For the purposes of illustrating the invention, the drawings show a form of the invention that is presently preferred. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
Like reference numbers and designations in the various drawings indicate like elements.
The term “SCR protective device” as used in the present specification and claims refers to any device that prevents appreciable quantities of large fly ash particles (LPA) and other large particulate material in flue gases from entering the NOx reducing catalyst channels or accumulating on other SCR catalyst surfaces. One example of an SCR protective device is a wire mesh screen that has openings that are slightly smaller than the diameters of the NOx reducing catalyst channels. Typically, the SCR protective device is a screen that is surrounded by a supporting frame.
It is noted that while the SCR protective device prevents appreciable quantities of fly ash from entering the NOx reducing catalyst channels, it does not hinder the flow of the gas from entering the NOx reducing catalyst.
Now referring to the figures in which like numerals correspond to like parts, and in particular to
As shown in
Hammers 30 contact SCR protective device 20 with a hitting, rapping, or striking motion of sufficient force to cause at least a portion of fly ash that has accumulated on the SCR protective device to slough off and be removed therefrom. It is contemplated that hammers 30 can contact any portion of SCR protective device 20, including any surrounding supporting frame.
Rotating shaft 32 is attached to hammers 30. Preferably, rotating shaft 32 is made of steel; however one skilled in the art will recognize that other materials, such as plastic, or other synthetic or naturally occurring material may be used for the rotating shaft.
Rotating shaft 32 is typically rotated by control unit 28 thereby causing hammers 30 to contact SCR protective device 20. Rapping hammer assembly 26 may be operated by an electric or battery operated motor located in control unit 28. Alternatively, rapping hammer assembly 26 could be operated by pneumatic cylinders or magnetic impulse devices, or by any other power source that would allow hammers 30 to contact SCR protective device 20 in a forceful motion to remove accumulated fly ash.
Typically, control unit 28 is connected to rapping hammer assembly 26 via rotating shaft 32. The motor, or other power means, actuates the movement of hammers 30.
In one embodiment of the present invention, control unit 28 includes a user interface 33 such as a desktop computer, a laptop computer, a monitor, or other display device that allows a user to vary the settings of rapper hammer assembly 26. User interface 33 would allow the user to control several variables, including but not limited to, the pressure of hammers 30 striking SCR protective device 20, the amount of times the hammers strike the SCR protective device in a specific time period, and/or the continuity of the hammer strikes on the SCR protective device. These variables would vary and are specific to each plant. Control of these variables will facilitate the removal of at least a portion of any fly ash accumulated on SCR protective device 20.
In one embodiment of the invention, hammers 30 continuously strike SCR protective device 20. In another embodiment, hammers 30 strike SCR protective device 20 at predetermined times. In yet another embodiment, a sensor or measuring device 34, such as a differential pressure transmitter, may be employed to determine when a certain amount of fly ash accumulates on SCR protective device 20. Once a certain amount of fly ash accumulates on SCR protective device 20, hammers 30 will be activated and will strike the SCR protective device.
As shown in
In another embodiment, as shown in
Typically, rapping hammer assembly 26 is not directly connected to SCR protective device 20. As shown in
As one skilled in the art will recognize, there may be one or more mechanical rapping systems 24 attached to one SCR protective device 20. The number of hammers 30 per rapping hammer assembly 26 may vary to optimize the point(s) at which SCR protective device 20 is impacted by the hammers. Additionally, one of ordinary skill in the art will recognize that one or more contact elements 38 may be connected to SCR protective device 20.
Once hammers 30 have struck SCR protective device 20 in an effective manner, very little fly ash will remain on the SCR protective device. However, it may be necessary to repeat the contact of hammers 30 to the SCR protective device 20 more than once. Therefore, rapping hammer assembly 26 may be programmed or monitored so hammers 30 strike contact elements 38 numerous times within a certain time period. Alternatively, rapping hammer assembly 26 may repeatedly contact SCR protective device 20 for continuous fly ash removal. In another alternative embodiment, sensor 34 may be used to measure or detect an amount of fly ash present on SCR protective device 20. Once the amount of fly ash reaches a certain level, rapping hammer assembly 26 can be activated, thereby causing hammers 30 to strike contact elements 38.
The manner in which hammers 30 contact SCR protective device 20 will vary from system to system. The action of hammers 30 contacting SCR protective device 20 will allow fly ash particles to slough off and continue through the system. Rapping hammer systems applied to SCR protective devices installed upstream of the catalyst bed dislodge fly ash particles back into the flue gas stream or move the fly ash along SCR protective device 20 to a discharge point. Alternatively, dislodging fly ash can be transported along SCR protective device 20 to an ash collection hopper (not shown).
While the invention is directed to the use of a mechanical rapping system on SCR protective devices, one skilled in the art will recognize that this mechanical rapping system can alternatively be employed on any item or device, including SCR protective devices that are designed to improve fly ash knockout in hoppers upstream of the SCR reactor. These items or devices include, but are not limited to economizer outlet “bull noses,” kicker plates, splitters, and other similar items.
When a mechanical rapping system is used in connection with SCR protective devices upstream of the SCR reactor, the dislodged fly ash particles may be removed back into the flue gas stream or may be removed to a discharge point or fly ash collection hopper.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.