Device and method for attaching an implant to biological tissue

Information

  • Patent Grant
  • 8888811
  • Patent Number
    8,888,811
  • Date Filed
    Monday, July 12, 2010
    14 years ago
  • Date Issued
    Tuesday, November 18, 2014
    10 years ago
Abstract
This invention generally relates to devices and methods for repairing an aperture in biological tissue. In certain embodiments the invention provides as system for closing an aperture in a biological tissue including a handle, an elongate shaft connected to the handle, a deployment scaffold connected to the shaft, in which the scaffold is configured to releasably retain a surgical implant, and at least one adhesive dispensing system.
Description
FIELD OF THE INVENTION

This invention generally relates to devices and methods for repairing an aperture in biological tissue. More specifically, the present invention relates to devices and methods for attaching an implant to biological tissue, using an adhesive.


BACKGROUND

An object of the present invention is to provide apparatus and a method for performing corrective surgery on internal wounds such as hernia where invasion of the patient's body tissues is minimized and resultant trauma is reduced.


A hernia is a protrusion of a tissue, structure, or part of an organ through the muscular tissue or the membrane by which it is normally contained. In other words a hernia is a defect in the abdominal wall through which a portion of the intra-abdominal contents can protrude. This often causes discomfort and an unsightly, visible bulge in the abdomen. When such a hernia defect occurs in the abdominal region, conventional corrective surgery has required opening the abdominal cavity by surgical incision through the major abdominal muscles. While this technique provides for effective corrective surgery of the hernia defect, it has the disadvantage of requiring a hospital stay of as much as a week, during which pain is frequently intense, and it requires an extended period of recuperation. After the conventional surgery patients frequently cannot return to a full range of activity and work schedule for a month or more. Accordingly, medical science has sought alternative techniques that are less traumatic to the patient and provide for more rapid recovery.


Laparoscopy is the science of introducing a viewing instrument through a port into a patient's body, typically the abdominal cavity, to view its contents. This technique has been used for diagnostic purposes for more than 75 years. Operative laparoscopy is performed through tiny openings in the abdominal wall called ports. In most surgical techniques several ports, frequently three to six, are used. Through one port is inserted the viewing device, which conventionally comprises a fiber optic rod or bundle having a video camera affixed to the outer end to receive and display images from inside the body. The various surgical instruments are inserted through other ports to do the surgery that normally would be performed through an open incision through the abdominal wall. Because the laparoscopic surgical techniques require only very small holes through the abdominal wall or other portions of the body, a patient undergoing such surgery may frequently leave the hospital within one day after the surgery and resume a full range of normal activities within a few days thereafter.


In repairing hernia the physician needs to first deploy the patch and then to attach/anchor the patch to the tissue.


There are many patents and patent applications relating to anchoring means (see for example U.S. Pat. No. 6,447,524). Traditional anchors used in surgery include clips, staples, or sutures, and may also be referred to as tissue anchors. These devices are usually made of a biocompatible material (or are coated with a biocompatible material), so that they can be safely implanted into the body. Most tissue anchors secure the tissue by impaling it with one or more posts or legs that are bent or crimped to lock the tissue into position. Thus, most traditional anchors are rigid or are inflexibly attached to the tissue. For example PCT no. wo07021834 describes an anchor having two curved legs that cross in a single turning direction to form a loop. Those two curved legs are adapted to penetrate tissue in a curved pathway. U.S. Pat. No. 4,485,816 (816') describes surgical staple made of shape memory alloy. The staple is placed in contact of the tissue and then heated. The heating causes the staple to change its shape thus, penetrating the tissue.


U.S. Pat. No. 6,893,452 ('452) describes a tissue attachment device that facilitates wound healing by holding soft tissue together under improved distribution of tension and with minimal disruption of the wound interface and its nutrient supplies. The device has multiple sites for grasping the tissue using tines or prongs or other generally sharp, projecting points, protruding from a single, supportive backing. One of the embodiments described in '452 is the use of sharp projecting points protruding from the supportive backing in two different angles.


U.S. Pat. No. 6,517,584 ('584) describes a hernia patch which includes at least one anchoring device made of shape memory material. The anchoring devices are initially secured to the prosthesis by being interlaced through a web mesh constituting the prosthesis. The attachment is obtained by altering the attachment element's shape from rectilinear to a loop shape due to heat induced shape memory effect.


Yet other patent literature relates to devices for endoscopic application of surgical staples adapted to attach surgical mesh to a body tissue.


An example of such a teaching is to be found in U.S. Pat. No. 5,364,004, U.S. Pat. No. 5,662,662, U.S. Pat. No. 5,634,584, U.S. Pat. No. 5,560,224, U.S. Pat. No. 5,588,581 and in U.S. Pat. No. 5,626,587.


There are a few patent and patent literatures relating to deployment of patches. For example U.S. Pat. No. 5,836,961 ('961) which relates to an apparatus used for developing an anatomic space for laparoscopic hernia repair and a patch for use therewith. The apparatus of patent '961 comprises a tubular introducer member having a bore extending there through. A tunneling shaft is slidably mounted in the bore and has proximal and distal extremities including a bullet-shaped tip. A rounded tunneling member is mounted on the distal extremity of the tunneling shaft. The apparatus comprises an inflatable balloon. Means is provided on the balloon for removably securing the balloon to the tunneling shaft. Means is also provided for forming a balloon inflation lumen for inflating the balloon. The balloon is wrapped on the tunneling shaft. A sleeve substantially encloses the balloon and is carried by the tunneling shaft. The sleeve is provided with a weakened region extending longitudinally thereof, permitting the sleeve to be removed whereby the balloon can be unwrapped and inflated so that it lies generally in a plane. The balloon as it is being inflated creates forces generally perpendicular to the plane of the balloon to cause pulling apart of the tissue along a natural plane to provide the anatomic space.


Another example for deploying the patch can be found in U.S. Pat. No. 5,370,650 ('650) which relates to an apparatus for positioning surgical implants adjacent to body tissue to facilitate the fastening of the implant to the body tissue. Patent '650 provides an apparatus for positioning surgical implants adjacent to body tissue, comprising an outer tube having a proximal end, a distal end and a longitudinal axis; an inner rod at least partially disposed within the outer tube and slidable along said longitudinal axis. The inner rod has a proximal and a distal end portions. The inner rod distal end portion further comprises articulating means for pivoting at an angle with respect to the longitudinal axis. A looped support member having first and second end portions fixedly secured to said distal end portion of the inner rod; and a surgical implant releasably secured to the looped support member.


More patent literature can be found in U.S. Pat. No. 4,190,042 which discloses a resilient surgical retractor which in an unstressed condition forms a hook-like appendage at the distal end of the retractor.


Another patent literature relates to a perpendicular deployment of the patch. An example of such teaching can be found in U.S. Pat. No. 5,405,360 (see FIG. 6). There are many advantages for the lateral deployment over the perpendicular deployment. One of which is the considerably large amount of articulation that will be needed in order to properly position the patch with respect to the hernia. The other one relates to the fact that the abdominal cavity contains a limited space; hence the use of large patches will be limited.


All those patent and patent application demonstrate attachment means for attaching the patch to the tissue or means for deploying the patch within the body. However none of the literature found relates to a device especially adapted to deploy and attached a patch to a biological tissue.


Thus, there is still a long felt need for a device that can be used for both deploying and attaching a patch to a biological tissue namely via a biological glue.


SUMMARY OF THE INVENTION

It is one object of the present invention to provide a deployment and attachment device (DAD) comprising:

    • a. deployment mechanism adapted to laterally deploy a patch; and,
    • b. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119;
    • wherein said GDS comprising:
      • i. at least one glue reservoir (GR) 116 adapted to accommodate glue 119; and,
      • ii. at least one glue dispensing tube (GDT) 117, in communication with said GR 116, adapted to homogeneously disperse glue 119 along substantially the entire margins area of said patch.
    • It is another object of the present invention to provide the DAD as defined above, wherein said DAD is characterize by having a distal portion, adapted to be inserted into a body and a proximal portion, located adjacent to a user; said distal portion and said proximal portion are interconnected along a main longitudinal axis via a tube (103);
    • said tube (103) having a proximal end (TP) connected to said proximal portion, and a distal end (TD);
    • said tube (103) is adapted to at least partially accommodate a central shaft (105);
    • said central shaft (105) is characterized by a proximal end (CSP) accommodated within said tube and a distal end (CSD) protruding out of said TD; said central shaft is adapted to reciprocally move parallel to said main longitudinal axis within said tube;
    • said GR (116) is in communication with said at least one glue dispensing tube (117);
    • said distal portion comprises:
    • (i) at least two frame arms (FA) (104) adapted to be reversibly coupled to said patch;
    • (ii) at least two proximal deployment arms (pDA) (108a, 108b) hinge-like connected to said TD and to the proximal end of said two FA;
    • (iii) at least two distal deployment arms (dDA) (108c, 108d) hinge-like connected to said CSD and to the distal end of said two FA;
    • each of said pDA and dDA (108a, 108b, 108c, 108d) is characterized by a plurality of configurations, at least one of said configurations is a parallel configuration in which each of said pDA and dDA is substantially parallel to said central shaft (105); and, at least one of said configurations is a substantially perpendicular configuration in which each of said pDA and dDA is substantially perpendicular to said central shaft (105);
    • said FAs (104) are characterized by a closed configuration in which said pDAs and dDAs are in said parallel configuration; and, a deployed configuration at which said pDAs and dDAs are in said substantially perpendicular configuration such that said patch is deployed; said FA are adapted to reversibly transform from said closed configuration to said deployed configuration by (i) said reciprocal movement of said central shaft (105) towards and away from said proximal portion; and, (ii) said transformation of each of said DAs from said parallel configuration to said perpendicular configuration, such that said deployment of said patch is at least partially reversible.


It is another object of the present invention to provide the DAD as defined above, wherein said GR 116 is reversible coupled to said tube 103.


It is another object of the present invention to provide the DAD as defined above, said proximal portion comprising at least one handle located outside said body; said handle adapted to (i) reversibly transform said FA from said closed configuration to said open configuration; (ii) disperse said glue on said patch; and, (iii) lateral articulate said DAD.


It is another object of the present invention to provide the DAD as defined above, wherein said GR 116 is reversible coupled to said handle in said proximal portion.


It is another object of the present invention to provide the DAD as defined above, wherein said GR 116 comprising at least one hook 506 adapted to be reversibly inserted into at least one socket 507 located in said tube 103.


It is another object of the present invention to provide the DAD as defined above, wherein said glue is selected from a group consisting of fibrin sealant (FS), Cyanoacrylate or any other glue suitable for clinical use.


It is another object of the present invention to provide the DAD as defined above, additionally comprising a lateral articulating mechanism adapted to provide lateral articulation to said DAD such that said patch can be properly place with respect to said hernia.


It is another object of the present invention to provide the DAD as defined above, additionally comprising a vertical articulating mechanism adapted to provide vertical articulation to said DAD such that said patch can be properly place with respect to said hernia.


It is another object of the present invention to provide the DAD as defined above, wherein said glue dispensing tube (117) is coupled to at least one selected from a group consisting of FA (104), pDA or dDA or any combination thereof.


It is another object of the present invention to provide the DAD as defined above, wherein said glue dispensing tube (117) is reversibly coupled to said patch (106).


It is another object of the present invention to provide the DAD as defined above, wherein said GDT 117 comprises at least one nozzle 118 adapted to disperse said glue on said patch.


It is another object of the present invention to provide the DAD as defined above, wherein said nozzles 118 are pre inserted through said patch such that at least a portion of said nozzles 118 protrude out of said patch 106.


It is another object of the present invention to provide the DAD as defined above, wherein said patch used is a non-pores patch.


It is another object of the present invention to provide the DAD as defined above, wherein said pre inserted nozzles 118 are adapted to provide attachment between said GDT 117 and said patch 106.


It is another object of the present invention to provide the DAD as defined above, wherein said nozzles 118 comprising at least two openings facing to two opposite directions of said patch.


It is another object of the present invention to provide the DAD as defined above, additionally comprising at least one piston 302 internally coupled to said GR 116; said piston 302 is adapted to reciprocal move along the GR's longitudinal axis such that said glue is extracted from said GR 116 to said GDT 117.


It is another object of the present invention to provide the DAD as defined above, wherein said piston 302 is driven by means selected from a group consisting of pneumatic means, mechanic means, hydraulic means or any combination thereof.


It is another object of the present invention to provide the DAD as defined above, wherein said piston is pneumatically driven via compressed gas.


It is another object of the present invention to provide the DAD as defined above, wherein said GR 116 is adapted to accommodate a multi-component glue.


It is another object of the present invention to provide the DAD as defined above, wherein said GR 116 is divided into at least two sealed sub cavities 308, 309 by at least one partition 310.


It is another object of the present invention to provide the DAD as defined above, wherein each sub cavity 308, 309 is coupled to a single mixing cavity 311.


It is another object of the present invention to provide the DAD as defined above, additionally comprising at least one membrane 314 adapted to prevent any unwanted extraction of said glue components.


It is another object of the present invention to provide the DAD as defined above, wherein said GDT 117 is characterized by an oval cross section so as to reduce the overall cross section area of said distal portion 101 in said ‘closed configuration’.


It is another object of the present invention to provide the DAD as defined above, wherein said FA (104) comprises means adapted to at least partially reversibly connect said patch (106) to said FA (104).


It is another object of the present invention to provide the DAD as defined above, wherein said glue reservoir (GR) 116 is separately provided.


It is another object of the present invention to provide a method for deploying and attaching a patch to a biological tissue. The method comprising steps selected inter alia from:

    • a. obtaining a deployment and attachment device (DAD) comprising:
      • i. deployment mechanism adapted to laterally deploy a patch; and,
      • ii. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119; said GDS comprising: (a) at least one glue reservoir (GR) 116 accommodating glue 119; and, (b) at least one glue dispensing tube (GDT) 117, in communication with said GR 116;
    • b. attaching said patch to said DAD;
    • c. introducing said patch into said body cavity;
    • d. deploying said patch;
    • e. homogeneously dispersing glue 119 along substantially the entire margins area of said patch; and,
    • f. adjacently bringing said patch into contact with said biological tissue, thereby attaching said patch to said biological tissue.


It is another object of the present invention to provide a method for deploying and attaching a patch to a biological tissue. The method comprising steps selected inter alia from:

    • a. obtaining a deployment and attachment device (DAD) comprising:
      • i. deployment mechanism adapted to laterally deploy a patch; and,
      • ii. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119;
    • said DAD is characterize by having a distal portion, adapted to be inserted into a body and a proximal portion, located adjacent to a user; said distal portion and said proximal portion are interconnected along a main longitudinal axis via a tube (103);
    • said tube (103) having a proximal end (TP) connected to said proximal portion, and a distal end (TD);
    • said tube (103) is adapted to at least partially accommodate a central shaft (105);
    • said central shaft (105) is characterized by a proximal end (CSP) accommodated within said tube and a distal end (CSD) protruding out of said TD; said central shaft is adapted to reciprocally move parallel to said main longitudinal axis within said tube;
    • said GR (116) is in communication with at least one glue dispensing tube (117);
    • said distal portion comprises:
      • (i) at least two frame arms (FA) (104) adapted to be reversibly coupled to said patch;
      • (ii) at least two proximal deployment arms (pDA) (108a, 108b) hinge-like connected to said TD and to the proximal end of said two FA;
      • (iii) at least two distal deployment arms (dDA) (108c, 108d) hinge-like connected to said CSD and to the distal end of said two FA;
      • each of said pDAs and dDAs (108a, 108b, 108c, 108d) is characterized by a plurality of configurations, at least one of said configurations is a parallel configuration in which each of said pDAs and dDAs is substantially parallel to said central shaft (105); and, at least one of said configurations is a substantially perpendicular configuration in which each of said pDA and dDA is substantially perpendicular to said central shaft (105);
      • said FAs (104) are characterized by a closed configuration in which said pDAs and dDAs are in said parallel configuration; and, a deployed configuration at which said pDAs and dDAs are in said substantially perpendicular configuration such that said patch is deployed;
    • b. reversibly attaching said patch to said FAs;
    • c. adjusting said patch on said FAs;
    • d. introducing said distal portion into said body cavity;
    • e. reversibly transforming said FA from said closed configuration to said deployed configuration; thereby deploying said patch;
    • f. homogeneously dispersing glue 119 along substantially the entire margins area of said patch;
    • g. adjacently bringing said patch into contact with said biological tissue, thereby attaching said patch to said biological tissue.


It is another object of the present invention to provide the method as defined above, additionally comprising step of detaching said patch from said FA.


It is another object of the present invention to provide the method as defined above, additionally comprising step of transforming said FA from said deployed configuration to said closed configuration.


It is another object of the present invention to provide the method as defined above, additionally comprising step of extracting said DAD from said body cavity.


It is another object of the present invention to provide the method as defined above, additionally comprising step of laterally articulating said DAD so as said patch is orientated with respect to the treated defect.


It is another object of the present invention to provide the method as defined above, additionally comprising step of vertically articulating said DAD.


It is another object of the present invention to provide the method as defined above, additionally comprising step of reversibly coupling said GR 116 to said tube 103 prior to said patch insertion.


It is another object of the present invention to provide the method as defined above, additionally comprising step of selecting said glue from a group consisting of fibrin glue, Cyanoacrylate or any other glue suitable for clinical use.


It is another object of the present invention to provide the method as defined above, additionally comprising step of coupling said glue dispensing tube (117) to at least one selected from a group consisting of FA (104), pDA or dDA or any combination thereof.


It is another object of the present invention to provide the method as defined above, additionally comprising step of reversibly coupling said glue dispensing tube (117) to said patch (106).


It is another object of the present invention to provide the method as defined above, additionally comprising step of providing said GDT 117 with at least one nozzle 118 adapted to disperse said glue on said patch.


It is another object of the present invention to provide the method as defined above, additionally comprising step of inserting said nozzles 118 through said patch such that at least a portion of said nozzles 118 protrude out of said patch 106 prior to step (d) of introducing.


It is another object of the present invention to provide the method as defined above, additionally comprising step of selecting said patch to be a non-pores patch.


It is another object of the present invention to provide the method as defined above, additionally comprising step of internally coupling to said GR (116) at least one piston 302 adapted to reciprocal move along the GR's longitudinal axis such that said glue is extracted from said GR 116 to said GDT 117.


It is another object of the present invention to provide the method as defined above, additionally comprising step of driving said piston 302 by means selected from a group consisting of pneumatic means via compressed gas, mechanic means, hydraulic means or any combination thereof.


It is another object of the present invention to provide the method as defined above, additionally comprising step of accommodating within said GR 116 a multi-component glue.


It is still an object of the present invention to provide the method as defined above, additionally comprising step of dividing said GR 116 into at least two sealed sub cavities 308, 309 by at least one partition 310.


It is lastly an object of the present invention to provide the method as defined above, additionally comprising step of selecting the cross section area of said GDT 117 from an oval cross section so as to reduce the overall cross section area of said distal portion 101 in said ‘closed configuration’.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1A illustrates an embodiment said PDD 100;



FIG. 1B illustrates the close configuration of said PDD 100;



FIG. 1C illustrates the deployed configuration of said PDD 100;



FIG. 1D provides a closer view of the distal portion of the DAD 100 in the deployed configuration.



FIGS. 2A-2B illustrate the glue dispensing system (GDS);



FIGS. 3A-3B illustrate another embodiment of PDD 100 and GDS 115 in which said glue 119 is applied directly to the top side of said patch 106;



FIGS. 3C-3D which illustrate a cross section view of a single nozzle 118 and describes the gluing process;



FIG. 3E illustrates the detachment between the distal portion 101 and the patch 106;



FIGS. 3F-3G illustrate an alternative embodiment of said nozzle 118;



FIGS. 4A-4E illustrates another embodiment of the GR 116;



FIGS. 4F-4G illustrate another embodiment of the GR 116 in which a multi-component glue is utilized.



FIGS. 5A-5D which illustrate another embodiment of said GR 116.



FIGS. 5C-5F illustrate the coupling process of the GR 116 to the tube 103 in a 3D isometric view and FIGS. 5G-5J respectively illustrate the same process in a lateral cross section.



FIG. 6 illustrates a perpendicular deployment.





DETAIL DESCRIPTION OF THE SPECIFIC EMBODIMENTS

The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of the invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, is adapted to remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provides means and method for providing a an attachment between a patch and a tissue via a biological glue.


The present invention provides a deployment and attachment device (DAD) which serves as a tool for insertion, deployment, placement and attachment of a prosthetic hernia mesh during laparoscopic hernia rapier surgery; wherein said DAD comprised a glue dispensing system (GDS) adapted to provide an attachment between said patch and the patient's tissue.


The present invention provides a deployment and attachment device (DAD) comprising:

    • c. deployment mechanism adapted to laterally deploy a patch; and,
    • d. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119;
    • wherein said GDS comprising:
      • i. at least one glue reservoir (GR) 116 adapted to accommodate glue 119; and,
      • ii. at least one glue dispensing tube (GDT) 117, in communication with said GR 116, adapted to homogeneously disperse glue 119 along substantially the entire margins area of said patch.
    • It is another object of the present invention to provide the DAD as defined above, wherein said DAD is characterize by having a distal portion, adapted to be inserted into a body and a proximal portion, located adjacent to a user; said distal portion and said proximal portion are interconnected along a main longitudinal axis via a tube (103);
    • said tube (103) having a proximal end (TP) connected to said proximal portion, and a distal end (TD);
    • said tube (103) is adapted to at least partially accommodate a central shaft (105);
    • said central shaft (105) is characterized by a proximal end (CSP) accommodated within said tube and a distal end (CSD) protruding out of said TD; said central shaft is adapted to reciprocally move parallel to said main longitudinal axis within said tube;
    • said GR (116) is in communication with said at least one glue dispensing tube (117);
    • said distal portion comprises:
    • (i) at least two frame arms (FA) (104) adapted to be reversibly coupled to said patch;
    • (ii) at least two proximal deployment arms (pDA) (108a, 108b) hinge-like connected to said TD and to the proximal end of said two FA;
    • (iii) at least two distal deployment arms (dDA) (108c, 108d) hinge-like connected to said CSD and to the distal end of said two FA;
    • each of said pDA and dDA (108a, 108b, 108c, 108d) is characterized by a plurality of configurations, at least one of said configurations is a parallel configuration in which each of said pDA and dDA is substantially parallel to said central shaft (105); and, at least one of said configurations is a substantially perpendicular configuration in which each of said pDA and dDA is substantially perpendicular to said central shaft (105);


      said FAs (104) are characterized by a closed configuration in which said pDAs and dDAs are in said parallel configuration; and, a deployed configuration at which said pDAs and dDAs are in said substantially perpendicular configuration such that said patch is deployed; said FA are adapted to reversibly transform from said closed configuration to said deployed configuration by (i) said reciprocal movement of said central shaft (105) towards and away from said proximal portion; and, (ii) said transformation of each of said DAs from said parallel configuration to said perpendicular configuration, such that said deployment of said patch is at least partially reversible.


The present invention also provides a method for attaching a patch to a biological tissue during a surgery utilizing said DAD and GDS.


The method comprising steps selected inter alia from:

    • a. obtaining a deployment and attachment device (DAD) comprising:
      • i. deployment mechanism adapted to laterally deploy a patch; and,
      • ii. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119;
        • said GDS comprising: (a) at least one glue reservoir (GR) 116 accommodating glue 119; and, (b) at least one glue dispensing tube (GDT) 117, in communication with said GR 116;
    • b. attaching said patch to said DAD;
    • c. introducing said patch into said body cavity;
    • d. deploying said patch;
    • e. homogeneously dispersing glue 119 along substantially the entire margins area of said patch; and,
    • f. adjacently bringing said patch into contact with said biological tissue, thereby attaching said patch to said biological tissue.


It is another object of the present invention to provide a method for deploying and attaching a patch to a biological tissue. The method comprising steps selected inter alia from:

    • a. obtaining a deployment and attachment device (DAD) comprising:
      • i. deployment mechanism adapted to laterally deploy a patch; and,
      • ii. at least one glue dispensing system (GDS), in communication with said deploying mechanism and said patch, adapted to attach said patch to a biological tissue within a body cavity via a biological glue 119;
    • said DAD is characterize by having a distal portion, adapted to be inserted into a body and a proximal portion, located adjacent to a user; said distal portion and said proximal portion are interconnected along a main longitudinal axis via a tube (103);
    • said tube (103) having a proximal end (TP) connected to said proximal portion, and a distal end (TD);
    • said tube (103) is adapted to at least partially accommodate a central shaft (105);
    • said central shaft (105) is characterized by a proximal end (CSP) accommodated within said tube and a distal end (CSD) protruding out of said TD; said central shaft is adapted to reciprocally move parallel to said main longitudinal axis within said tube;
    • said GR (116) is in communication with at least one glue dispensing tube (117);
    • said distal portion comprises:
      • (i) at least two frame arms (FA) (104) adapted to be reversibly coupled to said patch;
      • (ii) at least two proximal deployment arms (pDA) (108a, 108b) hinge-like connected to said TD and to the proximal end of said two FA;
      • (iii) at least two distal deployment arms (dDA) (108c, 108d) hinge-like connected to said CSD and to the distal end of said two FA;
      • each of said pDAs and dDAs (108a, 108b, 108c, 108d) is characterized by a plurality of configurations, at least one of said configurations is a parallel configuration in which each of said pDAs and dDAs is substantially parallel to said central shaft (105); and, at least one of said configurations is a substantially perpendicular configuration in which each of said pDA and dDA is substantially perpendicular to said central shaft (105);
      • said FAs (104) are characterized by a closed configuration in which said pDAs and dDAs are in said parallel configuration; and, a deployed configuration at which said pDAs and dDAs are in said substantially perpendicular configuration such that said patch is deployed;
    • b. reversibly attaching said patch to said FAs;
    • c. adjusting said patch on said FAs;
    • d. introducing said distal portion into said body cavity;
    • e. reversibly transforming said FA from said closed configuration to said deployed configuration; thereby deploying said patch;
    • f. homogeneously dispersing glue 119 along substantially the entire margins area of said patch;
    • g. adjacently bringing said patch into contact with said biological tissue, thereby attaching said patch to said biological tissue.


It should be emphasized that some of the major advantages of the present invention, with respect to the prior art, is to provide a fast and reliable method for dispensing glue on top of a hernia mesh/patch during laparoscopic hernia surgery, thus, enabling an attachment between the patch and the patient's tissue.


The term “Hernia” refers hereinafter for umbilical hernia, hiatal hernia, ventral hernia, postoperative hernia, epigastric hernia, spiegelian hernia, inguinal hernia and femoral hernia, generally any abdominal wall related hernia.


The term “hinge” or “hinge-like connection” refers hereinafter as to a type of bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation (the geometrical axis of the hinge). Hinges may be made of flexible material or of moving components.


The term “hinge like connection” can refer to a standard hinge or to a living hinge (i.e., a thin flexible hinge (flexure bearing) made from plastic that joins two rigid parts together while allowing them to bend along the line of the hinge).


The term “biological glue” refers hereinafter to any biological glue which can provide adhesion between a living biological tissue and a synthetic or biological material (e.g., hernia patch/mesh); thus, providing an attachment between said tissue and said patch/mesh. The glue can be either multi component glue—e.g. fibrin glue or fibrin sealant (FS). Or single component glue—e.g. Cyanoacrylate or any other glue suitable for clinical use.


The term ‘controlled deployment’ refers hereinafter to a patch deployment which is continuous; i.e., the deployment is not binary but analogous—there are several deployment levels. This is in contrast so conventional deployment system is now days (see for example U.S. Pat. No. 5,370,650), in which the deployment of the patch relies upon the elasticity of a loop member surrounding the patch such that the patch can be either fully folded or fully unfolded. No intermediate are enabled. In the present invention there can be several deployment stages.


According to a preferred embodiment of the present invention, the DAD device provided is adapted to provide a controlled deployment of the patch.


The term ‘bidirectional’ or ‘fully reversible deployment’ refers hereinafter to the deployment of the patch, which according to the present invention, is fully reversible. In other words, the patch deployment is bidirectional, i.e., the patch can be fully folded (i.e., deployed within the body) and then, if the surgeon desires, the patch can be fully unfolded simply by the reconfiguration of the flexible arms from the initial stage to the final stage and vice versa.


According to a preferred embodiment of the present invention, the DAD device provided is adapted to provide a bidirectional or fully reversible deployment of the patch.


The term “minimally invasive surgery” refers hereinafter to procedures that avoid open invasive surgery in favor of closed or local surgery with fewer traumas. Furthermore, the term refers to a procedure that is carried out by entering the body through the skin or through a body cavity or anatomical opening, but with the smallest damage possible.


The term “articulation” refers hereinafter to a joint or juncture between two segments of the device. The articulating means of the present invention provides the ability to better adjust the device to the curvature of the treated tissue.


The term “orientation” refers hereinafter to the rotation of the mesh within the abdominal cavity so as to fit to the hernia. Usually the mesh is not symmetric in shape (i.e., rectangular or i.e., ellipse)—therefore it has different directions. By rotating the mesh within the abdominal cavity—one can decide which direction is turned where.


The term “adjusting” refers hereinafter to rolling, folding and winding of the patch, thus preparing and enabling the insertion of said patch into the abdominal cavity.


The term “lateral deployment” refers hereinafter to a deployment in which the plane of the deployed patch is substantially parallel to the main longitudinal axis of the trocar or the DAD 100 and hence of the tube 103 or the central shaft 105.


The term “perpendicular deployment” refers hereinafter to a deployment in which the plane of the deployed patch is substantially is perpendicular to the main longitudinal axis of the DAD 100 or the trocar). An example of a perpendicular deployment is given in FIG. 6, which is a preferred embodiment of the deployment illustrated in U.S. Pat. No. 5,405,360.


Before explaining the figures, it should be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention can be carried out in various ways.


Generally speaking, each deployment and attachment device (DAD) 100 comprises at least two portions: a distal portion 101 and a proximal portion 102. The proximal portion is adapted to remain outside the body, adjacently to the user and the distal portion 101 is adapted to be inserted into the body.


The distal portion comprises at least one frame arm 104 to which the patch is attached to. The distal portion is characterized by two main configurations: a ‘closed configuration’ in which the DAD enables insertion of said mesh into the abdominal cavity and ‘deployed configuration’ in which the patch 106 is spread via the distal portion outer frames.


Reference is now made to FIG. 1A illustrating an embodiment said DAD 100. As described, the DAD 100 comprises (i) a deployment mechanism adapted to deploy and to enable proper placement of the patch within the abdominal cavity; and, (ii) an attachment mechanism between the patch and the biological tissue.


The attachment mechanism disclosed in the present application is a glue dispensing system (GDS) which attaches said patch to a biological tissue within a body cavity via a biological glue.


The DAD comprises two main portions: distal portion 101, and a proximal portion 102. The two portions are interconnected via a tube 103.


The distal portion 101 is adapted to be reversibly inserted into a body cavity (namely the abdominal cavity) during a surgery (namely, minimal invasive surgeries) via a trocar.


The distal portion enables the deployment and the properly orientation and placement of a prosthetic hernia repair patch 106 with respect to the patient's tissue 120 surface.


The distal portion comprises:

    • (a) at least two frame arms (FA) 104;
    • (b) at least 4 deployment arms (DA) 108; and,
    • (c) a central shaft 105 (which interconnects the distal portion and the proximal portion of to DAD 100) adapted to reciprocally move within tube 103.


It should be emphasized that the main role of the central shaft is to provide the DAD in the deployed configuration with sufficiently stiffness and back support (to the deployed patch) so as to provide a rigid enough device that allows proper mesh rolling and insertion, especially when dealing with large and thick patches.


The DAs 108 can be divided into two groups: 2 DAs (108a and 108b) which are proximally located with respect to tube 103 and 2 DAs (108d and 108c) which are distally located with respect to tube 103.


The proximal DAs (108a and 108b) are connected to the tube's 103 distal end and to the FA 104. The distal DAs (108c and 108d) are connected to the central shaft 105 and to the FAs 104. All said connections are hinge connections.


Each of said DAs (108) is characterized by a plurality of configurations. One of said configuration is a parallel configuration in which the DA is substantially parallel to said central shaft (105).


Another one of said configuration is an angled configuration in which said DA are located at an angle A with respect to said central shaft (105). Angle A can be at a range of about 0 degrees to about 180 degrees.


In the ‘closed configuration’ the deployment arms (DA) 108 are in the parallel configuration and in the ‘deployed configuration’ the deployment arms (DA) 108 are in the substantially perpendicular configuration (i.e., Angle A is about 90 degrees).


Reference is now made to FIGS. 1B-1C which illustrate the DAD 100 in its close configuration and in its deployed configuration. The close configuration is described in FIG. 1B while the deployed configuration is describe in FIG. 1C.


In the parallel configuration of said DAs 108 the DAD 100 is in its close configuration and in the angled configuration of said DAs 108, the DAD 100 is in its deployed configuration.


It should be emphasized that the patch deployment mechanism disclosed in the present application enables a patch deployment which is lateral deployment (i.e., the patch is deployed substantially parallel to the main longitudinal axis of the DAD 100 and hence of the tube 103 or the central shaft 105).


Such a deployment has several advantages over a perpendicular patch deployment mechanism (i.e., the plane of the deployed patch is perpendicular to the main longitudinal axis of the device or the trocar), among which the following:


(1) Since in most cases the patch is inserted laterally with respect to the hernia defect, a perpendicular deployment will require a great amount of articulation in order to bring the patch into proper alignment with respect to the hernia defect. Such amount of articulation performance will be extreme difficult to perform at the confined abdominal space;


(2) The fact that the patch is deployed substantially perpendicularly to the trocar limits the size of the patch that can be used. In a perpendicular deployment (as in lateral deployment), the entire patch's size has to be introduced into the abdominal cavity, since the abdominal cavity has no sufficient depth to allow such spreading/deployment of large patches (i.e. larger than about 15 cm at one of their edges), the size of the patches that could be used will be limited.


The patch/mesh/net 106 is reversibly attached to the FAs 104 by at least one reversible connection clip (CC) 107, adapted to hold said patch 106 attached to DAD 100 during adjustment of the patch (e.g., rolling and insertion into the abdominal cavity) and during the deployment of said patch.


Since the CCs 107 enable a reversible attachment between the patch and the DAD, the CCs 107 additionally allow detachment between said patch 106 and the DAD 100 once the patch 106 is substantially secured to the tissue 120.


Said CCs 107 can be an integral part of the FAs 104 or a separate part which are combined and secured to the DAD 100 during the product assembly.


According to one embodiment, the distal portion 101 can be rotated laterally (i.e. left and right with regards to tube 103) and vertically (i.e. up and down with respect to the tube 103), such that the patch could be properly aligned and oriented within the abdominal cavity with regards to the hernia. Said lateral articulation is controlled by at least one articulation wire 110.


The proximal portion 102 comprises a deployment lever 113 which provides the surgeon with the ability to control the deployment process; and an articulation lever 114 which provides the surgeon with the ability to control lateral articulation angle of the distal portion.


Reference is now made to FIG. 1D which provides a closer view of the distal portion of the DAD 100 in the deployed configuration.


The figure also illustrates another embodiment of the present invention, in which extension arms 109 are provided. Such arms 109 are merely extensions of FAs 104 and are adapted to provide better support for patch 106.


Reference is now made to FIGS. 2A and 2B illustrating the glue dispensing system (GDS). In general, the glue dispensing system (GDS) 115, as provided by the present invention, comprises a glue reservoir (GR) 116, which contains glue 119, and at least one glue dispensing tube (GDT) 117.


Each GDT 117 comprises at least one nozzle 118 from which glue 117 exits.


Once the patch 106 is deployed within the patient's abdominal cavity (but before it comes into contact with the tissue) said glue 119 is forced out from the glue reservoir (GR) 116 via said GDT 117 and said nozzle 118.


According to one embodiment of the present invention, the glue is homogeneously spread on the patch prior to any contact between the patch and the tissue. Said glue is spread on the tissue prior to any contact so as to enable said glue to better disperses on the patch and to provide homogeneously spreading.


It should be emphasized that each DAD 100 can comprise one or more GDS 115.


Once the glue comes out of nozzle 118, it is spread on top of the patch 106. Once the glue 119 covers at least a portion of the top surface of the patch 106, the surgeon can place the patch at its desired location on the patient's tissue, via said DAD 100.


According to a preferred embodiment of the present invention, the glue is spread near the perimeter of the patch.


Once suitable adhesion between patch 106 and the tissue 120 is obtained, DAD 100 is disconnected from the patch 106, along with said GDS 115, and extracted out of the patient's body.


The present invention discloses several embodiments of said GDS 115.


Reference is made again to FIGS. 2A1, 2A2-2B which describe one embodiment of said GDS 115. According to this embodiment said glue reservoir (GR) 116 is located as close as possible to the distal end of the DAD 100.


Placing the GR 116 as close as possible to the distal end of the DAD minimized the total length of the GDT 117 needed, such that the path length in which the glue ‘travels’ prior to reaching the patch is minimized. Therefore, the amount of wasted glue is minimized.


According to this embodiment, the GDT 117 encircles the distal end of said DAD 100 (i.e., the frame arms FA 104 and the deployment arms 108) and forms a loop around the same such that, when the patch is deployed, the GDT is in contact with substantially the entire perimeter (i.e., the outer surface or margins) of said patch so as to dispense the glue on said perimeter (i.e., outer surface or margins) of the patch. In such a way the contact area is increased and hence a better attachment is provided.


Such a feature is highly important since it provides better/stronger attachment between the tissue and the patch. Said better attachment is enabled since the glue is dispersed over a surface (preferably over the entire the outer surface or margins) of the patch which provides a plurality of contacts points.


This is in contrast to an attachment mechanism which provides attachment in a few preselected contact points; such an attachment is likely to provide a weak attachment.


The two ends (117a, 117b, see FIG. 2A2) of the loop formed from said GDT 117 are connected to the GR 116 such that glue can be extracted from the two end of said GDT 117 so as to better optimize the glue dispersing onto the patch.


GDT 117 is attached to the frame arms FA 104 and the deployment arms 108 of the DAD 100 such that once the distal portion 101 is in its ‘deployed configuration’, said GDT 117 is located substantially along the edges of said patch 106.


Reference is now made to FIG. 2A2 which illustrates the distal portion of the DAD in which the GDT 117 is coupled to the FA 104 and the deployment arms 108 and is located substantially on the perimeter of the patch 106 (the patch 106 is not shown).


According to one embodiment, the GDT 117 is characterized by an oval cross section in order to reduce the overall cross section area of the distal portion 101 while it is in its ‘closed configuration’.


According to another embodiment, the GDT 117 comprises numerous nozzles 118, each of which is facing the patch 106.


According to this embodiment patch 106 used is porous, therefore, once glue 119 flows out of nozzles 118 to the bottom side of patch 106 (i.e. the side facing the viscera) it passes through the pores of the patch 106 to its top side (i.e. the side facing the fascia), thus forming an adhesive layer along patch's 106 edges (see FIG. 2B).


Once the glue is applied, the surgeon can press patch 106 to the tissue 120 in its proper location with respect to the tissue 120.


Once the glue is substantially cured, the DAD 100, together with the GDS 116 can be detached from patch 106 and extracted out of the patient's body.


Reference is now being made to FIGS. 3A-3C illustrating another embodiment of DAD 100 and GDS 115 in which said glue 119 is applied directly to the top side of said patch 106.


Such direct application is required when non porous patches are utilized; hence the glue can not pass through the patch.


According to this embodiment, the GDT 117 is pre-connected to patch 106 such that each of the nozzles 118 are pre inserted through said patch and emerge out of the top side of patch 106.


In such a way the top end of each of the nozzles 118 protrude out of the top section of the patch 106 (see FIGS. 3A, 3B and 3C).


In a preferred embodiment, an attachment between GDT 117 and patch 106 can be obtained via the special configurations of the nozzles 118 (e.g., an expanding top portion which ‘holds’ the GDT 117 to the patch 106).


The GDT 117 can be rolled and inserted together with patch 106 (see FIG. 3A) while the GDT 117 is attached to DAD 100 in at least one section, preferably only at the FAs 104.


Reference is now being made to FIGS. 3C-3D which illustrate a cross section view of a single nozzle 118 during the gluing process.


According to this embodiment, at the initial stage, GDT 117 and nozzles 118 contains no glue (see FIG. 3C), such that GDT 117 can collapse to its minimal cross section while it is rolled together with the patch 106.


Once the patch is inserted to the abdominal cavity and deployed, glue 119 is forced out from GR 116 into GDT 117 and out of nozzle 118 on top of patch 106, forming an adhesive layer (see FIG. 3D).


Next, patch 106 is forced onto the tissue 120, via the DAD 100 (said step is needed in order to obtain said adhesion between patch 106 and tissue 120).


Once glue 119 is cured, the distal portion is pulled away from tissue 120. Said pulling detaches the distal portion 101 from the patch 106. Since the GDT 117 is connected to the distal portion (e.g., to the FAs 104 or to the DAs 108) it is also pulled away from the patch (see FIG. 3E).


Reference is now being made to FIGS. 3F-3G which describe an alternative embodiment of said nozzle 118.


According to one embodiment, described in FIG. 3F, nozzle 118 comprises at least two openings facing two opposite directions.


Such configuration increases the patch's area which comes into contact with the glue, once the glue 119 is forced out of the nozzle 118. Furthermore, such an embodiment can provide said attachment between the patch and the GDT 117.


According to another embodiment described in FIG. 3G, two nozzles 118 emerge out of GDT 117 in a tilted direction. The nozzles are inserted to patch in two separate points, therefore providing an improve glue dispensing coverage; in addition this configuration is preferable since this configuration also holds GDT 117 attached to patch 106.


Reference is now being made to FIGS. 4A-4E which describes an embodiment of the GR 116. According to this embodiment said GR 116 is characterized by an elongated cylinder coupled to the tube 103 at its distal end (see FIG. 4A).


Said cylinder comprises at least one hollow channel 301 along its longitudinal axis. Said channel 301 allows the central shaft 105 and the articulation wire 110 to pass through the GR 116 to the distal portion 101 of the DAD.


It should be mentioned that for the purpose of illustration only, tube 103 was removed from FIG. 4A.


A piston 302 is located inside the GR 116 and partially encircles the channel 301. The piston 302 is adapted to reciprocal move along the GR's longitudinal axis.


GDT 117 is connected to the distal portion of said GR 116.


Piston 302 is adapted to reciprocally move within the internal cavity of said GR 116 along the longitudinal axis of the same.


Said piston 302 divides the internal cavity of said GR 116 into two separate cavities: a glue cavity 303 and an empty back cavity 304 (see FIG. 4B).


Said glue 119 is initially located inside the glue cavity 303 which capture the entire GR 116 internal space (i.e., the empty back cavity 304 is close to nothing). As piston 302 moves towards the distal portion of the DAD the empty cavity 304 enlarges while the glue cavity decreases (since the glue is extracted from the GR 116 and into the GDT 117).


A membrane 314 is located at the distal end of the glue cavity 303, and prevents the glue from entering said GDT 117 before glue activation (i.e., the membrane 314 prevent the glue from exiting the GR 116 during e.g., storage and device insertion).


At least one aperture 305 is located at the distal end of the GR 116 through which said glue 119 is forced into the GDT 117. While the glue 119 is compressed by piston 302, membrane 314 bursts, allowing the glue to flow to GDT 117 through aperture 305.


According to this embodiment, said forcing (i.e., application of force on the glue) is performed by pushing piston 302 toward the distal end of GR 116 (see FIG. 4C).


The piston can be pneumatically driven forward by filling the back cavity 304 with a compressed gas coming from a compressed gas canister located at the proximal portion 102.


The gas passes through tube 306. Alternatively, said piston 302 can be mechanically pushed forward by a shaft 307 coming from the proximal portion 102 (see FIGS. 4D-4E).


Reference is now being made to FIGS. 4F-4G which describes another embodiment of the GR 116 which utilizes multi-component glue (e.g. fibrin glue).


According to this embodiment, the internal cavity of said GR 116 is divided to several sub cavities 308, 309 by at least one partition 310. Each cavity 308, 309 is connected to a single mixing cavity 311 via holes 312, 313 located at the distal end of each cavity 308, 309. Said holes 312, 313 are initially blocked by two membranes 314 which prevents early mixing of the glue components during shipping and storage. Said membranes 314 is adapted to collapse once the two glue components are forced out by pistons 302. Said mixing cavity 311 is connected to the GDT 117 by at least one aperture 305 located at the distal portion of said GR 116. Once dispensing of the glue is required, piston 302 is pushed forward, either pneumatically, hydraulically or mechanically, hence forcing the glue components from the cavities 308, 309, into the mixing cavity 311. In the mixing cavity 311 the two glue components are mixed, and flow into the GDT 117 through aperture/s 305 (see FIG. 4G).


It should be pointed out that using two components glue (such as fibrin sealant), the GR 116 will accommodate the two compounds in two separate and sealed compartments, such that no mixing of the two components during storage occurs.


Reference is now being made to FIGS. 5A-5D which describe an embodiment of said GR 116. According to this embodiment the GR 116 is provided as a separate part from said DAD 100. Furthermore, said GR 116 can be assembled by the medical staff at the operation room prior to the insertion of the device into the abdominal cavity.


In such an embodiment, the glue can be stored separately and far away from the DAD 100. Such separate storing of the glue is needed when ever the glue 119 requires special storage condition (e.g., cryogenic cooling).


Providing a device which enables a reversible coupling between a glue reservoir and the DAD 100 is highly important and advantageous in cases which the glue require special storage condition (e.g. cryogenic cooling) prevent from the entire device being stored in a special storage facility, substantially increasing operation costs.


According to this embodiment, the GR 116 is cylindrically shaped and is characterized by a cross sectional area and diameter which are identical to the diameter of tube 103.


The GR 116, as was described above, is open at its proximal end. The GR 116 is characterized by a groove 501 along its bottom side (see FIG. 5A).


A hollow bar 502 (which is an integral part of the tube 103, see FIG. 5B) is adapted to be fitted within said groove 501.


Bar 502 is hollow so as to allow the central shaft 105 and the articulation wires 110 to pass through it to the distal portion 101.


Piston 302 is characterized by the same dimensions and shape as of the internal dimensions of cylinder. Yet more, piston 302 is adapted to reciprocally move along its longitude axis (see FIG. 5A). The movement of said piston applies pressure on the glue and presses the glue 119 out of GR 116 and into GDT 117.


Once GR 116 is coupled to tube 103, piston 302 can be pressed forward (towards the distal end of the DAD 100) by at least one rod 505 (see FIG. 5B); alternatively said pressing can be accomplished by hydraulic or pneumatic means.


The glue passes from GR 116 into GDT 117 through a glue port 503 which is located at the distal end of GR 116 (see FIG. 5C). Said port 503 is adapted to be fitted into socket 504 at tube 103 (FIGS. 5G-5J).


Socket 504 is connected to GDT 117 via a hole 509 allowing glue 119 to flow from GR 116 to GDT 117 once GR 116 is completely coupled to tube 103.


Reference is now being made to FIGS. 5C-5J which illustrate the process of coupling the GR 116 to the DAD 100, namely to tube 103.



FIGS. 5C-5F illustrate the process in a 3D isometric view and FIGS. 5G-5J respectively illustrate the same process in a lateral cross sectional view.



FIGS. 5C-5J illustrate the initial stage of said reversible coupling.


A hook 506 is located at the proximal end of said GR 116. Said hook 506 is adapted to be inserted into socket 507 at tube 103 during said reversible coupling of said GR 116 to tube 103.


According to this embodiment, in order for the GR 116 to be coupled to the tube 103, said glue port 503 is spring-like coupled to said GR 116 such that during the coupling it can retract into the GR 116 (see FIGS. 5G-5J).


A spring 508 keeps said port 503 extruding out of GR 116 when said GR is not coupled to the tube 103.


At the first stage of insertion (FIGS. 5D—in 3D view and FIG. 5H in a 2D view) said hook 506 is inserted into socket 507. At the next stage (FIGS. 5E—in 3D view and 5I in a 2D view) the distal portion of said GR 116 is lowered toward tube 103 while hook 506 acts as a hinge between GR 116 and tube 103.


When port 503 is pressed against the edges of tube 103, it retreated inwardly as a result of the downward pushing forces. At the final stage (FIGS. 5F—in 3D view and 5J in a 2D view), port 503 is facing said socket 504, therefore port 503 is pushed forward by spring 508 into socket 504, allowing glue 119 to flow between GR 116 and GDT 117 while preventing any unwanted glue leakage.


Port 503, together with hook 506, are also holding GR 116 attached to tube 103.


Once the GR is secured to tube 103, the glue can flow from the GR 116 to the GDT 117 via a channel 509.


The following steps describe the entire procedure in a minimal invasive surgery whilst using the above described system:

    • 1. The patch 106 is reversibly connected to the distal portion 101 of said DAD.
    • 2. The GR 116 in assembled with the DAD (i.e., reversibly coupled to tube 103).
    • 3. The DAD is transformed into its ‘closed configuration’ and patch 106 is folded/rolled in order to allow its insertion into the abdominal cavity.
    • 4. The folded patch 106 together with the GDS 115 is inserted to a body cavity through a standard minimal invasive port, or through any other incision.
    • 5. The patch 106 together with the attached glue dispensing tube 117 is unfolded by pulling the deployment leaver 113 (thus, transforming the distal portion 101 into its ‘deployed configuration).
    • 6. The glue is forced out form the GR 116, by pushing the piston 302.
    • 7. The glue is dispensed through the nozzles, and spread on top of the patch 106 (the nozzles are either pre inserted into the patch or not—i.e. when a porous patch is used).
    • 8. The patch 106 is brought to be in contact with the tissue.
    • 9. The patch is held in place until the glue is stabilizes (i.e., at least partially cured), and a sufficient attachment is achieved.
    • 10. The patch is disconnected from the deployment system.
    • 11. The deployment system and thus the glue dispensing tube GDT 117 are pulled away.
    • 12. The deployment system is closed (i.e., transforms from its deployed configuration to its ‘closed configuration’) and removed from the body cavity together with the GDT 117.


In the foregoing description, embodiments of the invention, including preferred embodiments, have been presented for the purpose of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments were chosen and described to provide the best illustration of the principals of the invention and its practical application, and to enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth they are fairly, legally, and equitably entitled.


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A system for closing an aperture in a biological tissue, the system comprising: a handle;an elongate shaft connected to the handle;a deployment scaffold connected to the shaft, the deployment scaffold including: first and second frame arms, wherein the deployment scaffold is configured to releasably retain a surgical implant; andproximal deployment arms and distal deployment arms hingedly connected to the first and second frame arms, wherein the deployment scaffold is configured to move from a retained position to a deployed position; andat least one adhesive dispensing system, the at least one adhesive dispensing system having at least one dispensing tube external to the deployment scaffold, the at least one dispensing tube extending along an outer surface of the first and second frame arms.
  • 2. The system according to claim 1, wherein the adhesive dispensing system further comprises: at least one reservoir for holding adhesive;the at least one dispensing tube connected to the at least one reservoir; andat least one nozzle connected to the at least one dispensing tube.
  • 3. The system according to claim 2, wherein the at least one reservoir is removable from the adhesive dispensing system.
  • 4. The system according to claim 2, wherein the at least one reservoir comprises a breakable membrane.
  • 5. The system according to claim 2, wherein the at least one nozzle is integrated with the deployment scaffold and the at least one nozzle is configured to dispense adhesive from a lower surface of the surgical implant releasably retained by the deployment scaffold.
  • 6. The system according to claim 2, further including: at least two reservoirs, wherein each reservoir holds a different type of adhesive; andat least two dispensing tubes, each dispensing tube fluidly coupled to one of the reservoirs.
  • 7. The system according to claim 2, further including: at least two reservoirs, wherein each reservoir holds a different component of a multi-component adhesive; andat least two dispensing tubes, each dispensing tube fluidly coupled to one of the reservoirs.
  • 8. The system according to claim 2, wherein the nozzles are positioned such that they dispense adhesive in a common direction.
  • 9. The system according to claim 1, wherein the dispensing system is configured to dispense adhesive onto the surgical implant while it is releasably retained by the deployment scaffold.
  • 10. The system according to claim 1, wherein the system further comprises a biocompatible adhesive held within the adhesive dispensing system.
  • 11. The system according to claim 10, wherein the adhesive is glue.
  • 12. The system according to claim 11, wherein the glue is fibrin sealant or cyanoacrylate.
  • 13. The system according to claim 1, wherein the deployment scaffold comprises a plurality of arms that are configured to move from a retained position to a plurality of deployed positions, wherein the arms hold the surgical implant.
  • 14. The system according to claim 1, wherein the deployment scaffold is configured to allow for deployment of the surgical implant and retraction of the surgical implant while the surgical implant is within a patient's body.
  • 15. The system according to claim 1, wherein the deployment scaffold is configured to allow for a plurality of deployment positions.
  • 16. The system according to claim 1, wherein the deployment scaffold comprises an articulating member that allows for adjustment of the position and the orientation of the surgical implant relative to an aperture in tissue.
  • 17. The system according to claim 1, further comprising a surgical implant.
  • 18. The system according to claim 17, wherein the surgical implant is a patch.
  • 19. The system according to claim 18, wherein the patch is porous.
  • 20. The system according to claim 18, wherein the patch is comprised of surgical mesh.
  • 21. The system according to claim 18, wherein the patch is non-porous.
  • 22. The system according to claim 1, wherein the system is adapted for closing an aperture in an abdominal wall.
  • 23. The system according to claim 1, wherein the elongate shaft is flexible.
  • 24. The system according to claim 1, wherein the elongate shaft is rigid.
  • 25. The system according to claim 1, wherein the first and second frame arms include connection clips connected to the first and second frame arms and configured to releasably hold the surgical implant.
  • 26. The system according to claim 25, wherein the deployment scaffold further includes a central frame piece that is slidably connected to the elongate shaft and hingedly connected to the distal deployment arms, wherein the central frame piece slides from a distal position wherein the deployment scaffold is retracted to a proximal position wherein the deployment scaffold is deployed.
  • 27. The system according to claim 1, wherein the system is configured such that the adhesive dispensing system dispenses adhesive onto the biological tissue prior to the surgical implant being attached to the biological tissue.
RELATED APPLICATIONS

The present application is a continuation-in-part of PCT international patent application number PCT/IL2009/000985, filed Oct. 20, 2009, which claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/106,616, filed Oct. 20, 2008, the content of each of which is incorporated by reference herein in its entirety.

US Referenced Citations (489)
Number Name Date Kind
4347847 Usher Sep 1982 A
4359049 Redl et al. Nov 1982 A
4400833 Kurland Aug 1983 A
4452245 Usher Jun 1984 A
4485816 Krumme Dec 1984 A
4585458 Kurland Apr 1986 A
4633873 Dumican et al. Jan 1987 A
4838884 Dumican et al. Jun 1989 A
4854316 Davis Aug 1989 A
5019096 Fox, Jr. et al. May 1991 A
5116357 Eberbach May 1992 A
5122155 Eberbach Jun 1992 A
5125553 Oddsen et al. Jun 1992 A
5141515 Eberbach Aug 1992 A
5147374 Fernandez Sep 1992 A
5176692 Wilk et al. Jan 1993 A
5203864 Phillips Apr 1993 A
5219077 Transue Jun 1993 A
5249682 Transue Oct 1993 A
5254133 Seid Oct 1993 A
5258000 Gianturco Nov 1993 A
5263969 Phillips Nov 1993 A
5289963 McGarry et al. Mar 1994 A
5290217 Campos Mar 1994 A
5292328 Hain et al. Mar 1994 A
5304187 Green et al. Apr 1994 A
5333624 Tovey Aug 1994 A
5354292 Braeuer et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5356432 Rutkow et al. Oct 1994 A
5364002 Green et al. Nov 1994 A
5364004 Davidson Nov 1994 A
5366460 Eberbach Nov 1994 A
5368602 de la Torre Nov 1994 A
5370650 Tovey et al. Dec 1994 A
5376097 Phillips Dec 1994 A
5383477 DeMatteis Jan 1995 A
5392978 Velez et al. Feb 1995 A
5397331 Himpens et al. Mar 1995 A
5405360 Tovey Apr 1995 A
5425357 Moll et al. Jun 1995 A
5425740 Hutchinson Jun 1995 A
5433996 Kranzler et al. Jul 1995 A
5464403 Kieturakis et al. Nov 1995 A
5497933 Defonzo et al. Mar 1996 A
5531759 Kensey et al. Jul 1996 A
5560224 Tessler Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
5577654 Bishop Nov 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5601224 Bishop et al. Feb 1997 A
5614284 Kranzler et al. Mar 1997 A
5618290 Toy et al. Apr 1997 A
5626587 Bishop et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5634931 Kugel Jun 1997 A
5662662 Bishop et al. Sep 1997 A
5695525 Mulhauser et al. Dec 1997 A
5716409 Debbas Feb 1998 A
5725577 Saxon Mar 1998 A
5728119 Smith et al. Mar 1998 A
5749895 Sawyer et al. May 1998 A
5749968 Melanson et al. May 1998 A
5766246 Mulhauser et al. Jun 1998 A
5769864 Kugel Jun 1998 A
5779728 Lunsford et al. Jul 1998 A
5810851 Yoon Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817109 McGarry et al. Oct 1998 A
5824082 Brown Oct 1998 A
5836961 Kieturakis et al. Nov 1998 A
5854383 Erneta et al. Dec 1998 A
5863531 Naughton et al. Jan 1999 A
5865728 Moll et al. Feb 1999 A
5911726 Belknap Jun 1999 A
5916225 Kugel Jun 1999 A
5925058 Smith et al. Jul 1999 A
5951997 Bezwada et al. Sep 1999 A
5954767 Pajotin et al. Sep 1999 A
5972007 Sheffield et al. Oct 1999 A
5972008 Kalinski et al. Oct 1999 A
5990378 Ellis Nov 1999 A
6004333 Sheffield et al. Dec 1999 A
6042592 Schmitt Mar 2000 A
6066776 Goodwin et al. May 2000 A
6066777 Benchetrit May 2000 A
6090116 D'Aversa et al. Jul 2000 A
6113609 Adams Sep 2000 A
6113611 Allen et al. Sep 2000 A
6113624 Bezwada et al. Sep 2000 A
6166286 Trabucco Dec 2000 A
6171318 Kugel et al. Jan 2001 B1
6174320 Kugel et al. Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6197036 Tripp et al. Mar 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6224616 Kugel May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6258113 Adams et al. Jul 2001 B1
6258124 Darois et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6312442 Kieturakis et al. Nov 2001 B1
6319264 Tormala et al. Nov 2001 B1
6368541 Pajotin et al. Apr 2002 B1
6375662 Schmitt Apr 2002 B1
6383201 Dong May 2002 B1
6391060 Ory et al. May 2002 B1
6394982 Ehrenfels May 2002 B1
6408656 Ory et al. Jun 2002 B1
6416486 Wampler Jul 2002 B1
6416506 Tilton et al. Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6425924 Rousseau Jul 2002 B1
6436030 Rehil Aug 2002 B2
6447524 Knodel et al. Sep 2002 B1
6478803 Kapec et al. Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6497650 Nicolo Dec 2002 B1
6517584 Lecalve Feb 2003 B1
6527785 Sancoff et al. Mar 2003 B2
6547467 Quintero Apr 2003 B2
6551241 Schultz Apr 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6558400 Deem et al. May 2003 B2
6565590 Kieturakis et al. May 2003 B2
6575988 Rousseau Jun 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6610006 Amid et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6616685 Rousseau Sep 2003 B2
6638208 Natarajan et al. Oct 2003 B1
6638284 Rousseau et al. Oct 2003 B1
6638292 Adams Oct 2003 B2
6638297 Huitema Oct 2003 B1
6652595 Nicolo Nov 2003 B1
6666817 Li Dec 2003 B2
6669706 Schmitt et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6676643 Brushey Jan 2004 B2
6689047 Gellman Feb 2004 B2
6694192 Policker et al. Feb 2004 B2
6695856 Kieturakis et al. Feb 2004 B2
6709442 Miller et al. Mar 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6755867 Rousseau Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6783554 Amara et al. Aug 2004 B2
6790213 Cherok et al. Sep 2004 B2
6800081 Parodi Oct 2004 B2
6800082 Rousseau Oct 2004 B2
6805669 Swanbom Oct 2004 B2
6833408 Sehl et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6893452 Jacobs May 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6913622 Gjunter Jul 2005 B2
6936052 Gellman et al. Aug 2005 B2
6945980 Nguyen et al. Sep 2005 B2
6953428 Gellman et al. Oct 2005 B2
6960217 Bolduc Nov 2005 B2
6960233 Berg et al. Nov 2005 B1
6966916 Kumar Nov 2005 B2
6974586 Greenhalgh et al. Dec 2005 B2
6991597 Gellman et al. Jan 2006 B2
7001405 Kieturakis et al. Feb 2006 B2
7011688 Gryska et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7049345 Holmes-Farley May 2006 B2
7077850 Kortenbach Jul 2006 B2
7083629 Weller et al. Aug 2006 B2
7083630 DeVries et al. Aug 2006 B2
7094261 Zotti et al. Aug 2006 B2
7101366 Trout, III et al. Sep 2006 B2
7101381 Ford et al. Sep 2006 B2
7119062 Alvis et al. Oct 2006 B1
7148315 Erneta et al. Dec 2006 B2
7198046 Argenta et al. Apr 2007 B1
7214236 Kieturakis et al. May 2007 B2
7216651 Argenta et al. May 2007 B2
7220282 Kuslich May 2007 B2
7229452 Kayan Jun 2007 B2
7235043 Gellman et al. Jun 2007 B2
7235295 Laurencin et al. Jun 2007 B2
7255675 Gertner et al. Aug 2007 B2
7320325 Duchon et al. Jan 2008 B2
7331199 Ory et al. Feb 2008 B2
7381225 Croce et al. Jun 2008 B2
7404819 Darios et al. Jul 2008 B1
7406969 Duchon et al. Aug 2008 B2
7407480 Staskin et al. Aug 2008 B2
7491232 Bolduc et al. Feb 2009 B2
7500945 Cox et al. Mar 2009 B2
7500993 De La Torre et al. Mar 2009 B2
7524333 Lambrecht et al. Apr 2009 B2
7544213 Adams Jun 2009 B2
7553329 Lambrecht et al. Jun 2009 B2
7553330 Lambrecht et al. Jun 2009 B2
RE40833 Wintermantel et al. Jul 2009 E
7566337 Sogaard-Andersen et al. Jul 2009 B2
7594921 Browning Sep 2009 B2
7601118 Smith et al. Oct 2009 B2
7601172 Segal et al. Oct 2009 B2
7678133 Modesitt Mar 2010 B2
7946453 Voegele et al. May 2011 B2
20010016754 Adams et al. Aug 2001 A1
20010018592 Schaller et al. Aug 2001 A1
20010018593 Nguyen et al. Aug 2001 A1
20010044637 Jacobs et al. Nov 2001 A1
20010049538 Trabucco Dec 2001 A1
20010049539 Rehil Dec 2001 A1
20010053919 Kieturakis et al. Dec 2001 A1
20010056275 Brushey Dec 2001 A1
20020010457 Duchon et al. Jan 2002 A1
20020010480 Sancoff et al. Jan 2002 A1
20020010490 Schaller et al. Jan 2002 A1
20020010494 Policker et al. Jan 2002 A1
20020029048 Miller Mar 2002 A1
20020042658 Tyagi Apr 2002 A1
20020049503 Milbocker Apr 2002 A1
20020049504 Barault Apr 2002 A1
20020052612 Schmitt et al. May 2002 A1
20020058967 Jervis May 2002 A1
20020065524 Miller et al. May 2002 A1
20020066360 Greenhalgh et al. Jun 2002 A1
20020077652 Kieturakis et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020087170 Kuhns et al. Jul 2002 A1
20020091405 Kieturakis et al. Jul 2002 A1
20020103434 Swanbom Aug 2002 A1
20020103494 Pacey Aug 2002 A1
20020107539 Kieturakis et al. Aug 2002 A1
20020116070 Amara et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020147457 Rousseau Oct 2002 A1
20020165561 Ainsworth et al. Nov 2002 A1
20020169452 Tormala et al. Nov 2002 A1
20020173803 Ainsworth et al. Nov 2002 A1
20020173804 Rousseau Nov 2002 A1
20020183765 Adams Dec 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020188317 Rousseau Dec 2002 A1
20030004581 Rousseau Jan 2003 A1
20030039626 Holmes-Farley Feb 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030073976 Brushey Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030105473 Miller Jun 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030119985 Sehl et al. Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030120299 Kieturakis et al. Jun 2003 A1
20030166628 Doyle et al. Sep 2003 A1
20030171761 Sancoff et al. Sep 2003 A1
20030171812 Grunberg et al. Sep 2003 A1
20030195531 Gardiner et al. Oct 2003 A1
20030208211 Kortenbach Nov 2003 A1
20030212460 Darois et al. Nov 2003 A1
20030212461 Vadurro et al. Nov 2003 A1
20030212462 Gryska et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20030225355 Butler Dec 2003 A1
20030225420 Wardle Dec 2003 A1
20040002679 Trout et al. Jan 2004 A1
20040010317 Lambrecht et al. Jan 2004 A1
20040019360 Farnsworth et al. Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040024465 Lambrecht et al. Feb 2004 A1
20040030217 Yeung et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040044412 Lambrecht et al. Mar 2004 A1
20040049227 Jervis Mar 2004 A1
20040049282 Gjunter Mar 2004 A1
20040054376 Ory et al. Mar 2004 A1
20040059356 Gingras Mar 2004 A1
20040064131 Brushey Apr 2004 A1
20040073237 Leinsing Apr 2004 A1
20040073257 Spitz Apr 2004 A1
20040082755 Erneta et al. Apr 2004 A1
20040087970 Chu et al. May 2004 A1
20040087979 Field et al. May 2004 A1
20040092937 Criscuolo et al. May 2004 A1
20040092969 Kumar May 2004 A1
20040092970 Xavier May 2004 A1
20040097924 Lambrecht et al. May 2004 A1
20040097986 Adams May 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040133214 Kayan Jul 2004 A1
20040144395 Evans et al. Jul 2004 A1
20040152977 Duchon et al. Aug 2004 A1
20040152978 Duchon et al. Aug 2004 A1
20040172048 Browning Sep 2004 A1
20040181288 Darois et al. Sep 2004 A1
20040193043 Duchon et al. Sep 2004 A1
20040225247 Pugsley et al. Nov 2004 A1
20040225373 Pugsley et al. Nov 2004 A1
20040230208 Shayani Nov 2004 A1
20040249412 Snow et al. Dec 2004 A1
20040254592 DiCarlo et al. Dec 2004 A1
20050010239 Chefitz Jan 2005 A1
20050010306 Priewe et al. Jan 2005 A1
20050015102 Chefitz Jan 2005 A1
20050019436 Burch et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050033318 Miller et al. Feb 2005 A1
20050038452 Chu Feb 2005 A1
20050054771 Sehl et al. Mar 2005 A1
20050055097 Grunberg et al. Mar 2005 A1
20050060038 Lambrecht et al. Mar 2005 A1
20050065072 Keeler et al. Mar 2005 A1
20050075667 Schaller et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050113858 Deutsch May 2005 A1
20050118239 Sabesan Jun 2005 A1
20050129733 Milbocker et al. Jun 2005 A1
20050142315 DeSimone et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050149072 DeVries et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050154361 Sabesan Jul 2005 A1
20050159777 Spitz Jul 2005 A1
20050165425 Croce et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050169959 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050192600 Nicolo et al. Sep 2005 A1
20050202067 Lendlein et al. Sep 2005 A1
20050222591 Gingras et al. Oct 2005 A1
20050228408 Fricke et al. Oct 2005 A1
20050234557 Lambrecht et al. Oct 2005 A1
20050240269 Lambrecht et al. Oct 2005 A1
20050245787 Cox et al. Nov 2005 A1
20050249770 Hunter Nov 2005 A1
20050267325 Bouchier et al. Dec 2005 A1
20050271794 DeSimone et al. Dec 2005 A1
20050273146 DeSimone et al. Dec 2005 A1
20050283189 Rosenblatt Dec 2005 A1
20050283190 Huitema et al. Dec 2005 A1
20050283246 Cauthen et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20050288691 Leiboff Dec 2005 A1
20050288775 Dong Dec 2005 A1
20060009802 Modesitt Jan 2006 A1
20060015142 Malazgirt Jan 2006 A1
20060015143 Alvarado Jan 2006 A1
20060024238 Barth et al. Feb 2006 A1
20060025649 Smith et al. Feb 2006 A1
20060039896 Kleinsek et al. Feb 2006 A1
20060047180 Hegde et al. Mar 2006 A1
20060052816 Bates et al. Mar 2006 A1
20060064175 Pelissier et al. Mar 2006 A1
20060079558 Aberg et al. Apr 2006 A1
20060079559 Aberg et al. Apr 2006 A1
20060083710 Joerger et al. Apr 2006 A1
20060105026 Fortune et al. May 2006 A1
20060116696 Odermatt et al. Jun 2006 A1
20060122637 Barker Jun 2006 A1
20060127353 Holmes-Farley Jun 2006 A1
20060129152 Shipp Jun 2006 A1
20060129154 Shipp Jun 2006 A1
20060142787 Weller et al. Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060149316 DeVries et al. Jul 2006 A1
20060155165 Vanden Hoek et al. Jul 2006 A1
20060155379 Heneveld et al. Jul 2006 A1
20060177489 Massouda et al. Aug 2006 A1
20060189918 Barker Aug 2006 A1
20060200246 Lambrecht et al. Sep 2006 A1
20060206178 Kim Sep 2006 A1
20060217812 Lambrecht et al. Sep 2006 A1
20060228391 Seyedin et al. Oct 2006 A1
20060233852 Milbocker Oct 2006 A1
20060240063 Hunter et al. Oct 2006 A9
20060253203 Alvarado Nov 2006 A1
20060264698 Kondonis et al. Nov 2006 A1
20060282103 Fricke et al. Dec 2006 A1
20060282105 Ford et al. Dec 2006 A1
20060287729 Segal et al. Dec 2006 A1
20070016300 Kuslich Jan 2007 A1
20070021756 Kortenbach Jan 2007 A1
20070027358 Gertner et al. Feb 2007 A1
20070032881 Browning Feb 2007 A1
20070036876 Burch et al. Feb 2007 A1
20070038220 Shipp Feb 2007 A1
20070038310 Guetty Feb 2007 A1
20070100355 Bonde et al. May 2007 A1
20070110786 Tenney et al. May 2007 A1
20070111937 Pickar et al. May 2007 A1
20070118133 Lambrecht et al. May 2007 A1
20070118158 Deem et al. May 2007 A1
20070118159 Deem et al. May 2007 A1
20070122425 Keeler et al. May 2007 A1
20070135929 Williams et al. Jun 2007 A1
20070156245 Cauthen et al. Jul 2007 A1
20070162135 Segal et al. Jul 2007 A1
20070167963 Deem et al. Jul 2007 A1
20070173864 Chu Jul 2007 A1
20070173888 Gertner et al. Jul 2007 A1
20070179335 Gertner et al. Aug 2007 A1
20070184277 Schussler et al. Aug 2007 A1
20070185506 Jackson Aug 2007 A1
20070185541 DiUbaldi et al. Aug 2007 A1
20070198040 Buevich et al. Aug 2007 A1
20070202148 Ringeisen et al. Aug 2007 A1
20070202173 Cueto-Garcia Aug 2007 A1
20070203507 McLaughlin et al. Aug 2007 A1
20070208358 Kayan Sep 2007 A1
20070219569 Shayani Sep 2007 A1
20070225791 Molitor et al. Sep 2007 A1
20070244502 Deutsch Oct 2007 A1
20070250147 Walther et al. Oct 2007 A1
20070260179 Sholev et al. Nov 2007 A1
20070260268 Bartee et al. Nov 2007 A1
20070265710 Brown et al. Nov 2007 A1
20070270752 LaBombard Nov 2007 A1
20070280990 Stopek Dec 2007 A1
20070293717 Kaleta et al. Dec 2007 A1
20070299300 Smith et al. Dec 2007 A1
20080015501 Gertner Jan 2008 A1
20080021545 Reneker et al. Jan 2008 A1
20080033461 Koeckerling et al. Feb 2008 A1
20080035243 Breitenkamp et al. Feb 2008 A1
20080045952 Kuslich Feb 2008 A1
20080091222 Deusch et al. Apr 2008 A1
20080103351 Montpetit et al. May 2008 A1
20080113035 Hunter May 2008 A1
20080125869 Paz et al. May 2008 A1
20080131509 Hossainy et al. Jun 2008 A1
20080167667 Criscuolo et al. Jul 2008 A1
20080167668 Criscuolo et al. Jul 2008 A1
20080188874 Henderson Aug 2008 A1
20080193494 Sabesan Aug 2008 A1
20080195121 Eldar et al. Aug 2008 A1
20080200979 Dieck et al. Aug 2008 A1
20080243149 Kockerling et al. Oct 2008 A1
20080269896 Cherok et al. Oct 2008 A1
20080281433 Chang et al. Nov 2008 A1
20080287970 Amato et al. Nov 2008 A1
20080312751 Pugsley et al. Dec 2008 A1
20090004239 Ladet et al. Jan 2009 A1
20090012350 Tihon Jan 2009 A1
20090012546 N'diaye et al. Jan 2009 A1
20090030434 Paz et al. Jan 2009 A1
20090030522 Cauthen, III et al. Jan 2009 A1
20090030527 Richter Jan 2009 A1
20090036937 Cauthen, III et al. Feb 2009 A1
20090036989 Cauthen, III et al. Feb 2009 A1
20090036990 Cauthen, III et al. Feb 2009 A1
20090062823 Richter Mar 2009 A1
20090069826 Walther et al. Mar 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090105526 Piroli Torelli et al. Apr 2009 A1
20090125041 Dudai May 2009 A1
20090137864 Cox et al. May 2009 A1
20090155332 Sherry et al. Jun 2009 A1
20090157184 Cauthen, III et al. Jun 2009 A1
20090157195 Siedle Jun 2009 A1
20090182190 Dann Jul 2009 A1
20090182352 Paz et al. Jul 2009 A1
20090187258 Ip et al. Jul 2009 A1
20090192346 Rosenblatt Jul 2009 A1
20090198260 Ford et al. Aug 2009 A1
20090204130 Kantsevoy et al. Aug 2009 A1
20090204227 Derwin et al. Aug 2009 A1
20090216075 Bell et al. Aug 2009 A1
20090216104 Desimone et al. Aug 2009 A1
20090234379 Rehnke Sep 2009 A1
20090248048 Milbocker Oct 2009 A1
20090254103 Deutsch Oct 2009 A1
20090259094 Bouchier et al. Oct 2009 A1
20090281563 Newell et al. Nov 2009 A1
20090312843 Ford et al. Dec 2009 A1
20100069930 Roslin et al. Mar 2010 A1
Foreign Referenced Citations (268)
Number Date Country
2413904 Oct 2003 CA
0328421 Aug 1989 EP
0525791 Feb 1993 EP
0544485 Jun 1993 EP
0557963 Sep 1993 EP
0557964 Sep 1993 EP
0579377 Jan 1994 EP
0581036 Feb 1994 EP
0614650 Sep 1994 EP
0702934 Mar 1996 EP
0581036 Jan 1997 EP
0746258 Sep 1998 EP
0898944 Mar 1999 EP
0908482 Apr 1999 EP
1060714 Dec 2000 EP
1181899 Feb 2002 EP
1199037 Apr 2002 EP
1199038 Apr 2002 EP
1219265 Jul 2002 EP
1018980 Jan 2003 EP
1306061 May 2003 EP
1317904 Jun 2003 EP
1366717 Dec 2003 EP
1200010 Mar 2005 EP
1164967 May 2005 EP
WO2005082273 Sep 2005 EP
0828453 Nov 2005 EP
1607048 Dec 2005 EP
1404250 Feb 2006 EP
1671604 Jun 2006 EP
1274473 Jul 2006 EP
0934024 Aug 2006 EP
1503683 Aug 2006 EP
1700579 Sep 2006 EP
1704832 Sep 2006 EP
200614650 Oct 2006 EP
1079741 Nov 2006 EP
0964645 Jul 2007 EP
1163019 Oct 2007 EP
1849440 Oct 2007 EP
1867348 Dec 2007 EP
1531739 Feb 2008 EP
1406557 Nov 2008 EP
1990014 Nov 2008 EP
2002800 Dec 2008 EP
1505927 Jan 2009 EP
1372525 Mar 2009 EP
1653880 Apr 2009 EP
2050474 Apr 2009 EP
1940312 Jul 2009 EP
2789888 Aug 2000 FR
2789888 Aug 2000 FR
WO8204390 Dec 1982 WO
WO9206639 Apr 1992 WO
WO9206639 Apr 1992 WO
WO9211824 Jul 1992 WO
WO9219162 Nov 1992 WO
WO9221293 Dec 1992 WO
WO9309722 May 1993 WO
WO9317635 Sep 1993 WO
WO9417747 Aug 1994 WO
WO9419029 Sep 1994 WO
WO9427535 Dec 1994 WO
WO9427535 Dec 1994 WO
WO9530374 Nov 1995 WO
WO9531140 Nov 1995 WO
WO9603165 Feb 1996 WO
WO9606634 Mar 1996 WO
WO9609795 Apr 1996 WO
WO9722371 Jun 1997 WO
WO9732526 Sep 1997 WO
WO9735533 Oct 1997 WO
WO9803713 Jan 1998 WO
WO9811814 Mar 1998 WO
WO9814134 Apr 1998 WO
WO9905992 Feb 1999 WO
WO9916381 Apr 1999 WO
WO9951163 Oct 1999 WO
WO9960931 Dec 1999 WO
WO9962406 Dec 1999 WO
WO9963051 Dec 1999 WO
WO0007520 Feb 2000 WO
WO0016822 Mar 2000 WO
WO0056376 Sep 2000 WO
WO0057796 Oct 2000 WO
WO0057812 Oct 2000 WO
WO0061033 Oct 2000 WO
WO0067663 Nov 2000 WO
WO0071548 Nov 2000 WO
WO0071549 Nov 2000 WO
WO0108594 Feb 2001 WO
WO0126588 Apr 2001 WO
WO0154589 Aug 2001 WO
WO0168653 Sep 2001 WO
WO0170322 Sep 2001 WO
WO0180788 Nov 2001 WO
WO0185058 Nov 2001 WO
WO0185060 Nov 2001 WO
WO0189392 Nov 2001 WO
WO0217771 Mar 2002 WO
WO0217796 Mar 2002 WO
WO0217797 Mar 2002 WO
WO0219916 Mar 2002 WO
WO0219923 Mar 2002 WO
WO0222047 Mar 2002 WO
WO0224080 Mar 2002 WO
WO0226747 Apr 2002 WO
WO0230336 Apr 2002 WO
WO0234140 May 2002 WO
WO0235990 May 2002 WO
WO02058543 Aug 2002 WO
WO02078568 Oct 2002 WO
WO02080779 Oct 2002 WO
WO02080780 Oct 2002 WO
WO02091953 Nov 2002 WO
WO02087425 Nov 2002 WO
WO02091928 Nov 2002 WO
WO02091953 Nov 2002 WO
WO02096327 Dec 2002 WO
WO03002130 Jan 2003 WO
WO03032867 Apr 2003 WO
WO03059180 Jul 2003 WO
WO03059201 Jul 2003 WO
WO03059217 Jul 2003 WO
WO03077730 Sep 2003 WO
WO03082125 Oct 2003 WO
WO03084410 Oct 2003 WO
WO03088846 Oct 2003 WO
WO03090633 Nov 2003 WO
WO03092509 Nov 2003 WO
WO03094781 Nov 2003 WO
WO03094783 Nov 2003 WO
WO03094786 Nov 2003 WO
WO03094787 Nov 2003 WO
WO03096909 Nov 2003 WO
WO03097011 Nov 2003 WO
WO03099160 Dec 2003 WO
WO03103473 Dec 2003 WO
WO2004004600 Jan 2004 WO
WO2004012579 Feb 2004 WO
WO2004012627 Feb 2004 WO
WO2004019787 Mar 2004 WO
WO2004034924 Apr 2004 WO
WO2004062529 Jul 2004 WO
WO2004058286 Jul 2004 WO
WO2004060425 Jul 2004 WO
WO2004062529 Jul 2004 WO
WO2004028547 Aug 2004 WO
WO2004069866 Aug 2004 WO
WO2004080348 Sep 2004 WO
WO2004080348 Sep 2004 WO
WO2004087227 Oct 2004 WO
WO2004093737 Nov 2004 WO
WO2004098665 Nov 2004 WO
WO2004100841 Nov 2004 WO
WO2004101002 Nov 2004 WO
WO2004103166 Dec 2004 WO
WO2004103414 Dec 2004 WO
WO2005003351 Jan 2005 WO
WO2005004727 Jan 2005 WO
WO2005007209 Jan 2005 WO
WO2005014634 Feb 2005 WO
WO2005018494 Mar 2005 WO
WO2005019241 Mar 2005 WO
WO2005019315 Mar 2005 WO
WO2005035548 Apr 2005 WO
WO2005041784 May 2005 WO
WO2005044143 May 2005 WO
WO2005051172 Jun 2005 WO
WO2005055958 Jun 2005 WO
WO2005065324 Jul 2005 WO
WO2005065552 Jul 2005 WO
WO2005079335 Sep 2005 WO
WO2005099628 Oct 2005 WO
WO2005102209 Nov 2005 WO
WO2005110243 Nov 2005 WO
WO2005110273 Nov 2005 WO
WO2006002439 Jan 2006 WO
WO2006008429 Jan 2006 WO
WO2006012353 Feb 2006 WO
WO2006013337 Feb 2006 WO
WO2006015031 Feb 2006 WO
WO2006026509 Mar 2006 WO
WO2006034117 Mar 2006 WO
WO2006036936 Apr 2006 WO
WO2006037047 Apr 2006 WO
WO2006040760 Apr 2006 WO
WO2006044785 Apr 2006 WO
WO2006047645 May 2006 WO
WO2006048885 May 2006 WO
WO2006082587 Aug 2006 WO
WO2006086339 Aug 2006 WO
WO2006092159 Sep 2006 WO
WO2006092236 Sep 2006 WO
WO2006102457 Sep 2006 WO
WO2006116000 Nov 2006 WO
WO2006119034 Nov 2006 WO
WO2007004228 Jan 2007 WO
WO2007011689 Jan 2007 WO
WO2007017872 Feb 2007 WO
WO2007021620 Feb 2007 WO
WO2007021834 Feb 2007 WO
WO2007025302 Mar 2007 WO
WO2007030676 Mar 2007 WO
WO2007025293 Mar 2007 WO
WO2007025296 Mar 2007 WO
WO2007025302 Mar 2007 WO
WO2007030676 Mar 2007 WO
WO2007034145 Mar 2007 WO
WO2007055755 May 2007 WO
WO2007072469 Jun 2007 WO
WO2007081955 Jul 2007 WO
WO2007087132 Aug 2007 WO
WO2007087146 Aug 2007 WO
WO2007115110 Oct 2007 WO
WO2007129220 Nov 2007 WO
WO2007133311 Nov 2007 WO
WO2007136820 Nov 2007 WO
WO2007137211 Nov 2007 WO
WO2007143726 Dec 2007 WO
WO2007144782 Dec 2007 WO
WO2007146784 Dec 2007 WO
WO2008006097 Jan 2008 WO
WO2008016802 Feb 2008 WO
WO2008026905 Mar 2008 WO
WO2008030939 Mar 2008 WO
WO2008045635 Apr 2008 WO
WO2008045635 Apr 2008 WO
WO2008065653 Jun 2008 WO
WO2008065653 Jun 2008 WO
WO2008069919 Jun 2008 WO
WO2008085825 Jul 2008 WO
WO2008099382 Aug 2008 WO
WO2008094217 Aug 2008 WO
WO2008094842 Aug 2008 WO
WO2008099382 Aug 2008 WO
WO2008112437 Sep 2008 WO
WO2008124056 Oct 2008 WO
WO2008140989 Nov 2008 WO
WO2008157497 Dec 2008 WO
WO2008157777 Dec 2008 WO
WO2009005625 Jan 2009 WO
WO2009005634 Jan 2009 WO
WO2009011824 Jan 2009 WO
WO2009012001 Jan 2009 WO
WO2009022348 Feb 2009 WO
WO2009036094 Mar 2009 WO
WO2009039371 Mar 2009 WO
WO2009050717 Apr 2009 WO
WO2009042442 Apr 2009 WO
WO2009048314 Apr 2009 WO
WO2009050717 Apr 2009 WO
WO2009059005 May 2009 WO
WO2009064845 May 2009 WO
WO2009069119 Jun 2009 WO
WO2009075786 Jun 2009 WO
WO2009075932 Jun 2009 WO
WO2009075933 Jun 2009 WO
WO2009086446 Jul 2009 WO
WO2009092294 Jul 2009 WO
WO2009094015 Jul 2009 WO
WO2009104182 Aug 2009 WO
WO2009097380 Aug 2009 WO
WO2009102792 Aug 2009 WO
WO2009104182 Aug 2009 WO
WO2009113972 Sep 2009 WO
WO2009126781 Oct 2009 WO
2011021082 Feb 2011 WO
Non-Patent Literature Citations (1)
Entry
US 6,503,260, 01/2003, Schaller et al. (withdrawn).
Related Publications (1)
Number Date Country
20100318121 A1 Dec 2010 US
Provisional Applications (1)
Number Date Country
61106616 Oct 2008 US
Continuation in Parts (1)
Number Date Country
Parent PCT/IL2009/000985 Oct 2009 US
Child 12834538 US