the time taken to open the valve needs to be taken into consideration. In devices of the current invention, valve opening times are both reproducible and short and are not in any way dependent on the user, so that the delivery comprises a short, reproducible, high velocity pulse of the gas.
For some embodiments of the device with a mechanical valve, the non-activated state and the loaded state appear identical; they differ in that, in the loaded state the chamber contains pressurized gas whereas, in the non-activated state, the chamber does not contain pressurized gas.
In some embodiments, including embodiments intended for use in emergencies or daily home use, the device is a single-use device with only two states, a loaded state and an activated state. The device is provided in the loaded state; activation of a trigger mechanism discharges the gas and substance. In such single-use embodiments, typically the valve is not reconfigurable from an active configuration to an inactive configuration.
In some embodiments of the device, the valve comprises, instead of a mechanical valve, a frangible membrane. In such embodiments, activation comprises rupture of the membrane; in the inactive configuration, the membrane is whole, activation comprises rupturing the membrane and, in the active configuration, the membrane has ruptured. Preferably, substantially all of an orifice covered by the membrane is uncovered at the time of rupture.
Typically, embodiments comprising a frangible membrane are single use only.
The trigger mechanism can comprise any known method of rupturing a membrane. A trigger mechanism can comprise, for non-limiting example, a mechanism to pierce the membrane, application of pressure to the sides of the membrane either manually or mechanically until the membrane ruptures, application of pressure to a face of the membrane either manually or mechanically until the membrane ruptures, and any combination thereof. Another mechanism for single activation is by opening of a tight closure area by means of movement of the closing part from the gate area, thus allowing the pressurized air to flow through the open gate. The opening allows the release of all pressurized air, so the device can not be re-used.
In some embodiments, such as, but not limited to, embodiments where the valve comprises a frangible membrane or a single valve opening, the valve opening time (such as membrane rupture time) dt can be shorter, sometimes significantly shorter, than the time to deliver the medicament dtdeliver.
In other embodiments, the device is provided in the pre-activated state. The user transforms the device into the loaded state, pressurizing the gas, and activates the trigger mechanism to discharge the gas and substance.
Capsules can be single-compartment or multi-compartment. Single-compartment capsules can comprise a flexible silicone tube, preferably sealed at both ends.
Multi-compartment capsules can contain different components of a substance in the different compartments; at least one compartment can contain a carrier gas, and any combination thereof.
In some embodiments, there is a single capsule for the carrier gas and the substance. Some embodiments have separate capsules for substance and gas.
Some embodiments have the gas held in a gas holding chamber. The gas holding chamber can be filled at the time of manufacture or can be filled to the predetermined pressure by a charging mechanism.
Some embodiments have the substance held in a holding chamber. The holding chamber can be filled at the time of manufacture or can be filled by a filling mechanism such as, but not limited to, a syringe.
It should be emphasized that the present invention refers to both one compartment capsules as well as multi-compartment capsules.
In multi-compartment capsules, walls divide the capsule into compartments. The compartments can have approximately the same volume or different volumes, and the same thickness or different thicknesses; if circular, they can have the same diameter or different diameters. They can have the same area at the end faces, or different areas.
The compartments, taken together, can form a large fraction of the volume of the capsule, or they can form a small fraction of the volume of the capsule.
Compartment walls can be equally spaced, either angularly or linearly, or they can be unequally spaced. Spacings can be arbitrary, they can be regular, they can follow a pattern, and any combination thereof.
Compartments can be near the edge of the capsule or at other positions within the capsule.
Before use, the compartments are preferably hermetically sealed to prevent mixing of the substances contained therein.
Compartment walls can be substantially similar in shape to the capsule walls (for non-limiting example, lenticular walls within a lenticular capsule) or at least one of the compartments' walls' shape differs from the shape of the cross-section of the capsule. (For non-limiting example, a lenticular wall within a circular capsule.)
Compartment walls can be non-frangible or frangible. Frangible walls permit mixing or reaction of the contents of adjacent compartments before the substances leave the compartments.
Compartments can, but need not, have a frangible membrane at least one end.
Any compartments can contain one substance or a mixture of substances; any two compartments can contain the same substance or mixture thereof, or different substances or mixtures thereof.
The material of any combination of capsule walls and compartment walls can be rigid, semi-flexible, flexible and any combination thereof. Flexible or semi-flexible compartment or capsule walls can reduce dead space—regions of low gas flow—in the air path during activation.
In the embodiment shown in
In the embodiment schematically illustrated in
In the embodiment schematically illustrated in
In practice, the embodiment illustrated in
In some embodiments, there is no central compartment (140).
In the exemplary embodiment shown, the auxiliary compartments are hollow, containing a substance. In other embodiments, at least one of the auxiliary compartments (150, 155) is comprised of solid material, thereby forming part of the structure of the capsule.
In preferred embodiments, the central compartment (140) and the central auxiliary compartment (155) are solid, forming a solid central core for the structure. The remaining compartments (130, 150) comprise substance, where, in preferred embodiments, the compartments (130) contain a substance such as a medicament and the auxiliary compartments (150) contain a propellant, preferably compressed gas.
In the exemplary embodiment shown in
In the exemplary embodiment shown in
These embodiments are merely exemplary; any combination of the above arrangements can be used.
In the exemplary embodiments shown, the walls separating the compartments are planar. In other embodiments, the walls can form a curve, either regular or irregularly shaped.
The main longitudinal axis of at least one of the compartments can be parallel to the main longitudinal axis of the capsule, it can be spirally disposed it can be at an angle to the main longitudinal axis of the capsule, and any combination thereof.
The main longitudinal axes of the compartments can be straight, they can form regular curve, they can form irregular curves, and any combination thereof. For any pair of compartments, the main longitudinal axes can be the same or they can be different.
In most embodiments, at least part of the upstream closure surface (not shown) and the downstream closure surface (not shown) of the capsule are frangible or otherwise removable, such that, when broken or otherwise removed, the medications can be delivered to the desired deposition site. In a variant of these embodiments, different portions at least one closure surface have different breaking strengths, such that the different portions can be broken at different times during delivery of the medication, enabling either differential mixing of medical formulations in different compartments or differential delivery of the medications in at least two of the compartments.
In some embodiments, at least part of the side surface of the capsule is frangible, enabling yet another mixing path or delivery path.
Capsules can be cylindrical with circular cross-section, as shown, cylindrical with oval, elliptical, lenticular, or polygonal cross-section, with the polygon having at least three sides and not more than about 20 sides. The polygon can be a regular or irregular.
Capsules can be spherical, elliptical, ovoid, pillow-shaped, football-shaped, stellate and any combination thereof. Capsules can form regular or irregular shapes.
Compartments can have substantially constant cross-section through the device or the cross-section can vary in area, in shape, or in any combination thereof.
In this exemplary embodiment, the mixing mechanism (1020) comprises spirally-disposed air channels (1022) at the periphery of the mixing mechanism (1020). The central part of the mixing mechanism (1020) is solid, forcing the carrier gas and the substances to pass through the channels (1022). By narrowing the channel through which the gas passes and by changing the direction of the gas flow, mixing of the substances is enhanced. The mixing mechanism (1020) fits within the tegument (110) of the capsule (100) and mixing occurs within the capsule (100).
In some embodiments, a single channel is used. This can have a cross-section which is annular, circular, polygonal, lenticular, pie-shaped irregular, or any combination thereof. The channel main longitudinal axis can pass through any part of the capsule. Non-limiting examples include a circular cross-section with main longitudinal axis at the capsule center, and an annular cross-section at the periphery of the capsule, with main longitudinal axis at the capsule center.
In some embodiments, the capsule comprises two units, one comprising at least one substance and one comprising the mixing mechanism, such that the substances exit the compartments and are then mixed in the mixing mechanism.
In other embodiments, the mixing mechanism (1020) comprises channels disposed throughout its cross-section.
Channels can be arbitrarily arranged across a cross-section, regularly arranged across a cross-section, or irregularly arranged across a cross-section.
Channels can be linearly disposed, parallel to the main longitudinal axis of the capsule; or linear and disposed at an angle to the main longitudinal axis of the capsule.
The main longitudinal axis of at least one channel can be curved with respect to the main longitudinal axis of the mixing mechanism, with respect to an axis perpendicular to the main longitudinal axes, or any combination thereof.
Any combination of the above channel shapes can be used.
The shape of a channel cross-section can be substantially the same along the length of the channel, the shape can change along the length of the channel, the size of the cross-section can change along the length of the channel, and any combination thereof.
Shapes of the cross-sections of the channels can vary in the same manner along the length of the channel, or they can vary in different manners.
Shapes of the cross-sections of the channels can be the same for all the channels, or the shapes of the cross-sections of at least two channels can be different.
Sizes of the cross-sections of the channels can vary in the same manner along the length of the channel, or they can vary in different manners.
Sizes of the cross-sections of the channels can be the same for all the channels, or the sizes of the cross-sections of at least two channels can be different.
In some embodiments, the mixing mechanism (1020) comprises a plurality of longitudinal sections, with the sections having fluidly connected channels, but the channels are differently disposed longitudinally. For non-limiting example, a two-section device can have spirally disposed channels with left-handed spirals in the first section and right-banded spirals in the second section.
In some embodiments, there are different numbers of channels in the two sections. In other embodiments, there are the same number of channels in the two sections.
In other multi-section mixing mechanisms (1020), sections comprising channels are fluidly connected by substantially channel-free regions.
Mixing mechanisms can comprise between 1 and 10 regions. Individual regions can have any of the channel dispositions described hereinabove.
In some embodiments, mixing can be done by an integral mixing mechanism, either a single-section or a multi-section device. In other embodiments, mixing can be done by disposing a plurality of single-section mechanisms end-to-end, either abutting each other or with spacers to provide channel-free regions.
During the process of mixing, the first and second flowable substances can be mechanically mixed with each other and with the air or other gas, they can be reacted with each other, and any combination thereof.
In some embodiments, reaction of at least one flowable substance can be enhanced by a catalyst deposited on or part of the walls of the mixing region.
Criteria of the capsule, whether single-compartment or multi-compartment, can be optimized to include: ensuring that a single dose of the substance is delivered in its entirety, ensuring that the single dose contains the predetermined amount of the substance, ensuring that the dose is delivered to the desired region of the nose, and ensuring that delivery of the dose causes the minimum possible discomfort to the patient. Any combination of these criteria can be optimized for each particular combination giving rise to a different embodiment of the capsule.
The capsule can also be optimized for ease of insertion into a delivery device, for ease of removal from a delivery device, for stability of the contents during storage, for resistance of the capsule materials to environmental degradation, for resistance to undesired fracture, for reliability of use, for completeness of mixing, for completeness of reaction, and any combination thereof.
In some embodiments, the capsule comprises a filter configured to remove from the air at least one selected from a group consisting of particles, particulates, bacteria, viruses, moisture, and undesired gases before the air contacts the user. Such a filter, by preventing unpleasant odors or tastes from reaching the user and by preventing particles or particulates from reaching the user, can make the experience of using the device much more pleasant for the user and much safer. By removing bacteria and viruses, infection of the user can be prevented.
In some embodiments, the capsule contains only a single dose of the substance, the capsule being replaced after each use. In other embodiments, the capsule contains multiple doses of the substance, preferably packed separately, so that the dose is fresh for each use.
During dispensing of the substance, the gas passing through the capsule entrains the substances contained within the compartments such that the substances have a predetermined distribution within the dispensed mixture, where the predetermined distribution can be a homogeneous distribution or a heterogeneous distribution. Heterogeneous distributions can be: an arbitrary distribution, a distribution in which the dispersion of the at least one substance within the mixture follows a predetermined pattern, and any combination thereof.
According to another embodiment of the present invention, movement of air into the chamber during transformation of the device into said pre-activated state creates a vacuum in the region near or in the capsule.
In some embodiments, the loading region of the device comprises at least one filter to remove from the air (or other gas) at least one selected from a group consisting of particles, particulates, bacteria, viruses, moisture, and undesired gases before the air contacts the user.
Preferably, the air or gas is filtered on entrance to the air chamber from the outer environment (the room, the surrounding area). Alternatively or additionally, air can be filtered on exit from the air chamber, while within the loading air chamber, and any combination thereof.
The device comprises a hollow upstream portion (1881) fluid-tightly connected to a hollow downstream portion (1889). In this embodiment, the activation mechanism (1880) comprises a cup-shaped insert (1884) fitting snugly and fluid-tightly within the hollow interior of the device. The outer rim of the insert (1884) is preferably fixed to the outer wall of the activation mechanism (1880), with its inner rim (1885) able to slide on an inner wall (1886), preferably tubular, of the activation mechanism (1880). In the activation mechanism's (1880) closed position, a stop (1882) is firmly held by the inner rim (1885) of the insert.
The inner wall of the activation mechanism (1880) comprises a throughgoing bore (1883). In some variants of this embodiment, a flexible tube (1888) is fluid-tightly fixed to the wall (1886) such that there is flexible tubing in at least the portion of the wall abutting the stop (1882). In other variants of this embodiment, the flexible tube (1888) passes through the bore (1883).
In preferred variants of this embodiment of an activation mechanism, in the closed position, the stop (1882) fits into and sits in a hole in the inner wall (1886). In other variants, the stop (1882) fits into and sits in a depression in the inner wall (1886).
When the activation mechanism (1880) is in the closed position, the flexible tube (1888) is pinched between the stop (1882) and the inner side of the throughgoing bore (1883).
When the activation mechanism (1880) is activated, the insert (1884) slides up along the wall, releasing the stop (1882) so that the pinched region in the flexible tube (1888) is released, thereby releasing the pressurized gas and dispensing the substance.
In the embodiment shown in
In some embodiments, flexible filling material such as, but not limited to, flexible tubing, can be placed within the region of the device (not shown) containing the substance to be delivered in order to reduce dead space within the device. Reducing dead space will not affect the characteristics of the aerosol formed after release, but it will decrease pressure loss and increase air speed within the device, thereby substantially reducing residual substance remaining within the device after completion of activation, either within the capsule or adhering to the interior walls of the device, e.g., within the nozzle. It is well known in the art that residual material within a delivery device can be released on subsequent uses of the device and that the amount of such residual material released during a given use of a device is extremely variable. Therefore, minimizing residual substance within the device will increase the accuracy and reproducibility of delivery, thereby increasing its repeatability and reliability, both by maximizing the fraction of the substance actually delivered from the current capsule and by minimizing the amount of residual substance on the walls of the device.
It should be noted that the capsules (disclosed hereinbelow) are designed so as to avoid residual volume within the capsule itself, since, even in the case of a single dose or disposable capsule there are safety issues involved in disposing of capsules containing residual amounts of hazardous drugs or other hazardous component in the composition.
Other trigger mechanisms include, but are not limited to, a releasable catch, a pressable button a detectable predetermined sound pattern, a detectable predetermined light pattern, a moveable lever, a slider moveable from a first position to a second position, a rotatable knob is rotated, a releasable latch configured and any combination thereof.
The predetermined sound pattern can be: a constant-pitch sound, a varying-pitch sound, a constant volume sound, a varying volume sound and any combination thereof.
The predetermined light pattern can be: a constant-color light, a varying-color light, a constant brightness light, a varying brightness light and any combination thereof.
In some embodiments, the device comprises a unidirectional valve such that gas can flow from the charging mechanism to the delivery end, but is unable to flow in the reverse direction.
In some embodiments, a substance to be dispensed (which can comprise any number of materials) can be stored within a capsule, either as the substance to be dispensed or as a precursor or precursors, with the capsule placeable within the device, as described hereinbelow. In such embodiments, the capsule is ruptured during activation, either all at once or in stages, thereby dispensing the substance.
In other embodiments, a substance, prepared in a conventional matter, is introducible into a holding chamber within the device and, on activation of the device, the substance is dispensed. Embodiments of this kind can be used as emergency dispensing devices, since any flowable substance can be introduced into the holding chamber and since the holding chamber, which has no facilities for separating precursors or for providing an inert atmosphere in the chamber, is not intended for long-term storage of substances.
In some embodiments, the capsule chamber in which the capsule can be placed can also function as a holding chamber, so that the substance can be dispensed either from the capsule or directly from the holding chamber.
In other embodiments, an insert can be placed within the capsule chamber, with the interior of the insert being a holding chamber.
An embodiment of the activation mechanism a dispensing device (1000) into which any flowable substance is introducible is shown in
In this embodiment, the means of loading the substance into the device is a syringe (2000). The syringe (2000) can be placed in the injection port (2100,
In some embodiments, the syringe is left in the injection port. In other embodiments, a cover (2300) is provided for the injection port, so that, after loading the substance into the chamber, the injection port can be sealed by means of the cover. As shown in the embodiment of
In some embodiments, the substance is stored in a capsule or in a sealed compartment in the device. Before or during activation, the capsule or sealed compartment is breached and pressure on the capsule (e.g., by pressing a button to move the piston of a built-in syringe) forces the contents into a dispensing chamber (2200). Dispensing gas passing through the dispensing chamber (2200) then entrains the substance and delivers it.
In some embodiments of a device with separate storage chamber and holding chamber, the capsule comprises a syringe or a syringe like compartment, a rubber piston and seals. The longitudinal axis of the syringe and piston are at right angles to the longitudinal axis of the device. Pressure on the piston moves the substance from the syringe into the holding chamber, in a manner similar to the syringe (2000) and holding chamber (2200) in
In the embodiment shown, a pinch triggering mechanism is used, as shown hereinabove in
In reference to
In the exemplary embodiment of both
In preferred embodiments, the distal end of the tip extension does not comprise any longitudinal protuberances, being substantially flat in the area around the opening (1113) and, where non-planar, extending proximally from the plane of the opening.
In order to prevent material from escaping from the nasal passages or entering undesired areas in the nasal cavity, in some embodiments, the nozzle comprises a medial extension, an expandable portion (1120).
In the exemplary embodiments of
The nozzle tip and the tip extension (1110) have a number of holes (1112, 1113) which fluidly connect the bore of the nozzle (1100) to the exterior of the device, allowing material to exit from the interior of the device. In the exemplary embodiments shown, there is a hole (1113) (
In some embodiments, the extension (1110) can be padded, can comprise soft material, can comprise flexible material and any combination thereof.
Extensions, both tip extensions and medial extensions, can have a number of functions. A non-limiting list of such functions is (1) ensuring proper positioning of the nozzle (1100) in the nasal passages, where the proper position can be the nozzle (1100) centralized in the nasal passages, the nozzle (1100) touching a predetermined portion of the nasal passages, or the nozzle (1100) closer to a predetermined portion of the nasal passages, (2) sealing the nasal passages so that material can not escape therefrom, (3) sealing the nasal passage so that substance does not contact undesired portions thereof. (4) sealing the nasal passage so that substance remains in a predetermined region of the nasal passage, (5) reducing the discomfort of contact between the nozzle and the nasal passages, especially in embodiments where the extension is intended to seal against the walls of the nasal passages, by providing a soft and/or flexible contact region and any combination thereof. Proper positioning can be for the purpose of improving delivery of a substance to a predetermined area, preventing clogging of the holes by nasal secretions, preventing clogging of the holes by contact with the nasal passages, mucosa and any combination thereof.
Nozzle extensions, both those that are expanded during the activation procedure and those that have a predetermined shape and do not expand, can either (1) be attached to the nozzle in a way that they are removed from the nasal cavity with the nozzle tip itself, or (2) have the option of being releasable from the nozzle tip so that they stay in the nasal cavity until they are pulled out by the user or by a caregiver, or any combination thereof. In embodiments where at least one nozzle extension remains in a nasal cavity, preferably, the nozzle extension or extensions are removed after a predetermined time, preferably a short time.
In some embodiments, the holes (1112) in the nozzle (1100) do not lie substantially in a plane perpendicular to the main longitudinal axis of the nozzle (1100). In such embodiments, the holes (1112) can lie along a line parallel to the main longitudinal axis of the nozzle (1100), along a line forming a spiral around the nozzle (1100), irregularly in the distal portion of the nozzle (1100), regularly spaced in the distal portion of the nozzle (1100), and any combination thereof.
Therefore, dispersion of the drug can be substantially from a ring perpendicular to the main longitudinal axis of the nozzle (1100) (holes (1112) around the edge of the extension (1110), from a circle perpendicular to the main longitudinal axis of the nozzle (1100) (holes (1113) in the distal tip of the nozzle (1100), from a line (holes (1112) parallel to the main longitudinal axis of the nozzle (1100) or in a spiral around the main longitudinal axis of the nozzle (1100), or from at least part of the surface of a volume extending along the side of the nozzle (1100).
In some embodiments, the size of the tip extension (1110) is selected so that the extension (1110) is in contact with the nasal passages substantially along its entire circumference. In such embodiments, material exiting holes (1113) in the distal tip of the nozzle (1100) or holes (1112) on the distal face of the extension (1110) can not reach regions proximal to the extension (1110) and will reach only regions deeper in the nasal passages than the extension (1110). In such embodiments, the substance will reach the upper parts of the nasal passages.
Material exiting from holes (1112) in locations where the extension (1110) is in contact with the nasal passages will deposit directly on the walls of the nasal passages. In such embodiments, deposition is in a very narrow band; the location of the band can be tailored for the material of interest.
Material exiting holes (1112) proximal to the region of the extension (1110) in contact with the walls of the nasal passages will be unable to reach locations distal to the region of the extension (1110) in contact with the walls of the nasal passages and will therefore deposit in the lower parts of the nasal passages.
Returning to
The expandable portion (1120) is preferably inflated after insertion of the device into the nasal passage. Inflation can be before or at the time of activation of the device.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
For many medicines, one dose is supplied to each nostril, with the patient receiving two doses altogether. In the prior art, for a single-dose delivery device, this required two delivery devices, with the consequent waste of packaging material, waste of time spent unpacking two devices, both of which tend to reduce patient compliance.
The device (D16) of
The device (D16) comprises two independent aerosolization and delivery devices (D10A and D10B), each in fluid connection with a single nosepiece. Each aerosolization and delivery device (D10A and D10B) comprises a single dose of a drug, which can comprise a single substance or a plurality of substance, stored as a mixture or stored in independent compartments, as disclosed above. The device also comprises activation holders; the aerosolization and delivery devices (D10A and D10B) will be activated one at a time, as disclosed above, with fingers on the activation holders; and a thumb on the activation button at the base of an aerosolization and delivery device (D10A or D10B). It can be seen from
The device (D16) comprises two independent aerosolization and delivery devices (D10A and D10B), and a single nosepiece, with both aerosolization and delivery devices (D10A and D10B) in fluid communication with the single nosepiece. Each aerosolization and delivery device (D10A and D10B) comprises a single dose of a drug, which can comprise a single substance or a plurality of substance, stored as a mixture or stored in independent compartments, as disclosed above. The device also comprises activation holders; the aerosolization and delivery devices (D10A and D10B) will be activated one at a time, as disclosed above, with fingers on the activation holders; and a thumb on the activation button at the base of an aerosolization and delivery device (D10A or D10B).
In
It should be noted that the embodiments of the device are not limited to the exemplary embodiments shown above.
In embodiments where delivery is to a nostril, delivery of the substance can be improved by inducing sniffing in the user.
Sniffing (short, sharp breaths through the nose, for example, when smelling something) is highly correlated with soft palate (Velum) position. Sniffs are rapidly modulated in an odorant-dependent fashion by a dedicated olfactomotor system, and affect the position of the soft palate at the posterior end of the nasal cavity. When sniffing through the nose, the palate is in its upper position to cause separation between the nasal cavity and the oral cavity.
In addition to conscious control, sniffing may be reflexively elicited by chemicals, functioning as either irritants or odors in the nose. Overall sniff duration and pattern can be modulated in real time to optimize olfactory perception. When the olfactory system encounters a concentrated odorant, sniff vigor is reduced and sniff time is reduced; when it encounters a diluted odorant, sniff vigor is increased and duration lengthened. Odorant pleasantness also affects sniffing; sniff vigor and duration increase when smelling a pleasant odor and decrease when smelling an unpleasant odor.
In preferred embodiments, the device disclosed herein can release odorant into the nasal cavity of the user in order to reflexively elicit sniffing. The odorant can be a single odorant or a mixture of odorants and can comprise compounds from different chemical families, for non-limiting example:
Also aromatic compounds of alcohols, aldehydes, esters, ketones, lactones, and thiols.
In preferred embodiments, the substance is contained within a capsule. The capsule can have a single compartment or it can be multi-compartment. The capsule can contain a broad range of drugs and materials. The aromatic compound can be stored in the nozzle, or the nozzle or a portion thereof can be impregnated with aromatic compound, so as to trigger the closing of the velum when the nozzle tip is being placed in the nasal cavity. The delivery can be for local effect, to the systemic circulation, to the central nervous system, preferably via the olfactory epithelium, and any combination thereof.
As described hereinabove, a drug or material to be delivered can be, but is not limited to, a pharmaceutical, a natural compound, a biologic, a hormone, a peptide, a protein, a virus, a cell, a stem cell and any combination thereof.
The stored substance or substances can be stored as a liquid, an aerosol, a powder, a slurry, a suspension, or a gel, if thin enough. The substance or substances can be stored either with or without a carrier; the carrier can be a liquid, a gas or a powder.
The substance as delivered can comprise a powder, a mixture of liquid and powder, a mixture of gas and powder, a mixture of powders, a liquid, a mixture of liquid and gas, a mixture of liquids, a gas, or a mixture of gases.
The stored substance or substances can be packaged to minimize degradation, for example, by packaging it in vacuum or under an inert atmosphere. Preferably, capsules are single-use so that a single, controllable dose can be delivered with each use of the device. Capsules can be placed in the container of the device, or the container can comprise the capsule.
Use of an inert gas for the carrier for delivery of the medication obviates the possibility of interactions between the user and the delivery carrier; allergies to carriers, especially in medications used for chronic illnesses, are a growing problem. Furthermore, the delivery carrier is in contact with the medicament for no more than a few seconds and more commonly for no more than a few milliseconds, thereby minimizing degradation of the medicament due to interactions with the delivery carrier.
Examples of drugs and materials deliverable using the device are given hereinbelow. All examples listed below are exemplary and are not limiting.
Deliverable drugs and materials include: treatments for allergic rhinitis; treatments for osteoporosis; vaccinations and immunizations; sexual dysfunction drugs; treatments for B12 deficiency; smoking cessation; treatment of gynecological problems; treatment of other women's health issues; general anesthetics; local anesthetics; opioid analgesics; agonist-antagonists and antagonists; antitussives; drugs used in the treatment of motor disorders; antiepileptics; drugs used in affective disorders; antipsychotics (neuroleptics); sedative-hypnotics, anxiolytics, and centrally acting muscle relaxants; treatments for anxiety disorders; skeletal muscle relaxants; treatments for Parkinson's disease; treatments for Alzheimer's disease; treatment for pain and anti-migraine treatment.
Medicaments for treatment of allergic rhinitis include: steroids, including corticosteroids, Flonase, Patanase, Beconase, antihistamine, Astelin, Otrivin™, Livostin, Theramax, Avamys, Lufeel, Sinofresh, Nasonex, Nasocort and Veramyst.
Medicaments for treatment of osteoporosis include: Miacalcin, Fortical and Stadol.
Medicaments for vaccinations and immunizations include: LAVIN, and influenza vaccines including FluMist.
Medicaments for smoking cessation include: NasalFent.
Other medicaments which can be delivered include: calcitonin and parathyroid hormone.
Neurotransmitters and neuromodulators that can be delivered include: acetylcholine (ACH), Anticholinergic drugs, adenosine triphosphate (ATP), aspartate (Asp), beta-amyloid, beta-endorphin, bradykinin, dopamine (DA), L-DOPA, Carbio-Dopa, epinephrine, dynorphins, endomorphins, enkephalins, 5-hydroxytryptamine (5-HT), Sumatriptan, Imitrex, Migranal, Zolmitriptan, Zomig, Gamma-aminobutyric acid (GABA), glutamate (glu), glycine, histamine, leptin, nerve growth factor and other growth factors), norepinephrine, nitric oxide, and Substance P.
General anesthetics which can be delivered include: alfentanil, desflurane, enflurane, etomidate, fentanyl, halothane, isoflurane, ketamine, methohexital, methoxyflurane, midazolam, lorazepam, diazepam morphine, nitrous oxide (NzO), propofol, sevoflurane, Sufentanil, Sublimase, and thiopental.
Local anesthetics which can be delivered include: benzocaine, bupivacaine, cocaine, lidocaine, prilocaine, procaine, ropivacaine, and tetracaine.
Opioid analgesics, agonist-antagonists, and antitussives which can be delivered include: agonists, codeine, diphenoxylate, fentanyl, heroin and other opiods, hydrocodone, 1-alpha-acetyl-methadol, levomethadyl acetate, loperamide, meperidine, methadone, morphine, oxycodone, d-propoxyphene, combinations of opioids plus acetaminophen and asa, and tramadol.
Agonist/antagonists and antagonists which can be delivered include: buprenorphine, butorphanol, nalbuphine, nalorphine, naloxone, naltrexone, nalmefene, pentazocine, codeine, dextromethorphan, and hydrocodone.
Drugs used in the treatment of Parkinson's disease and motor disorders which can be delivered include: amantadine, apomorphin, baclofen, benzodiazepines, benztropine, bromocriptine, carbidopa, cyclobenzaprine, dantrolene, dopamine, entacapone, haloperidol, L-DOPA, pergolide, pramiprexole, ropinerole, selegiline (deprenyl), trihexyphenidyl, rasagiline, azilect, selegiline, ladostigil, rotigotine, neupro, mono amine oxidase inhibitor, and COMT inhibitor.
Antiepileptics which can be delivered include: acetazolamide, carbamazepine, clonazepam, diazepam, ethosuximide, felbamate, gabapentin, Lamotrigine, lorazepam, phenobarbital, phenytoin, primidone, tiagabine, topiramate, valproic acid, Vigabatrin and Midazolam.
Drugs used in affective disorders which can be delivered include: antidepressants, amitriptyline, bupropion, citalopram, clomipramine, desipramine, fluoxetine, fluvoxamine, imipramine, nortriptyline, paroxetine, phenelzine, sertraline, trazodone, tranylcypromine, venlafaxine, antimanic drugs, carbamazepine, lithium carbonate and valproic acid.
Antipsychotics (neuroleptics) which can be delivered include: chlorpromazine (CPZ), clozapine, fluphenazine, haloperidol, olanzapine, quetiapine, risperidone, sertindole, thioridazine, thiothixene and ziprasidone.
Sedative-hypnotics, anxiolytics, and centrally acting muscle relaxants which can be delivered include: alprazolam, chloral hydrate, diphenhydramine, flumazenil, flurazepam, hydroxyzine, lorazepam, oxazepam, phenobarbital, temazepam, triazolam, zaleplon and zolpidem.
Anxiety disorders and skeletal muscle relaxants which can be delivered include: alprazolam, chlorazepate, chlordiazepoxide, diazepam, flumazenil (antagonist), lorazepam, and oxazepam.
Treatments for Alzheimer's disease which can be delivered include: donepezil, galantamine, rivastigmine, Tacrine, Detemir, Novolin, Humulin, Insulin, insulin like hormone, an insulin analog such as NPH Insulin, Lispro, Aspart, Detemir Insulin, Glulisin, Glargin Insulin, Insulin degludec, BDNF, GDNF, MIBG, anti-cancer agents, anti-cancer drugs, dopamine agonist and dopamine antagonist.
Other drugs which can be delivered include: amphetamine, caffeine, ephedrine, methamphetamine, methylphenidate, phentermine, sibutramine, disulfiram, ethanol, methanol, naltrexone, atropine, scopolamine, ketamine, lysergic acid diethylamide (LSD), MDMA (methylene dioxy-methyl amphetamine), mescaline, phencyclidine (PCP), donabinol, marijuana/THC, organic solvents, nicotine, Pentobarbital, neuroprotective compounds, neuroprotective peptides, neuroprotective factors, davunetide, anti-schizophrenic drugs, anti-depression drugs, comtan, Entacopone, anti-ADHD agents, anti-ADHD drugs such as Methylphenidrate (Ritalin), and anti-autism and anti-autism symptoms drugs.
Other materials that can be delivered include nanoparticles and microparticles. The nanoparticles and microparticles can comprise drugs; they can be carriers for drugs, cells or parts of cells; and any combination thereof.
In preferred embodiments, the substance comprises permeation enhancers to improve penetration of the active components of the substance through the mucosal membranes.
In some formulations, the formulation can comprise polymeric microparticles comprising at least one active agent and a permeation enhancer, where the active agent is selected from a group consisting of a peptide, a protein, an antibody, nucleic acid, small molecules, cells and any combination thereof.
A great number of penetration enhancers are known in the literature.
One such penetration enhancer is Hyaluronic acid (also referred to as HA or hyaluronan), which is a polysaccharide that occurs naturally in the body. Due to its exceptional water-binding, viscoelastic and biological properties, HA can improve the attributes, such as, but not limited to, the absorption characteristics, of existing formulations and can also add new attributes to existing formulations. Inclusion of HA can be advantageous when developing new formulations.
When used for drug delivery and targeting, HA can provide clear advantages over traditional polymeric substances such as synthetic polymers such as, but not limited to, poly(ethylene glycol), poly(lactic acid), poly(glycolic acid), poly Acrylic Acid and Poly-(N-isopropylacrylamide), or other biopolymers such as chitosan and alginate.
HA's benefits in the drug delivery area include, but are not limited to:
Other penetration enhancers include, but are not limited to the following:
A group containing: a fatty acid, a medium chain glyceride, surfactant, steroidal detergent, an acyl carnitine, Lauroyl-DL-carnitine, an alkanoyl choline, an N-acetylated amino acid, esters, salts, bile salts, sodium salts, nitrogen-containing rings, and derivatives. The enhancer can be an anionic, cationic, zwitterionic, nonionic or combination of both. Anionic can be but not limit to: sodium lauryl sulfate, sodium decyl sulfate, sodium octyl sulfate, N-lauryl sarcosinate, sodium carparate. Cationic can be but not limit to: Cetyltrimethyl ammonium bromide, decyltrimethyl ammonium bromide, benzyldimethyl dodecyl ammonium chloride, myristyltimethyl ammonio chloride, deodecyl pridinium chloride. Zwitterionic can be but is not limited to: decyldimethyl ammonio propane sulfonate, palmityldimethyl ammonio propane sulfonate. Fatty acid including but not limit to: butyric, caproic, caprylic, pelargonic, capric, lauric, myristic, palmitic, stearic, arachidic, oleic, linoleic, linolinic acid, their salts, derivatives and any combinations or glyceride, monoglyceride, diglyceride, or triglyceride of those fatty acids. Bile acids or salts, including conjugated or unconjugated bile acids, such as but not limited to: cholate, deoxycholate, taurocholate, glycocholate, taurodexycholate, ursodeoxycholate, tauroursodeoxycholate, chenodeoxycholate and their derivatives and salts and combinations. Permeation enhancer as comprises a metal chelator, such as EDTA, EGTA, a surfactant, such as sodium dodecyl sulfate, polyethylene ethers or esters, polyethylene glycol-12 lauryl ether, salicylate polysorbate 80, nonylphenoxypolyoxyethylene, dioctyl sodium sulfosuccinate, saponin, palmitoyl carnitine, lauroyl-1-carnitine, dodecyl maltoside, acyl carnitines, alkanoyl cjolline and combinations. Other include but not limited, 3-nitrobenzoate, zoonula occulden toxin, fatty acid ester of lactic acid salts, glycyrrhizic acid salt, hydroxyl beta-cyclodextrin, N-acetylated amino acids such as sodium N-[8-(2-hydroxybenzoyl)amino]caprylate and chitosan, salts and derivatives and any combinations.
Other enhancers include: formulations of water in oil, formulations of oil in water, emulsions, double emulsions, micro-emulsions, nano-emulsions, water in oil emulsions, oil in water emulsions; steroidal detergent, and an acylase; to allow better absorption in the mucosal tissue, better permeation and absorption in the target cells, better stability of the encapsulated drug/active ingredient.
Some embodiments comprise, either alone or in combination with a penetration enhancer, a mucoadhesive agent such as, but not limited to, bioadhesive proteins, carbohydrates and mucoadhesive polymers
In the capsule of the present invention, the device comprises at least one compartment, and preferably a plurality of compartments, each containing a flowable substance. The delivery device is designed to rupture the compartments such that the flowable substances are mixed with a carrier, preferably air, and delivered to a predetermined deposition site, typically, but not exclusively, in the nasal passages.
Medicaments may be supplied as liquids, as powders, or as aerosols. In the preferred embodiment, the medicament is supplied in a single-dose capsule. In other embodiments, the medicament is supplied in a multi-dose capsule means, the multi-dose capsule configured to provide a single dose per activation.
In preferred embodiments, the flowable-substance capsule has a plurality of compartments. A compartment can contain at least one medicament, at least one medicament precursor, carrier gas, compressed gas, and any combination thereof.
The different compartments can contain different medicaments, with the plurality of medicaments delivered to the nostril or other delivery site in a single dose. In this manner, a plurality of medicaments may be supplied to the nostril in a single injection, with interactions occurring between the medicaments at most during the short time between activation of the device and the delivery of the substances and their deposition at the target site.
In some embodiments, interactions between components are unwanted. In such embodiments, a sequential release will utilize the short time period between release of the components and their absorption in the body to prevent such unwanted interactions and/or reactions.
In other embodiments, mixing and/or reactions are desired. In such embodiments, the reactions can occur all at once, by rupturing all of the compartments at the same time and mixing/interacting the components, either in the aerosol or in at least one mixing chamber. In other embodiments, a component can be added by needle insertion at a desired time before use, either into an empty compartment or into an occupied compartment (so that a desired reaction can occur). In other embodiments, the compartment walls rupture in a predetermined order, so that mixing/interaction occurs in stages, in a predetermined order. Mixing/interaction can occur in a compartment or compartments, in a mixing chamber, in the air passages of the device, in the aerosol, in the nasal (or other) passages of the body, and any combination thereof.
As a non-limiting example, a medicament can comprise four components, stored in four compartments of a capsule. Prior to activation, a fifth component is injected into compartment 1. Alter a predetermined time, the device is activated and the walls between compartment 1 and compartment 2 are broken, allowing mixing of 5/1 and 2. This followed by rupture of the walls surrounding component 3, which then mixes with 5/1/2 and reacts with 2. The last walls to rupture are those surrounding compartment 4; material 4 remains in a separate part of the aerosol and deposits on the nasal passages after deposition of 5/1/2/3.
In another example, precursor A mixes with precursor B to form intermediate C, and, subsequently, intermediate C mixes with precursor D to form final product E.
Mixing or reactions or release of components from different compartments can occur simultaneously, in different linked compartments, or they can occur sequentially, as in the example above. Any combination of sequential and simultaneous reactions and/or mixing and/or release can be used. Components can arrive at the deposition site simultaneously, either mixed or unmixed, sequentially, and any combination thereof.
It should be noted that there can be a predetermined delay of some fractions of a second between rupturing of walls of different compartments, in order to, for non-limiting example, allow complete mixing of one set of components or allow a reaction between one set of components to go to completion before the next mixing/reaction starts or the delivery starts.
In some embodiments, the device or, preferably, the capsule, comprises a mixing mechanism or mixing chamber, so that, as described above, components of the composition can mix and/or react during the activation process, enabling components to be stored separately and/or to be stored as stable precursors, but to deliver a predetermined treatment comprising at least one medicament to a predetermined delivery site.
In preferred embodiments of the device, the mixture of aerosol and pre-aerosolized mist is formed within the nozzle, with the hole at the lateral end of the nozzle having little effect on either the shape of the dispersion plume or the velocity of the aerosol.
An experimental setup to demonstrate the location of formation of the mist is shown in
Representation before activation is shown in the center of
Tests were made for exemplary embodiments of a pressurized air carrier for providing controlled drug delivery to the nasal cavity. Other embodiments can be used for delivery to the ear, mouth, throat and rectum.
In these embodiments of the device, the following parameters were variable, over the ranges given:
Typical ranges for the operating parameters are:
Another important consideration, not investigated in these tests, is the location of the nozzle in the body orifice, for non-limiting example, the depth of insertion of the nozzle in the nasal cavity.
In practice, at least one of: the pressure, air volume and time between charging and activation can be optimized based on the characteristics of the compound, drug or medicament such as, but not limited to, the volume, density, viscosity, state of matter, drug formulation, and any combination thereof. The compound can be a liquid, a powder or any combination thereof.
Pressure, air volume, time between charging and activation, and location of the orifice together with the characteristics of the delivered substance; all of the above contribute to the final distribution of aerosolized matter in the nasal cavity, or, in other words, the pattern of deposition of the aerosolized matter in the nasal cavity following discharge of the matter from a device with given predetermined parameters.
Other criteria which can be optimized include, but are not limited to, droplet size, droplet size distribution, droplet size as a function of time, and droplet size distribution as a function of time, plume geometry, pattern characteristics and particles' velocities.
The material as delivered is then a predetermined volume of the selected medicament in a predetermined form within a carrier comprising a predetermined volume of air/gas, with the volume of air/gas condensed at a predetermined pressure.
Tests showing the effect of changing pressure, air volume and time between charging and activation are given below. Deposition was measured in models that mimicked at least one aspect of the human nasal cavity (structure, friction, air flow, surface area or surface mucosa).
A 36 cm long plastic tube with an inner diameter of 0.6 cm was used as a model for nasal friction and air resistance in the nasal cavity. The length of the aerosol distribution was measured, as well as the characteristics of the aerosol distribution.
2 mg/ml Methylene Blue in saline was used. The dye distribution pattern in the tube and the amount of dye that reached the end of the tube were observed.
In reference to
In reference to
Delivery of the liquid dye through the end of the tube (2620), as determined by its deposition on the absorbent (2630), was more efficient for the air volume of 18 cc, as shown by the stronger color (showing more deposited material) and more-even distribution in
In reference to
In reference to
In reference to
Material dispersion and penetration into the nasal cavity layers in a nasal cast model was found to be dependent on the pressure and air volume and the form and characteristics of the material deposited.
The effects of air volume and air pressure on the distribution of 99mTC-DTPA aerosol in the nasal cavity and nasopharynx were examined using SPECT-CT for two human volunteers.
In both cases, the deposited material comprised 300 microliters of DTPA; 1.75 mc (milli Ciri) and the air volume was 20 ml. A pressure of 6 barg was used for the results shown in
In
In
The pressure affected the distribution and thus the absorption of the aerosolized drug in the human body.
As shown hereinabove, the location and distribution of deposition of a desired substance and the characteristics of the substance on deposition are controllable by controlling parameters such as pressure, air volume, substance volume and nozzle shape.
In all known other mechanisms of creating aerosols, an orifice is placed at the end of a nozzle and the inner diameter of the device's nozzle and, especially, its orifice, is the main parameter that influences aerosol formation and the aerosol's characteristics. In contrast, in the present invention, no orifice is needed. More than that, putting a conventional orifice at the end of the nozzle will actually limit the forces reaching the liquid or powder being dispensed, and thus will reduce the ability to create the desired fine aerosol at the target site. Thus, the large diameter tubing that can be used in the present invention, about an order of magnitude larger than the diameter of commonly-used tubes and orifices, results in the desired fine aerosol, carried efficiently into the nasal cavity with droplet median diameters (DV50) on the order of 1-100 micrometer.
In the present invention, the aerosol is created as a result of the air volume-pressure parameters of the device and is influenced by the nasal cavity resistance rather than primarily by the orifice diameter.
In order to model nasal friction and air resistance and as a model for aerosol formation in the nasal cavity, a 36 cm long glass tube with an inner diameter of 2 cm, filled with oil up to 22 cm of its length, was used.
Theoretical analysis has indicated that 5 cm of tube is equivalent to about 0.1-0.5 cm of the nasal passages; therefore the 22 cm, tube would approximately simulate the full depth of a nasal passage.
The test material was 200 microliter of Methylene Blue liquid solution.
The liquid solution was discharged from a device into the base of the tube and pictures and videos were taken in order to be able to follow the process of aerosol formation. The length of the deposition region, the aerosol distribution and the diameter of the aerosol droplets were determined as a function of time.
The Methylene blue solution was injected into the tube using a syringe.
In contrast,
In reference to
In
In reference to
In
A comparison of
In
Two minutes later, (
In reference to
In reference to
In the following tests, results were obtained in a set of experiments made using the device, where, in each example, one parameter is changed and all others are fixed.
In Tests 1-8 below, the distance the aerosol migrated was measured in a plastic tube with an inner diameter of 0.5 cm and 345 cm long. Measurements were done at room temperature.
In Tests 1-6, the substance was a liquid and 100 microliters of saline were used for each activation of the device unless otherwise stated, and in Tests 7-8, the substance was a powder.
1. Effect of Pressure
For a SipNose device, for an orifice diameter of 0.8 mm and an air volume of 3 ml, the effect of pressure on the distance the aerosol migrates is shown in Table 2 and
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
2. Effect of Orifice Diameter
For a SipNose device, the effect of orifice diameter on the distance the aerosol migrates is shown in Table 3 and
For constant pressure and air volume, the larger the orifice diameter, up to about 0.8 mm, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
3. Effect of Drug Volume
The effect of the amount of drug on the distance the aerosol migrates is shown in Table 4 and fits to the SipNose data are shown
In all cases, the aerosol migrates significantly further down the tube for the SipNose device than for the commercial devices.
For the SipNose device, the point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
4. Effect of Sample Viscosity
The effect of the viscosity of the sample on the distance the aerosol migrates is shown in Table 5 and
It is clear that, over the range of viscosities investigated, the viscosity has no more than a negligible effect on the migration distance.
For viscosity in the range tested, from about 0.9 to about 23 cP, viscosity had no effect on the distance the aerosol migrates.
5. Effect of Gas Volume
The effect of the volume of air in the sample on the distance the aerosol migrates is shown in Table 6 and
For constant orifice diameter and pressure, the larger the gas volume, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
6. Effect of Activation Duration
The effect of the valve type (and therefore the duration of activation) on the distance the aerosol migrates is shown in Table 7 and
Table 7 and
7. The Effect of Pressure
The effect of pressure on the distance the powder migrates is shown in Table 8 and
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
Similarly to the liquid substance example (Example 3,
Similarly to the liquid substance example (Example 3,
8. Effect of Air Volume
The effect of air volume on the distance the powder migrates is shown in Table 9 and
For constant pressure and orifice diameter, the larger the air volume, the further the aerosol migrates. Fits were made to these data.
The point at (0,0) (3330) was not a measured point, but could be included to improve the quality of the fits. The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows fits to the data.
Similarly to the liquid substance example (Example 3,
Similarly to the liquid substance example (Example 3,
Effect of Air Volume on Depth of Penetration into a Nasal Cast
In the nasal cast experiments, a model of the human nose was used, with slices of 1 cm each. In the following experiments, the distribution of the material (liquid aerosol or powder) was measured for a nasal cast model.
The effect of air volume on the depth the sample reaches in the nasal cast model is shown in Table 10 and
The point at (0,0) (3330) was not a measured point, but is shown for reference, as a penetration of 0 layers would be expected for an air volume of zero (no delivery gas). The dotted line (3310) connects the data points, including the additional point at (0,0). The solid line (3320) shows a linear fit to the measured data. Over the range of air volumes of interest, between about 5 ml and about 19 ml, the depth of penetration into the nasal cast increases substantially linearly with air volume, although the irregularities of the nasal passages, as reflected in the nasal cast, might have suggested a sublinear relationship.
According to another embodiment, the fit can be selected from a group consisting of logarithmic, parabolic, exponential, sigmoid, power-low, and any combination thereof.
In contrast to prior-art nasal delivery devices and technologies, the devices of the present invention can produce a fine aerosol in the nasal cavity or other desired body orifice at the target area and at the location of the target tissue instead of immediately after exit from the device. Utilizing the pressure as a driving force and the air as a carrier allows the material to be released from the nozzle as a combination of material in a pre-aerosolized state and an aerosol. The properties of the resultant aerosol are typically dependent on the properties of the device and of the medium into which the aerosol is discharged. The properties of the device which affect the aerosol characteristics are the delivery speed, the volume of the delivery gas, and the characteristics of the delivery orifice.
In some embodiments, the aerosol properties are fairly independent of the delivered substance, in other embodiments, the pressure, volume, orifice characteristics and delivered substance properties can be co-optimized.
In prior-art devices the aerosol is produced at the exit to the device. Typically, the aerosol comprises a wide dispersion of particle sizes, a wide “fan” of aerosol and a low driving force. Therefore, the large droplets typically deposit very close to the exit from the device; smaller droplets tend to quickly contact the walls of the passage, so that deposition is typically predominantly close to the exit from the device, with little of the substance reaching desired sites deeper in the orifice, such as the turbinates of the nose.
In contrast, in the present device, the aerosol and pre-aerosolized mixture of gas and substance exits the device with a significant driving force, when the pre-aerosolized fluid hits the walls of the nasal passages, it “explodes” into a fine aerosol that is capable of being driven by the pressure deep into the nasal passages to deposit in the desired region.
In reference to
The plume angle is the total angle subtended by the plume, as shown by the angle α in
In
The SipNose device has a much narrower plume than the two commercial devices. The plume angles for the commercial devices, the Alrin™ from Teva (
All the above parameters allow the aerosol to better deposit in the area of interest—such as the area of the olfactory epithelium in the nasal cavity; and to be better absorbed by the target tissue such as the brain.
In all cases, the SipNose device produces a spray pattern covering a well-defined area of the screen. A large number of particles reach the screen and, in the coverage area, this is significantly more than for any of the commercial devices.
Commercial devices F and J are the best of the prior-art devices, with a reasonable amount of the aerosol reaching the screen, but the distribution is very much wider than for the SipNose device, covering virtually the entire screen. Commercial devices H and I are the worst of the prior-art devices, with very little of the aerosol even reaching as far as the screen.
Tables 11 and 12 show plume characteristics for the SipNose device for different operating parameters and an orifice size of 0.8 mm (Table 11) and for four commercial devices (Table 12).
Significant differences were seen between the properties of the plumes between the SipNose device and the commercial devices; small, if any, overlap was seen between the plume angles, the plume heights or the plume velocities. For the SipNose devices, the range of plume angles was 5° to 25°, the range of plume heights 3 cm from the device was 1 to 20 mm, the range of plume heights 6 cm from the device was 5 mm to 25 mm and the range of plume velocities was 5 m/s to 50 m/s. For the commercial devices, the plume angles were over 33°, the plume heights 3 cm from the device were over 18 mm, the plume heights 6 cm from the device were over 29 mm and the plume velocities were less than 5 m/s.
These results are summarized in Table 13.
SipNose aerosol droplets have a mean diameter in the typical range of other nasal delivery devices, and even smaller. Replacement of the saline with a high viscosity solution of 23 cP appears to have made little difference to the particle size distribution.
For the range of parameters used, the delivery parameters appear to have little effect on the particle size.
An exemplary droplet size distribution is given in
Tables 14 and 15 show droplet size distributions averaged over 10 repeats for 100 ul and 400 ul saline in two SipNose devices (23-11 for 100 ul and 23-12 for 400 ul) for parameters 6 barg pressure, 19 ml of gas, and 0.8 mm orifice diameter. In all cases shown, low variability was seen for the 10 repeats of the measurements.
Table 16 shows reproducibility for the SipNose device. The measurements were done by weighing, and part of the variability shown probably depends on the measurement technique.
SipNose aerosol droplets have a mean diameter in the typical range of other nasal delivery devices, and even smaller.
Although the droplets have a small diameter, the width of the aerosol plume is very narrow, and this allows the aerosol to be better distributed in the inner part of the nasal cavity, without depositing at the from of a cavity such as the nasal cavity.
The SipNose device shows high consistency.
In reference to
In reference to
For the SipNose device, 8 ml of gas was used. For pressures of 2 barg and 6 barg, the release time was less than 300 ms.
In reference to
The release times were less than 300 ms for the SipNose device, even for the lower pressure and higher volume, significantly less than the 1.5 s to 20 s needed with the commercial devices.
In all of the SipNose experiments, over a range of pressures from 2 barg to 10 barg, a range of gas volumes from 2 ml to 12 ml and a range of drug volumes from 100 μl to 500 μl, significantly less than 0.5 s was needed to empty the SipNose device of drug plus gas. This is significantly less than the more than 1.5 s needed by even the fastest of the commercial devices.
In some embodiments, the release time is less than 1 s.
In some embodiments, it is less than 0.5 s.
In preferred embodiments, the release time is between 100 ms and 500 ms.
It should be emphasized that any embodiment of the present invention and any variant thereof can be used for both for humans (medical use) and animals. Thus, any of the devices as disclosed above and any variant thereof can be used for veterinary applications as well as (human) medical applications.
The pressure rate ΔP/Δt for a SipNose device with 0.8 mm orifice and a gas volume of 8 ml and for saline delivered by the Alrin™ nasal pump and the Simply Saline™ nasal pump is shown in Table 17. For the simply Saline™ nasal pump, there is no pre-defined release time. Release begins when an activation button is pressed and continues as long as the button remains depressed.
It is clear that the pressure rate for the SipNose device is on the order of 2 orders of magnitude greater than for the commercial devices.
The pressure as a function of time for pressures above 2 barg for a gas volume of 8 ml, a drug volume of 0.1 ml and an orifice diameter of 0.8 mm can be calculated from
P=471Vsub−1.5
The pressure as a function of time for pressures above 2 barg for a gas volume of 8 ml, a drug volume of 0.5 ml and an orifice diameter of 0.8 mm can be calculated from
P=8510Vsub−1.5
In general, for an orifice diameter of 0.8 mm and pressures above 2 barg, the pressure can be calculated from
P=a
p1
V
sub
−bp1
where ap1 is in a range from 1 to 20,000 and bp1 is in a range from 1 to 2.
The drug volume rate ΔVsub/Δt is shown in Table 18. For the SipNose device, the orifice diameter was 0.8 mm orifice and the gas volume was 8 ml.
The release time for a pressure of 2 barg, a gas volume of 8 ml and an orifice diameter of 0.8 mm can be calculated from
T=37+exp(2+0.018Vsub)
The release time for a pressure of 6 barg, a gas volume of 8 ml and an orifice diameter of 0.8 mm can be calculated from
T=−2.9+2exp(2.86+0.025Vsub)
In general, for an orifice diameter of 0.8 mm, the release time if the drug volume only is varied can be calculated from
T=a
v1
+b
v1exp(cv1+dv1Vsub)
where av1 is in a range from −50 to 50, bv1 is in a range from 0.1 to 5, cv1 is in a range from 1 to 5 and dv1 is in a range from 0.01 to 0.05.
The gas volume rate ΔVgas/Δt is shown in Table 19. For the SipNose device, the orifice diameter was 0.8 mm. For the SipNose device, the pressure was 2 barg, while, for the MAD Nasal device, the device was pressed by hand; the delivery pressure was not measured.
The release time for the SipNose device, for a pressure P of 2 barg and a drug volume Vsub of 100 μl can be calculated from
T=−38+1.43Vgas
The release time for the SipNose device for a pressure P of 2 barg and a drug volume Vsub of 500 μl can be calculated from
T=68.5−0.367Vgas
The release time for the SipNose device, for a pressure P of 6 barg and a drug volume Vsub of 100 μl can be calculated from
T=−20+1.11Vgas
The release time for the SipNose device, for a pressure P of 6 barg and a drug volume Vsub of 500 μl can be calculated from
T=−16+0.182Vgas
In general, for an orifice diameter of 0.8 mm, the release time can be calculated from
T=a
v2
+b
v2
V
gas
where av2 is in a range of −100 to 100 and bv2 is in a range of −5 to 5.
Carrying distance and spread width area were compared for the SipNose device and two commercial devices, the Alrin and the Otrivin devices, by firing them at a target (9200) 50 cm from the tip of the nozzle (9100) of the device being fired.
For the SipNose device (
For the Alrin device (
For a distance between nozzle and target of 30 cm, dispensing 100 μl a liquid in a carrier volume, the penetration of the aerosol through 4 mm of a fabric medium was compared for different operating conditions for the SipNose device and three commercial devices, the Akin, the MAD Nasal from Wolfe Tory and the Otrivin devices. In all cases, the aerosol from the SipNose device penetrated the 4 mm of fabric (
In reference to
The SipNose results differed depending on valve opening time. For valve opening times less that about 500 ms, the plume width is significantly smaller for the SipNose device for all operating conditions. For valve opening times greater than about 500 ms, the results depended on the diameter of the open valve. Where the diameter of the open valve was small (0.22 mm), no aerosol was formed. Where the valve diameter was large (0.8 mm), an aerosol was formed but the plume was wide (12 and 10 cm). This indicates that, for a narrow plume width, the valve opening time should be less than 500 ms and that, as long as the opening time is in this range, the plume is both much narrower than that for the commercial devices and is better defined.
As shown in
Furthermore, for the SipNose device, the pressure was completely discharged for each activation (pressure after=0 each time; ratio current/first=1). For the Otrimer delivery device, on the other hand, only a small fraction of the pressure was discharged. The pressure difference was less than 5% of the pressure before activation for the first activation and decreased with activation number, being less than 1% for the fifth activation.
Some of the other types of delivery devices, which include pressurized metered dose inhalers (pMDIs), dry powder inhalers and nebulizers, can also suffer from poor repeatability.
In a pMDI, the delivery pressure will necessarily decrease with activation number, as a portion of the fixed initial pressure is discharged on each activation. Dry powder inhalers tend to have poor repeatability because the patient inhales to deliver the medication, which is inherently poorly controllable. Nasal sprays, such as the Otrmier delivery device, tend to have a fairly long “recovery time”, which limits repeatability.
Nebulizers can have good repeatability. In a typical nebulizer, a gas at high pressure flows through the device, combines with an aerosol, and is then delivered to the patient. If a regulator is used to control the pressure of the gas flowing through the device, the repeatability of the nebulizer can be as good as the accuracy and reliability of the regulator.
The Respimat® Soft Mist inhaler from Boehringer Ingelheim is a carrier-free inhaler. It comprises a medicament cartridge with a stiff outer shell and a flexible inner bag which contains the medicament and a holder. The holder comprises a bottom part, into which the cartridge fits, which is rotatable relative to the upper part. Rotating the bottom part tensions a spring, which moves the cartridge downward toward the base of the device. This induces pressure in the region between the base and the cartridge and forces air through a hole in the base of the cartridge, compressing the flexible inner bag and causing the liquid medicament to rise through a capillary tube into a holding chamber.
Pressure on a triggering device releases the spring and activates the device. The released spring contracts back to its inactivated position, which pushes the cartridge and attached capillary tube upward into the holding chamber. A non-return valve prevents the medicament from returning to the flexible bag. The increased pressure on the medicament in the holding chamber forces the medicament through a nozzle, thereby atomizing it.
Unlike the SipNose device, the Respimat device is designed to produce a low-velocity, “soft” mist with a velocity of less than 30 cm/s, compared to the velocities of over 10 m/s for the SipNose device. For the Respimat device, a high-velocity mist is disadvantageous and is to be avoided.
In the Respimat device, the quality of the aerosol is controlled by the design of the nozzle, with the small particle size produced by a number of small openings in the nozzle.
Lispro Insulin is delivered to the brain with the SipNose device and can be specifically detected.
In
The results of the experiment are shown in
From
1. Lispro Insulin delivery to the brain with the SipNose device is highly efficient when compared to I/V administration
2. Insulin delivery to the brain with the SipNose direct-nose-to-brain approach results in Insulin in both anterior and posterior parts of the brain.
A comparison was made of the efficacy of delivery of the anesthetic Midazolam, when used for pre-medication, between an embodiment of the SipNose device of the present invention and a prior-art device, the commercial nasal pump based on positive displacement (as the pump used for Alrin™ delivery) and the MAD Nasal from Wolfe Tory.
Comparison with nasal pump (using 5 mg/ml solution): For a pre-medication procedure with commercial nasal pump (positive displacement pump), in order to achieve the desired dose of 3 mg Midazolam, the delivery device was inserted into a nostril and an aliquot of Midazolam is delivered. The delivery device is then inserted into the opposite nostril and a second aliquot of Midazolam is delivered. This is repeated twice more with a 30 s intervals between each cycle, for a total of six aliquots of Midazolam, three in each nostril. As opposed to that, for a SipNose device delivery, a single dose of 0.6 ml was delivered to one nostril.
Comparison with MAD (using a 1 mg/ml solution): For a pre-medication procedure with MAD atomizer, in order to achieve the desired dose of 1.4 mg Midazolam, the delivery device was delivered to one nostril and an aliquot of Midazolam within a volume of 1.4 ml was delivered. For SipNose device delivery the Midazolam was delivered in 2 separate aliquots of 0.7 ml, one to each nostril.
In order to determine the efficacy of anesthetization a BIS EEG monitoring was used, where the BIS values for brain activity are calculated from the EEG activity. Awake, unsedated individuals typically have BIS values ≥97. Mildly sedated individuals typically have BIS values in the 80's, moderately sedated individuals typically have BIS values in the 70's, while fully sedated individuals typically have BIS values below about 70; BIS values between about 45 and about 60 are commonly used for general anesthesia during the maintenance phase of an operation.
Two comparisons were made between the commercial device and the present, SipNose, device. In the first, 3 mg of Midazolam was administered and the commercial device was a commercial nasal pump (positive displacement), in the second, 1.4 mg of Midazolam was administered and the commercial device was a MAD applicator.
As can be seen from Table 21, the SipNose device effectively sedated the patient in all 8 cases, while the commercial nasal pump was only effective for 3 out of 4 patients. In no case were there adverse events. The mean onset times are not significantly different for the SipNose device and the commercial device, since the range of variability is large.
The administration time was significantly shorter for the SipNose device, 1 s vs. 1 min.
The rate of sedation was greater with the SipNose device, with a minimum BIS of 74.5±9 for the SipNose device compared to a minimum BIS of 87.5±5.3 for the commercial device.
If sleep scores are taken for the patients, where a 1 means the patients was not sleepy, 2 means that the patient is sleepy or calm, and 3, that the patient is sleeping, the SipNose device (
In the second comparison, the total dose of Midazolam was 1.4 mg in a total volume of carrier of 1.4 ml. For the SipNose device, it was administered in two aliquots of 0.7 ml, whereas it was administered in one aliquot for the commercial MAD Nasal atomizer from Wolfe Tory. Midozolam was administered to four patients, two with the SipNose device and two with the commercial MAD device.
As shown in Table 22, sedation is better with the SipNose device; sedation failed entirely for Patient 2 with the commercial device. For this lower dose, the onset time was significantly shorter for the SipNose device (3 and 5 min vs. 20 and 8 min).
Even for this lower dose, where the SipNose administration was in two aliquots and the commercial device administration was in a single aliquot, administration time was lower for the SipNose device, with each aliquot administered in 1 s, rather than the 7-10 s for administration of a single aliquot with the commercial device.
In addition to the BIS values, a sleeping score was found by observation of the patients. The sleeping score was 3 for SipNose administration and averaged 1.5 for the commercial nasal pump.
As can be seen from this example, the SipNose device is at least as good as the commercial device in terms of efficacy and onset time for the delivery of the small molecule Midazolam, with onset time being no greater for the SipNose device than for the commercial device. The SipNose device appears to be more reliable in inducing anesthesia, with no failures in 10 patients compared to 2 failures and one partial failure in 6 patients with the commercial devices. Administration of a single aliquot is faster with the SipNose device, approximately 1 s vs. approximately 10 s for the commercial device.
In addition, larger does can be administered in a single aliquot with the SipNose device, reducing the number of aliquots needed for delivery of a total dose and thereby decreasing the chances of error in administration and the discomfort of the patient. The more rapid administration (1 s vs. 7-10 s or 1 min) will also reduce patient discomfort and reduce chances of error (e.g., releasing a patient before an aliquot is completely delivered).
In this example, epileptic seizures were induced in rats by administration of 47.5-50 mg/kg of Pentylenetetrazol (PTZ) for 5 min before the start of treatment with Midazolam. The Midazolam was administered either via IV or using a SipNose device, via the nasal passages. There were two dosing levels, 0.6 mg/kg (
In all cases, the Racine grading standard was used to determine the severity of the seizures. PZT was at t=−5 min, the start of treatment was at time t=0.
Treatment consisted of saline (control, diamonds), Midazolam administered by IV (triangles) or Midazolam administered nasally by a SipNose device (squares).
0.6 mg/kg
As can be seen in
6 mg/kg
As can be seen in
For this larger dose, the IV and SipNose responses were more alike; both remained below a Racine severity of 0.5. No seizures were seen (Racine score 0) for the entire time period between about time t=10 min and time t=60 min.
In this example, doses of Midazolam between about 0.6 mg/kg and about 6 mg/kg were administered to rats and the concentration of Midazolam in the brain was measured 60 minutes after administration.
As shown in
In other cases, the dose-response curve may not be linear, even if the amount reaching the target location (e.g., the brain) increases linearly with increasing dose, since, for some drugs, a subjects' dose-response curve will be non-linear (e.g., no response below a threshold, response independent of dose for doses above a threshold, etc.).
Efficacy of Control of Epileptic Seizures with Midazolam
Epileptic seizures were induced in rats by administration of Pentylenetetrazol (PTZ) and the severity of the seizures was measured 60 minutes after administration of Mizadolam. Doses of Mizadolam varied from zero to 6 mg/kg with SipNose nasal delivery device and with an I/V administration. Brain concentrations of Midazolam were measured and a correlation between brain concentration and convulsions score is shown in
As can be seen from
As the examples disclosed hereinabove demonstrate, the SipNose device is stable with respect to minor changes in device parameters (e.g., pressure, volume, etc.); minor changes in device parameters do not significantly change the results.
Anti-Epileptic Treatment of Status Epilepticus (SE) with Midazolam in a Human
Case study of a patient age of 39 years old, suffering from epileptic seizures (SE) was treated with a dose of 2 mg Midazolam with sipNose delivery device to deliver Midazolam via the nasal cavity.
Administration of Midazolam was done by administrating of 1 ml of Midazolam to each nostril in a carrier volume of 1 ml. EEG recordings were measured before (
As can be seen, administration of the drug via the SipNose nasal delivery device results in reducing the repetitive un-normal brain activity during the seizures. Brain activity is back to normal 3 min following administration which reflects a fast onset and efficient delivery of the drug to its targets in the brain.
Nasal cavity irritation and general toxicity were assessed for repeated intra-nasal applications of Midazolam to rabbits, using a SipNose intra-nasal delivery device. Six New Zealand White female rabbits were used, with the three experimental animals being given two 200 μL doses of Midazolam (5 mg/ml) per day, six hours apart. The three control animals were given four 200 μL doses of saline solution per day, at 3 hour intervals. All animals were dosed using a sipNose device adapted for administration to rabbits, as shown in
The daily dosing was repeated for 10 days, for 11 days' dosage in total. 24 hours after the last dosing, the animals were sacrificed. Table 23 shows a timeline for the study.
As shown in Table 23, the animals were observed for toxic/adverse symptoms: within the first 30 min post administration, with special attention during the first 4 hours and periodically during the day (3 times a day), following treatment. The animals were observed once daily until study termination. Shortly before sacrifice, blood was taken for testing.
After sacrifice, gross pathology was performed, examining major tissue and organ systems. Organs (nasal cavity (including olfactory epithelium), nasopharynx, paranasal sinus, trachea, lungs, larynx, brain (olfactory bulbs and hippocampus), heart, olfactory nerve, optic nerve and lacrimal glands) of all animals were harvested and examined. Three cross sections of the skull were taken: (1) in the nose from rostral, (2) behind the incisor teeth and (3) caudal, including the olfactory epithelium labyrinth, as shown in
Brains were dissected in the olfactory regions and the hippocampus. Lungs were evaluated in both right and left lobes. Tissues were trimmed, embedded in paraffin, sectioned at no more than 5 microns thickness, and stained with Hematoxylin & Eosin (H&E).
In order to alleviate the discomfort an animal might endure during intra-nasal administration, prior to placement the sipNose device, Lidocaine was applied locally in the nasal area.
No major histopathological abnormalities were found in any of the samples from either group. In all except two of the animals, no pathological changes were found. Some of the animals showed some minor abnormalities:
In three animals, one from the saline group and two from the Midazolam group, a very mild bleeding was detected in the frontal nose space. This was a result of the administration to the animals' nasal cavity, as non-anesthetized animals sometime move during the administration and thus are superficially scratched by the tip of the sipNose device. All the pathological findings were mild and clinically not significant.
In all relevant safety parameters that were examined—clinical observations, histopathological evaluation, ophthalmic examination, haematology and blood analysis—no differences were found between the control and study groups and all showed parameters normal for rabbits.
This study supports the safety of repeated intranasal delivery of Midazolam with the SipNose device.
Safety and possible adverse effects (toxicity) were assessed the safety and toxicity including adverse effects of Midazolam following intranasal administration via SipNose dedicated device to Sprague-Dawley (SD) rats.
A total of 78 SD rats (39 female and 39 male) were utilized. The animals were divided into four groups of 3 or 12 female rats and 3 or 12 male rats. At each of the times 6 hrs, 24 hrs, 7 days, and 14 days, three males and three females were sacrificed.
The test material was a commercially available injectable Midazolam.
The day of dosing was Day 1 and termination days were Day 1 (6 hrs), Day 2 (24 hrs), Day 8 and Day 15.
Groups were allocated according to Table 24 the study time line is shown in Table 25. Each test material or vehicle dose was administrated to three female and three male rats at each of the above times. The administration was performed intranasally (IN) via a SipNose device. The dose volume was 25-125 μl per naris (50-250 μl total per rat). Dosing was performed in an escalating fashion, each increase in dose depending on the outcome of the previous dose. The time between increasing doses was approximately half an hour.
M + 1F
M + 2F
M + 5F
M + 6F
indicates data missing or illegible when filed
Dosing was performed in a staggered fashion, each increase in dose pending on the outcome of the previous dose. The lag time between the increasing doses was approximately half an hour. The maximum dose was five times the clinical dose in order to determine a maximum tolerated dose.
The test material and vehicle were administered IN once via a SipNose device at a dose volume of 50-250 μl to non-fasting animals. Prior to application of the test material, lidocaine was applied locally on the outer area of the nostril, in order to decrease the level of distress.
Animals were observed individually at least once during the first 30 minutes alter dosing and daily thereafter, for a total of 1, 7, or 14 days (according to time of sacrifice for histological observation). All observations were systematically recorded and individual records were maintained for each animal.
Body weight was monitored one day after the animals' arrival, prior to administration of the test material and twice a week thereafter (days 4, 8, 10 and 15) for a total of 5 times.
Clinical signs were observed daily, at least once during the first 30 min after dosing, periodically during the first 24 h, with special attention during the first 4 h, and once daily thereafter.
Blood samples from groups 3 (M+F) and 4 (M+F) were collected into K3-EDTA tubes on ice, at 6 and 24 hr only. A blood volume of approximately 300 μl was taken each time.
Animals were sacrificed by carbon dioxide asphyxiation and gross pathology was performed examining the major tissue and organ systems. All animals were subjected to gross necropsy.
The following organs were collected from all animals at each termination point and fixed in 4% formaldehyde: Nasal cavity (including olfactory epithelium), nasopharynx, paranasal sinus, trachea, lungs, brain (cut in several areas including the olfactory bulb), heart and larynx.
The tissue samples from groups 1, 2, 3 and 4 (M+F) were embedded, sectioned and mounted on slides. The tissue sections were stained with Hematoxylin & Eosin (H&E).
Forty two rats were observed for histopathological findings: Three males and three females from groups 1, 2, and 3 and 24 rats (12M+12F) from group 4. Three cross sections of the skull and brain were taken: (1) in the nose from rostral area, (2) behind the incisor teeth and (3) in the caudal area including the olfactory epithelium labyrinth (
No abnormal clinical signs were detected in any of the animals during the study.
The intranasal treatment, at both tested doses, led to no adverse effects or histopathological findings in any of the tissues that were examined—Nasal cavity, nasopharynx, paranasal sinus, trachea, lungs, brain, heart and larynx.
No death of neurons was detected in the brain in both the Saline and the Midazolam treated groups.
Body weight was increased as expected in all treatment groups as can be seen in
In all the observed animals, no pathological abnormalities were found in the brain, lungs, heart larynx and trachea of all the rats that were examined
A very mild inflammation was observed in the most caudal cross section of the nose, involving the sinus and nose turbinate walls, in 12 out of the 42 animals examined (29%). In those lesions there was a lymphocytic infiltrate admixed with some hemorrhages and few erythrocytes. The lesions were observed both in the Saline treated groups 2M (#4, 6#) and 2F (#23, 24#), as well as in the Midazolam treated groups 3M (#8) and 4M (#12), 4F (#28, #29, #55, #59, #100, #102). Therefore these very minor changes were most probably not drug-related but rather a result of the insertion of the drug delivery nose piece to the animal's nose.
In both the Saline and the Midazolam groups no death of neurons was detected.
Concentration of Midazolam in the plasma and brain of rats were compared for intranasal administration via the SipNose delivery device and via IV administration. A standard drug formulation (Injectable Midazolam 5 mg/ml, Pfizer/Hospira brand) was used, with no reformulation or adaptation for nasal delivery. Two drug concentrations were used for the intranasal administration, 0.2 mg/kg (dashed line in
The results demonstrate high reproducibility in the absorption of Midazolam into the blood and brain after administration with the SipNose nasal delivery device. For both, absorption is comparable to that seen for I/V administration. Since a standard drug and formulation was used, with no reformulation or adaptation for nasal delivery, the high reproducibility can be attributed to the delivery method, since the SipNose technology allows very reproducible delivery to the nasal cavity, effective distribution at the target area in the nasal cavity, which has a large surface area to allow effective absorption. The results also show that the SipNose delivery method produces a desirable dose-response pattern, one that is a key element in therapeutic treatments. The very similar dose-response patterns for the two intranasal applications show the delivery method's flexibility in delivering differing volumes of drug without changing performance characteristics and effectiveness—identical devices providing identical deliveries were used for both doses, with the 0.6 mg/kg dose had three times the volume of the 0.2 mg/kg dose. There was no need to make any changes in the delivery device other than loading a different drug volume in going from one dose to another three times as large.
For the 0.6 mg/kg dose, intranasal delivery by the SipNose device showed a pharmacokinetic pattern very similar to that of standard of care (I/V) administration, with no reformulation of the drug to make it more suitable to nasal delivery. The 0.2 mg/kg dose showed a similar change in concentration with time, although the absolute concentration, not surprisingly, was smaller.
Those results indicate that the SipNose device provides an effective delivery technology.
Midazolam was administered as a pre-anesthetic drug as a part of premeditation to subjects that needed to be anesthetized prior to the beginning a surgical procedure. Administration of the pre-anesthetic drug was done intranasally instead of the routine PO/IM (oral/intramuscular) route used by the anesthesiologist from the hospital.
The intranasal administration was given by one of the following medical devices: a SipNose nasal device (
Eight low-risk patients (American Society of Anesthesiology physical status classification I or II) patients were included in each group. Clinical status of the patients, standard continuous monitoring of vital signs, and continuous bispectral index (BIS) monitoring was ongoing 5 minutes before intranasal administration and 30 minutes after.
The objective data consisted in minimum BIS value obtained after administration and time until minimum BIS. The subjective data consisted in physician feedback, swallowing of the drug appreciated by patient, sleeping score appreciated by physician.
As shown in
As shown in
Sedation Score was evaluated by physicians as a behavior tool to determine effectiveness of the dose that was given in each of the nasal administrations. Scoring was done according to the following criteria: 1=not Sleepy (not effective); 2=Sleepy/Calm (intermediate effect); 3=Sleeping (drug was effective).
As shown in
Patients were asked to score if they felt the drug in their throat and/or felt a bitter taste in the throat after the administration of the drug. Swallowing and bitter taste are major user compliance issues in nasal delivery that also reflect the administration potential efficacy, as, if a meaningful amount goes down the throat, it means that most of the drug did not reach the target area in the nasal cavity thus absorption of the drug will be poor.
The bitterness and swallowing were graded according to the following scale: 1=No swallowing/No bitter taste; 5=A meaningful amount was swallowed/Strong bitter taste.
The repeated administrations with the nasal pump were given with 30 s intervals between them to allow the drug to be absorbed in the nasal cavity before another dose was given.
With the SipNose device, one short administration of 0.6 ml was given.
As shown in
The anesthesiologist in charge of the patients was asked to rate the overall experience with intranasal administration of midazolam. (1=very good; 5=Not satisfactory). As can be seen in
The SipNose delivery is superior to the commercial nasal pump, in terms of quality of sedation, onset time, swallowing of the drug and physician satisfaction when the same doses of Midazolam were given to patients. Administration with the SipNose device showed higher consistency and more effective results than the commercial nasal pump. Onset time was lower with the SipNose device than the commercial nasal pump. Administration of a single dose of 1×600 μl is much more user friendly and the time of administration is reduced, thus increasing patient comfort and anesthesiologist compliance. None of the SipNose group patients complained about post administration discomfort. No adverse events or safety issues were reported in both administration procedures.
It should be noted that one of the SipNose patients was scared during administration by the force of the jet produced by the device.
A study was performed to evaluate the safety and toxicity, including adverse effects, of Topiramate following intranasal administration via a SipNose device to Sprague-Dawley (SD) rats. A dose 8 times the therapeutic dose was administered in order to determine the maximal tolerated dose. Doses used in this study were chosen to assess the safety of the approved drug given via the nose with an embodiment of a sipNose device.
A total of 13 male Sprague-Dawley rats were utilized. The animals were divided into four treated groups of three rats and one group with one naïve control rat. The treatments are given in Table 28.
The following tests were performed:
As shown in Table 29, the test material was administered twice (with a five hour interval between administrations) to non-fasting rats, either orally (to Group 2M only) or intra-nasally (IN) via a SipNose device. IN application was carried out using solution at a dose volume of 300 μl per naris or as a powder (in two formulations). In all cases the total dose per rat was 6 mg of Topiramate. Prior to application of the test material, lidocaine was applied locally to the outer area of the nostril in order to decrease the level of distress.
Animals were observed individually at least once during the first 30 minutes after dosing, with special attention during the first four hours and prior to termination. Observations included changes in skin and fur, eyes and mucous membranes, and also respiratory, circulatory, autonomic and central nervous systems, and somatomotor activity and behavior pattern.
Body weight was monitored one day after the animals' arrival, prior to administration of the test material and before termination.
Blood samples were collected into Li-Heparin tubes on ice, at 10, 30 and 90 min post first and second dosing. A blood volume of approximately 300 μl was obtained at each time point.
Animals were sacrificed via carbon dioxide asphyxiation and gross pathology was performed, examining the major tissue and organ systems.
The following organs were collected from all animals: Nasal cavity (including olfactory epithelium), nasopharynx, paranasal sinus, trachea, lungs, brain, heart and larynx.
As can be seen in
Food consumption (FC), as measured on Day 2 of the study, was reduced to around 60% of naïve rats FC in rats treated by Topiramate powder, as shown in
Topiramate was administered to the relevant study groups twice, with a five hour interval between administrations. The plasma levels that were found 10, 30 and 90 minutes following the first and second administrations are depicted in
As can be seen in
Ten minutes following the second administration, almost all groups exhibited higher values compared to those found 10 minutes after the first administration (2M: 84%; 4M: 50%; 5M: 73%) and only group 3M (Topiramate in liquid form IN) exhibited 26% lower values. Ninety minutes after the second administration all groups reached exactly the same level that was achieved 90 minutes after the first administration with no significant accumulation.
Due the fact that only three time-points were assessed after the first Topiramate administration, strict pharmacokinetic evaluation of PK parameters could not be performed. The estimated values that could be obtained are summarized in Table 30.
As can be seen in
The investigated organs: nasal cavity (including olfactory epithelium), nasopharynx, paranasal sinus, trachea, lungs, brain, heart and larynx of 13 animals, were harvested. Three cross sections of the skull were taken: (1) in the nose from rostral, (2) behind the incisor teeth and (3) caudal, including the olfactory epithelium labyrinth, as shown in
Brains were dissected in the olfactory regions and the hippocampus, cerebellum and brain stem. Lungs were evaluated in both right and left lobes. All tissues were trimmed into block cassettes and sent to L.E.M for slide preparation and staining.
Most of the samples exhibited no pathological findings and only minor observations, mostly unrelated to the treatment, were revealed. In seven animals out of the 13 inspected, a very mild hemorrhage in the rostral node and/or the nose sinuses was found. This can be associated most probably to the blood sampling collected from the retro-orbital sinus during the study, since three of the seven animals were treated orally.
In one animal (#7) a focal tear in the respiratory epithelium in the nose cavity was found, which might be a result of a sudden movement of the animal during the nasal administration (as the animals were not anesthetized during the procedure and sometimes moved their heads during the procedure).
No pathological changes were detected in any of the other sites that were examined.
Ten minutes after the first Topiramate administration, all three IN applications showed similar plasma concentrations, about twice the concentration found 10 minutes after oral administration, which reached close to the IN levels only at 90 minutes. The two powder formulations behaved similarly. However, Topiramate concentrations after 1N application of a liquid form declined rapidly with an estimated half-life of 45 minutes. This indicates a unique fast elimination following this application route, since Topiramate is known to have a relatively long half-life in rats (e.g. showing stable ED50 for 8 hours after oral administration). The Areas under the pharmacokinetic curves (in units of μg-min/ml) exhibited similar relationships between the groups: 2M≈3M<<4M≈5M.
Except for the liquid application. Topiramate seemed to maintain reasonable concentrations during the five hour interval between doses. Indirect evidence can be seen in the fact that ten minutes following the second administration, all these groups exhibited considerably higher values compared to those found 10 minutes after the first administration (2M: 84%; 4M: 50%; 5M: 73%) and only group 3M (Topiramate in liquid form IN) exhibited a 26% lower value. Ninety minutes after the second administration, all groups reached exactly the same level as was achieved 90 minutes after the first administration, indicating that, under the conditions of this study, two administrations with a five hour interval between them led to no significant accumulation of Topiramate.
No drug-related pathological changes were detected during histology evaluation in any animal in any of the investigated tissues.
The study investigated repeated intra-nasal delivery of Topiramate, using SipNose's novel device, in order to evaluate its effect on food consumption, body weight, and behavior and to measure the concentrations of the drug in the brain and plasma, in comparison to oral administration. Also, the safety of repeated dosing was examined.
The probability of appetite loss is a potential indicator for Topiramate. Food consumption was monitored during the experiment, and as the expectation was that food consumption will be reduced, care was taken in order to make sure it is not too dramatic or harmful to the animals.
A total of 38 rats were utilized. Thirty six (36) rats were divided into four groups of nine animals in each group. Two animals were used as the naïve, untreated group.
Topiramate was used in its original API form with no specific formulation. Topiramate was delivered to the nasal cavity either as a dry powder or as a solution of 10 mg/ml solubilized in Saline.
Application was by means of a SipNose device (
One animal, animal #10 (Group 5M) was euthanized after exhibiting drastic weight loss (13% in one day) and apathy before the procedure on study Day 2. Gross pathology was performed and no significant findings were observed, except for a blood clot in the right nasal cavity, probably formed by the applicator.
The study was performed according to the parameters of Table 31, for group allocation, and Table 32, for the study time-line. Test material or vehicle (control) were administrated twice a day, 6 hours apart, to 9 rats in each group, at a dose of 0.78 mg (0.39 mg in each of the two nostrils), which is comparable to 25 mg per nostril (50 mg total) in humans. This provided a total of 1.56 mg per day per animal. For the liquid nasal samples, the administration was performed IN via SipNose's dedicated device at doses of 78 μL, from 10 mg/ml stock, or orally, after dilution to a dose volume of 200 μL. Food consumption was monitored two days before study initiation and daily during the study. Three (3) animals per group were sacrificed 45 minutes after the first dose of the first day, and six animals per group were sacrificed after 6 consecutive days of dosing, via CO2 asphyxiation.
Body weight was recorded upon arrival, 2 days before study initiation and once a day thereafter.
At the end of the study (termination), animals were sacrificed by CO2 asphyxiation or cardiac perfusion, and gross pathology was performed, examining major tissue and organ systems. Perfusion was performed under anesthesia with Isoflurane, using saline, for further PK examination of compounds in the brain.
Animals were sacrificed 45 minutes after the first administration of Day 1 and the last administration of Day 6, following blood sampling of 400 μL, if required, as described below. Three (3) rats, sacrificed after the first dosing day, were perfused with saline for PK analysis of blood and brain. Animals sacrificed on the last day of the study (after one dose only) were divided into 2 groups: one animal in each cage was bled and perfused with saline, after which the brain was collected and frozen in liquid nitrogen for PK analysis. The second animal in the cage was sacrificed by CO2 asphyxiation and the nasal cavity (including the olfactory epithelium), nasopharynx, paranasal sinus, trachea, lungs, brain, heart and larynx were collected and fixed in 4% formaldehyde and Histopathological evaluation (H&E staining) was performed. Inflammatory status was evaluated. Slide preparation was followed by histopathological examination of the collected organs during scheduled termination and necropsy from all the animals. Tissues were trimmed, embedded in paraffin, sectioned at approximately five micron thickness and stained with Hematoxylin & Eosin (H&E).
As shown in
While body weight, as expected, increased throughout the study in all groups, a statistically significant increase was observed for Group 2M (liquid Topiramate, IN), which showed a 2-fold increase in body weight by the end of the treatment period (i.e. relative to study day 6), relative to all other treatment groups (
As shown in
As shown in
Examination of Topiramate concentrations in plasma and brain revealed that IN Topiramate administration of powder or liquid is an optional route of administration when using the SipNose delivery device, and results in similar or higher blood and brain concentrations, when compared to 45 min following oral administration (
Intra-nasal administration of powder Topiramate (Group 4M) provides a higher efficiency (higher blood and brain concentrations) than both oral and IN administered liquid Topiramate (Groups 2M and 3M, respectively). Topiramate plasma concentration that was measured after the first administration was twice as high (average of 4143±596.7 ng/mL) as the other two groups indicated (2070±228.1 and 1512±505.2 ng/mL, respectively). A similar trend was observed for brain concentrations. Interestingly, following the 11th administration, plasma concentrations (1977±256.4 ng/mL) as well as brain concentrations, were considerably lower than those following the first administration in the powder Topiramate intranasal group. A possible explanation is induction of CYP 3A4 activity leading to increased metabolism of the drug.
Both liquid and powder Topiramate were administered intranasally. Only liquid Topiramate was administered orally, as it is not feasible to administer Topiramate powder orally. After the first dose, intranasal administration of Topiramate liquid results in blood and brain concentrations of Topiramate which are similar to higher than the concentrations seen with orally-administered liquid Topiramate and intranasal administration of Topiramate powder results in blood and brain concentrations of Topiramate which are similar to those seen with orally-administered liquid Topiramate. After the eleventh dose, blood and brain concentrations of Topiramate were similar for all types of administration. No major histopathological findings were observed in all the samples of all the tissues that were examined. Some minor findings that were found are listed below:
Animal #16 (
Animals #16, (
At all other sites and for all other animals no pathological changes were detected.
Absorption into the Brain and Spinal Cord of for Oil-Based Substances
For most liquid drug formulations, the drugs are dissolved in, suspended in or mixed with water-based liquids. However, many of the cannabis derivatives that show promise as therapeutic agents, such as the cannabinoids, need to be dissolved in oil. Therefore, a study was done to investigate uptake to the brain of an oil-based formulation. For this study, Fluorescein was dissolved in oil and administered intranasally, via the SipNose device, to rats. Fluorescein was administered to the control animals intravenously.
Thus, the SipNose device can provide efficient administration to the brain of oil-based drugs such as cannabinoids.
No major histopathological findings were observed in all the samples of all the tissues that were examined following the repeated dosing. Any mild findings that were seen in the histopathological examination cannot be related to the nasal delivery device and/or method as are also appear in the oral delivered drug group.
In the foregoing description, embodiments of the invention, including preferred embodiments, have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described to provide the best illustration of the principals of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.
The present application is a continuation-in-part application of U.S. patent application number Ser. No. 14/733,143 filed on Jun. 8, 2015, which claims the benefit of priority of U.S. provisional patent application No. 62/117,986 filed on Feb. 19, 2015 and of U.S. provisional patent application No. 62/077,246 filed on Nov. 9, 2014. The present application also claims the benefit of priority of U.S. provisional patent application No. 62/507,816 filed on May 18, 2017. All of said applications being incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62117986 | Feb 2015 | US | |
62077246 | Nov 2014 | US | |
62507816 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14733143 | Jun 2015 | US |
Child | 15982630 | US |