1. Field of the Invention
The invention lies in the field of conveying technology and relates to a device and to a method for collating two-dimensional objects. The invention may in particular be applied for forming stacks of products lying on one another; such a stack formation for example is a step with the manufacture of printed products which consists of several part printed products and other products such as e.g. CDs, product samples and other things, e.g. newspapers, magazines, brochures, books and likewise.
2. Description of Related Art
The collation of printed products is understood by the man skilled in the art as the placing of different printed products onto one another, into stacks. Usually, the same printed products lie on one another in the same sequence in all stacks. The stacks may however, as the case may be, also differ from one another by way of the fact that individual printed products are absent in individual stacks. The printed products are for example individual, unfolded or folded sheets or signatures which are folded several times. The printed products which are collated into a stack differ from one another with respect to their printed content, but may however also differ with regard to their shape.
Known devices for collating printed products comprise a plurality of conveyer compartments which are moved along a conveying path. Usually, several feed units are arranged along a collation and stretch along the conveying path, and these are designed for feeding printed products of a single type. The exits of the feed units which are directed towards the conveyor compartments are essentially arranged one after the other in a row, whose direction corresponds to the conveying direction of the compartments along the collation stretch. In each case, one compartment is aligned onto, in each case, one feed exit during the feed steps. The feed units are for example feeders, reel stations or on-line connections to devices, in which the printed products to be collated are created or processed.
In collation devices, in which the printed products are fed to the compartments essentially perpendicularly to the conveying direction, usually the compartments are stationary during the feed steps and the printed products are pushed or thrown from the side into the compartments which are directed onto the feed exits. Between successive feed steps, the printed products with the compartments are displaced by the distance between consecutive feed exits (or by an integer fraction of this distance), in a manner such that the compartments aligned onto the exits are replaced by compartments following these. The compartments of such a device are usually arranged in a manner such that the printed products lay therein horizontally or in a slightly sloping manner. Disadvantages exist in the necessary intermittent stop- and go operation of the conveying means for the compartments.
Collation devices with compartments moving in an essentially continuous manner in the collation direction do not have these disadvantages. The printed products, however, must be essentially equally aligned with the collation direction and must be pushed or thrown into the compartments in a manner which is exactly synchronised with these compartments, wherein their speed is also to be adapted to the conveying speed of the compartments, for feeding the printed products to continuously moving compartments without any problem. The compartments, for example, are formed by a conveyor belt with separating walls which are arranged transversely and, as the case may be, also longitudinally to the belt length, wherein in each case two adjacent transverse walls delimit a compartment. The fed printed products are stacked in a lying manner on the conveyor belt in these compartments. Further known collation devices with continuously conveyed compartments have V-shaped or L-shaped compartments, in which the fed printed products stand on an edge and lean on a compartment wall, as a rest surface/support surface, which leads or trails in the collation direction.
A collation device with compartments which are L-shaped in the longitudinal section in the conveying direction and which are moved through the collation region by a conveying member along a closed revolving path, is known from WO 2007/085101. The longer compartment wall which is orientated essentially horizontally in the collation region, serves as a rest surface for the objects, and the shorter compartment wall which is essentially vertically orientated in the collation region, serves as an abutment, on which the leading edges of the objects are aligned. The compartments are arranged in a pivotable manner relative to the conveying member. Their pivot position is controlled such that the orientation of the rest surface in space remains constant independent of the shape of the conveying path, and specifically with a slight inclination in the conveying direction. In this manner, it is possible for the stacks to remain lying in the rest surfaces without them being actively held, even with a change of the conveying direction, e.g. in curved sections of the conveying path.
A further collation device is known from WO 2008/058405, with which the walls of all compartments are defined by continuous belts which run around deflection means. By way of the zigzag-like deflection along the conveying path, the belts open out a plurality of compartments which are L-shaped in section and which are directly consecutive to one another without interruption. The orientations of the side walls of adjacent compartments may be set in dependence on one another, by way of changing the position of the deflection means (rollers, rods). The long side wall, for example, is inclined relative to the conveying path or to the conveying member, and the short side wall is orientated in an essentially vertical manner, so that an oblique rest surface and an abutment which projects upwards from this are formed. In an alternative configuration, the two side walls are orientated parallel to the conveying path and may enclose a stack between them. By way of this, it is possible to convey the stack also with a rest surface which is arranged in a steep manner or above the stack (upside down). The orientation of the side walls of adjacent compartments, however, may not be selected independently of another, since the belts run over the mentioned common deflection means, so that the angle of inclination of the rest surface and the opening angle between the side walls are coupled to one another.
A further collating conveyor is known from DE-A 31 45 491. It comprises a plurality of grippers, wherein the rest surface which is assigned to a gripper, for supporting the laid-on products, is formed by the upwardly pointing gripper jaw of the gripper leading in the conveying direction. With this, the inclination angle of the rest surface and the opening angle of the grippers are likewise not independent of one another. The inclination is moreover opposite to the conveying direction.
It is the object of the invention, to provide a collation device and a corresponding method, with which device or with which method the objects may be reliably received, aligned and conveyed, wherein it is desirable to be able to hold the collated objects as a stack independently of the orientation of the compartments.
The device according to the invention serves for collating two-dimensional objects, in particular printed products and other products, and for the further conveying of the collated objects as stacks. It comprises a plurality of receiver units which are movable in a conveying direction along a closed conveying path defined by a conveying member. Moreover, a plurality of support elements are present, which at least in a collation region of the conveying path define a rest surface inclined in the conveying direction, on which the objects may be deposited and align themselves due to the inclination. The receiver units, according to the invention, comprise grippers with a first and second gripper jaw, which in a manner known per se, may assume a clamping position and an open position. The grippers, at least in the collation region, are arranged and moved relative to the support elements, such that they may firmly hold stacks formed on the support elements and convey them further in the held condition, by way of closure of the grippers. The grippers optionally, at least in the collation region, form an abutment for the objects lying on the rest surface, on which abutment the objects are aligned, in particular on account of gravity. The grippers and the support elements may be controlled such that within a receiver unit, the orientation of the rest surface relative to the conveying path and/or an opening angle between the first and the second gripper jaw may be set independently of adjacent receiver units. Preferably, the grippers for this are connected to the conveying member and controllable, wherein this connection and control are of a manner such that the orientation of the grippers relative to the conveying path, and/or an opening angle between the first and second gripper jaw, may be set independently of adjacent grippers.
The operating method according to the invention comprises the following steps: moving the receiver units in the conveying direction along the closed conveying path; feeding individual objects one after the other to the receiver units in the collation region of the conveying path; laying the objects onto the rest surfaces of the receiver units for forming stacks; closing the grippers after forming the stack and further conveying the stack by the grippers.
The invention is based on the idea of using a gripper conveyor known per se and having grippers, whose orientation and opening condition may be controlled independently of one another, for collating flat objects or for the stack formation and for the subsequent conveying of the stacks. This idea differs fundamentally from the initially described known concepts in the field of collation. With these concepts, the compartments are always applied with large-surfaced rest surfaces and rigid compartment walls or compartment walls which are variable in their orientation as the case may be. In contrast, the invention has the following advantages:
In principle, one may apply known gripper conveyors which are modified by way of suitable support elements, so that the objects in the collation region, in which the grippers are still open, are securely supported, in particular from below. The stacks of objects, after the collation and by way of closing the grippers, may be reliably held and conveyed further also over longer stretches without displacements within the stack. Therefore, in contrast to the state of the art, it is not necessary to transfer the stacks into grippers for the further conveying. The stacks may be gripped directly at the location of their completion. Since the grippers may be individually activated, defect stacks may be ejected out in a simple manner, e.g. by way of the gripper being opened with upside down conveying. The stack transfer to an optionally present conveying-away device is effected in an extremely controlled manner, since the orientation of the grippers and the point in time of the opening may be set in a very accurate manner. As with the devices according to WO 2007/085101 or WO 2008/058405, one may realise constant orientations of the rest surface in the collation region, even with a bent conveying path, but in the present case in a significantly simpler manner and with an increased flexibility.
The support elements, as with the state of the art, may be an integral constituent of the receiver units and therefore are co-moved along the entire conveying path. Since, according to the invention, grippers are applied as receiver units, the support elements may be an integral constituent of the grippers or be connected to the gripper in a fixed or articulated manner e.g. in the form of a rigid or flexible continuation. In an advantageous further formation of the invention, the support elements are formed by one of the gripper jaws which are extended compared to the other gripper jaw. The extended gripper jaw is then arranged in the collation region, preferably in an essentially lying manner, thus horizontally or with only a small inclination, and the other gripper jaw preferably projects upwards. The gripper, simultaneously with the rest surface, thus forms an abutment for the leading product edges.
The support elements may, however, also be formed by way of separate elements which for example are only moved synchronously with the grippers in the collation region and then removed again as soon as the grippers, by way of transition into the clamping position, securely firmly hold the finished stacks and convey them further. This has the advantage that a conventional gripper conveyor may be applied, which is only supplemented in the collation region by a support element conveyor.
The grippers are controlled such that they are open in the collation region and are closed after completion of the stack formation. The support elements are arranged such that they receive the products in an essentially lying manner in the collation region. The gripper is arranged relative to the support element such that it may hold the products lying on the rest surface between its two gripper jaws, by way of closure. It optionally also acts as an abutment for the alignment of the products.
The gripper jaw may be designed in a relative narrow manner transversely to the conveying direction, i.e. e.g. narrower than the product width in the respective direction. This renders it possible to laterally align the products already during the feeding, so that they are exactly aligned with respect to the support surface of the gripper. Suitable aligning elements may be arranged at a distance to one another on both sides of the movement path of the grippers, wherein the grippers run through between the aligning elements. Such an arrangement of the aligning elements is not possible with the state of the art for reasons of space, since the compartments are wider.
The realisation of the receiver units by way of grippers has the further advantage that the conveying path is not limited to stretches which are straight in a plan view, but that they may have a ground view with direction changes. This is because, different to the devices known from the state of the art on the basis of deflected belts (e.g. according to WO 2008/058405) or rigid compartments, grippers may be led along infinite spatial curves, also those with a small radius of curvature. A plan view with differently orientated and/or arcuate sections, e.g. U-shaped or L-shaped ones, has the advantage that the complete installation may be adapted to existing factory buildings. One may accommodate more feed stations (feeders) in an existing room, than with installations which are limited to a straight plan view or straight collation region. Also two or more collation regions may be present, in which the conveying direction is different, e.g. runs anti-parallel or at 90° to one another.
Examples of the invention are represented in the drawings and are described hereinafter. In a purely schematic manner are shown in:
a-c part views of a collation device with support elements, which are an integral constituent of the grippers, in different momentary glimpses, with the product transfer to a conveying-away device;
The collation device 1, according to the invention, is based on a gripper conveyor with a plurality of grippers 12, which here represent the receiver units 10. The grippers 12 have two gripper jaws 14, 16 whose position relative to one another (open/clamping position) as well as their orientation in space or relative to the conveying path U may be set individually or independently of the adjacent gripper by way of suitable control means. Here, the grippers are opened at an opening location S1 in front of the collation region Z, are moved in the opened condition through the collation region Z and at the end of the collation region Z are closed again at a closure location S2. In the collation region Z, the individual products are fed one after the other, so that stacks 110 are formed and are transported by the grippers 12. At a further opening location S3, the grippers 12 are opened for the purpose of transfer of the stacks 110 to the transfer device and subsequently are closed at a further closure location S4, in order in the closed, empty condition, to be moved along the lower path piece U3. Moreover, the gripper orientation is changed in the region around the opening/closure locations S1, S2.
In the example of
The distance of two consecutive grippers 12, the length of the two gripper jaws 14, 16 and their orientations here are selected such that in the collation region Z, the gripper jaws 14, 16 of adjacent grippers are adjacent to one another in an essentially gapless manner and define a quasi continuous zigzag-like area. By way of this, one prevents the products from inadvertently getting into the gaps between the grippers 12 and disturbing the operation. Preferably, the distance of the grippers may be adapted to the size of the products. The long gripper jaw may for example be flexible, in order to be able to compensate distance changes, e.g. by way of sagging. Alternatively, the long gripper jaw or an element attached thereto (e.g. the second gripper part 14b shown in
The transfer device 50 in the form of a transfer wheel grips the product stacks 110 by way of transfer elements 52, e.g. grippers, clamping elements, at the side edges and transfers these to the conveying-away device 40. This comprises two conveyor belts 42 which are driven in opposite directions and which enclose a gap-like conveying channel 46. The stacks 110 approach the transfer device 50 from the top and are taken over by this tangentially to the initial conveying path U and are moved further, tangentially to the movement path of the transfer elements 52.
The collation device 1 according to
The collation devices 1 which are shown in
In
The support elements 20 are part of a support element conveyor 70 which is independent of the gripper conveyor. This support element conveyor comprises a support element conveyor member 72, with which the support elements 20 are moved along a closed support element conveying path Us. The support element conveying path Us, at least in the collation region Z, runs parallel to the conveying path U of the grippers 12 and is deflected by way of deflections 74, of which only one is represented here. The support elements 20 have the shape of compartments which are L-shaped in a lateral view, wherein the long limb 23 of the L consists of several segments which are connected to one another in a movable manner. By way of this, the support elements 20 may be led around the deflections 74 in a space-saving manner. The upper side of the long limb 23 acts as a support surface 22, and the region, in which the two limbs 23, 24 of the L-shaped support elements 20 meet one another, which is to say the shorter limb 24, acts as an abutment 18 for aligning the products 100.
The support elements 20 are moved synchronously to the grippers 12 in the collation region Z. Thereby, the abutment 18 is arranged flush with the gripper jaw. Moreover, the long limb 23 is inclined in the conveying direction. The products 100 are, therefore, aligned to the gripper jaw by way of the abutment 18 and may be gripped by way of closure of the grippers 12. After the closure location S2, the product stacks 110 may be held by the grippers 12 alone, and the conveying path Us of the support elements may take a different path than that of the grippers 12. Here, the free ends of the products 100, as with
This variant has the advantage that one may use a conventional gripper conveyor. This may also be part of an extensive conveyor installation. An additional circulation with the support elements 20 is only envisaged in the collation region. The collating and conveying function may therefore be realised with existing installations without much more additional effort with regard to design.
a-c show a part view of a collation device 1 in the region of the product transfer to a conveying-away device 40, at different points in time.
The collation device 1 in principle is constructed as in one of the
As
The grippers 12 in the present case run along a revolving path U. They are connected at equal distances via levers 19 to the conveyor member 2 running along a parallel revolving path U′. The levers 19 have the function of being able to change the distances of the grippers 12 in curved parts of the revolving path U. Here, the product release region is envisaged in the curved part of the revolving path U. Successive products 100 which have been conveyed still in a partly overlapping manner in the straight part, are therefore pulled apart without much effort by way of the path curvature.
A support surface 62 which is orientated parallel to the revolving path U, is provided in the straight path part. Thanks to its flexibility, the second gripper part 14b adapts to the orientation of the support surface 62, so that the products 100 are guided or supported by both sides before the transfer.
The revolving path U runs onto the conveyor plane of the conveying-away device 40 at an angle. The conveying-away device 40 as with
With the described collation devices 1, increasingly one creates more complex formations, for example product stacks 110 with several individual products 100, which e.g. may comprise also thicker printed products, goods samples, CDs or other non-printed products. With such stacks 110, it is essential that the individual products 100 do not mutually dislocate on transfer to the conveying-away device 40. This is because such displacement may upset the procedure in stations arranged downstream, e.g. on film-wrapping. The transfer devices 50 which are represented in
a-c and 8 show a variant of a transfer device 50, which is integrated into the deflection 4 of the conveyor member 2 which functions as a transfer region, for the grippers 12, and permits a very reliable transfer also of more complex product stacks 110. It comprises a plurality of transfer elements 52 which are moved along a circular path UT running parallel to the conveying path U. The transfer elements 52 comprise levers 53 which are pivotable on a drive means, e.g. a wheel, and which at their free end comprise a transverse rod 54 orientated perpendicularly to the revolving path UT. As
The transfer elements 52 may, for example, also be deactivated in a controlled manner. This is important, for example, with a repair run-through, when the products are not to be released from the grippers 12.
The described procedures and functions are monitored and controlled by a control unit which is not represented here in more detail. The control unit, apart from suitable sensorics/electronics, may also comprise stationary and/or changeable control cams and/or activation elements which cooperate with suitable control elements on the moved components (grippers, support elements, transfer elements). Moreover, for example suitable drives are present, which are controlled by the control unit.
In the example of
The grippers are opened before entry into the first collation region Z1. They are preferably closed before the first curved section U4, so that the collated objects 100 or object stacks 110 do not dislocate by way of centrifugal forces. They are opened again, at the latest, before entry into the second collation region Z2 and are closed at its end before running through the rear conveying path region.
The installation of
Number | Date | Country | Kind |
---|---|---|---|
1724/08 | Nov 2008 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2009/000346 | 11/2/2009 | WO | 00 | 6/28/2011 |