The present invention is related to a sensor for continuous detection of minute change of density in fluids and biological fluids, solids and semisolid bodies by a transducer. The transducer used may be of different types and a PZT (Piezo Electric) transducer is preferably used. The invention is also related to a method for determining minute changes in density of fluids and biological fluids by a transducer as well as the use of such a transducer. In connection with the present application the transducer is used to register the change of density as the change of the phase shift between the exited pulse train and its reflection in addition to the amplitude difference between the two pulse trains—ingoing train and reflected train.
Density, which is expressed as the relationship between mass and volume by the formulae ρ=m/V kg/m3, is normally settled by weighing a volume of the mass and divide this by the mass of the body. For a solid mass, its volume can be found by emerging the body in a liquid and measure the displacement of the liquid.
However, the density of either liquids or bodies is dependent upon its volume at a set temperature. For example water has a density of 1000 kg/m3 at 4° C., but as the volume increases by increasing temperature, the density is less than 1000 kg/m3 as shown in the following calculations between 4 and 10° C.:
Normally these minute changes in the density are neglectible, but in special cases knowing the change of density is vital. One example is in order to monitor the change in body liquids which can change by changes of the solutes in the body liquid. One such solute can be alcohol, another one can be glucose and still another one can be related to dehydration, leading to concentrating of the solutes in the body liquid. As the volume of the liquids change by changing temperature, a temperature sensor monitors the temperature of the body/liquid and displays the density at the temperature at which the measurement was taken. As a further example fresh food may be mentioned, such as meat and fruit and so forth. Bacterial growth in the fresh food will effect a change of the density of the food, and the present invention could thus function as a quality control in this case. At present no means for easy determination of minute changes in density are available.
In order to solve the above-mentioned technical problems, and provide the said means, the present invention provides a device for continuous detection of minute changes of density in fluids or solids, comprising a transducer generating pulse trains, a pulse transmitter, power input, signal analyzer and a read out unit.
According to the present invention the transducer is selected from the group consisting of a PZ (Piezo Electric) transducer, a magnetic transducer, a sound transducer, a mechnical transducer and a pneumatic transducer.
The transducer is preferably a piezo electric transducer.
The pulses generated by the transducer are selected from the group consisting of sinus pulses, square pulses and step pulses.
The pulses generated are preferably sinus pulses.
The present invention also provides a method for continuous detection of changes of density of fluids or solids, comprising applying a fixed pulse train generated by a transducer to the surface of the body/liquid in question and monitoring the change in phase shift and amplitudes between the ingoing pulses and the reflected pulses.
In a preferred embodiment of the method the transducer used is selected from the group consisting of a PZ (Piezo Electric) transducer, a magnetic transducer, a sound transducer, a mechanical transducer and a pneumatic transducer.
The transducer used is preferable a PZ transducer.
The pulse train generated in the method according to the invention is preferably selected from the group consisting of sinus pulses, square pulses and step pulses.
In a preferred embodiment the pulse train is sinus pulses.
The invention also relates to the use of the device for monitoring the change of density of body liquids caused by changes of solutes in said liquid.
One body liquid of interest is glucose.
Another body liquid of interest is alcohol.
A further condition which may be monitored is dehydration.
The present invention also relates to the monitoring of the change of density of beverages, such as wine or liquor.
Another embodiment of the invention relates to the monitoring of the change of density of wood or wood products.
A further embodiment of the invention relates to the monitoring the density of oil.
According to the present invention the detection of density changes, when using a PZ tranducer, involves the detection and use of piezoelectric properties of the materials.
The key element in the technique according to the invention is that once the piezoelectric element is excited and when the excitation force is stopped it experiences the response voltage due to the reverse piezoelectric effect. The inventors have found that this response contains information that is distinguishable for different density levels.
Industrially it can be of interest to know the density of beverages at a set temperature of, such as for wine and liquor. Another example can be to monitor the moisture in for example wood, where the density of the wood and water gives the bulk density which will change depending on the water content. If the density is required at a given temperature, a mathematical algorithm compensates for the measured values if the temperature is higher/lower that the required temperature. The algorithm is based upon the following:
The general formula for the density is:
ρo=m/Vo kg/m3
When the temperature increases/decreased from to to tx, the volume changes in accordance with:
Vx=Vo*γ*(Tx±To)*Vo m3
The density of the same mass is then:
ρx=m/Vx kg/m3
The difference in density is thus:
Δρ=ρo±ρx kg/m3
Δρ=m*(1/Vo±1/((Vo*γ*(Tx−To))+Vo kg/m3
The following relationship exists between ρo and ρx:
ρo=ρx*Vo/Vx kg/m3
Still another use of the invention is to monitor certain fluids in pipes, such as oil pipes whereby it is made possible to continuously monitor the real density of the oil at the actual temperature. This makes it possible to detect changes of the density caused both by the temperature and water and gas content in the oil.
A special case within the oil industry is to measure the density of the oil to establish the API grade. Normally this is done by 15.56° C. By using the present invention it is possible to measure the density at any temperature by taking into account the increased volume (or decreased volume) at the temperature.
The objective of the invention has been to find a simple principle which makes continuous monitoring of the changes of density “on site” without taking a sample of the object in question, possible.
This is achieved by applying a fixed pulse train generated by a PTZ transducer to the surface of the body/liquid in question and monitoring the change in the phase shift and amplitudes between the ingoing pulses and the reflected pulses.
The pulses used may be sinus pulses, square pulses or step pulses. The pulses may be generated electrically, mechanically, pneumatically or hydraulically.
As indicated above, one possible use of the present invention would be to monitor changes in the glucose level in a human body. Different types of sensors for this purpose have already been described. Thus U.S. Pat. No. 5,119,819 discloses a method and apparatus for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen. The sensor used is based on the measurement of velocity changes of reflected ultrasound over a fixed distance with frequencies approaching 7.5 MHz, and whereby the velocity difference is due to changes of glucose content in blood combined with temperature difference. The method is in fact not non-invasive as claimed, since the sensor is to be placed on the earlobe with a tube extending through the ear lobe with the ultrasound sender attached at one end and a reflector at the other end thereof.
The objective with the invention has been to find a simple principle which continuous could monitor the changes of the density “on site” without taking a sample of the object in question.
This is achieved by applying a fixed pulse train generated by a PTZ transducer to the surface of the body/liquid in question and monitoring the change in the phase shift and amplitudes between the ingoing pulses and the reflected pulses.
In order to verify the principle, a mathematical simulation of the same has been performed, which gave the results as shown in the graph illustrated in
From
The table below shows the computed phase delay between the densities in the region of interest, considering 999.80 kg/m3 as reference.
After the modeling confirmed the principle, a test structure was constructed as shown in the picture of
A sensor is hooked up to a pulse transmitter and an oscilloscope is applied to monitor as shown in the block diagram in
The following instruments were used for the experimental set-up:
The experimental results are shown in the figures;
The results from the second study are shown in the
The results from the third study where a stainless steel container was used for water are shown in
In the resultant figures the illustrated non linearity is the maximum point deviation of the measured data from the linear fit curve.
Prior to the experimental verification of the principle, a test was carried out and where the graphs shown in
As can be seen there is a distinct phase shift between the curves at different temperatures. Furthermore it can also be seen that there is a distinct difference in the amplitude between the different curves.
The non-linearity from the theoretical linearity is caused by inaccuracy in the weighted salt to water.
In all studies the PZT was excited for 80 μs at 1 MHz frequency and the analysis was carried out on the response signal for 20 μs. For the excitation the voltage used was 10 Vpp, same as the voltage used in the mathematical simulation.
After verification of the principle, human trial were initiated with the sensor located in a housing and attached to the body by an elastic band.
The tests were performed on a non-diabetci human who increased the glucose level by drinking half a litre of Coca Cola and eating a slice of bread. During the test, the blood sugar was tested by Abbot's Freestyle Lite invasive glucose meter every 10 minutes.
The invention makes it possible to show the development in the density over time, average values and how fast the density changes in either direction.
As for the measurement of the glucose level in humans the question arises if other substances changes in parallel with the glucose, and if so, how they can be mitigated.
Many substances in blood and tissue will change after a meal. Especially the heavy triglycerides could pose a challenge. Tissue buildup of proteins, extra cellular fluid and hormones could be another. So far these sources if error have been estimated to be in the magnitude of 1/10000 to 1/1000000 of the effect of density changes imposed by glucose.
Calculations performed on the effect of alcohol show that this is neglectable.
The density changes with temperature must be compensated for, since a 0.1° C. change in the temperature represents 0.35 mmol/liter glucose.
We have found that glucose changes in tissue have emerged theoretically as a sole and reliable parameter of tissue density changes.
Medical Evaluation of Dehydration by Hospitalized Sick and Dehydrated Patients.
By moderate dehydration (5-10%) the condition is often complicated, the heart frequency, blood pressure and heart function is modestly affected. Peripheral circulation may be reduced (capillary filling time >3 sec.), diuresis is often low and consciousness may be reduced. By severe dehydration (>10%) the patient will often have marked dehydration symtoms such as reduced consciousness, reduced skin turgor, dry mucosa, halonated eyes, tachycardia, weak pulse, tachypnea or Cheyne-Stokes respiration and oliguria and anuria.
By light dehydration in medical terms of 5% (which is 3 kg water of minimum 100 kg body weight (60% water)) and after long and hard training or gasteroenthritis, the concentration will increase in the excess of 5%. How this affect the density has to be verified by calculation. For ordinary patients this is a situation where NIGM (Non Invasive Glucose Monitoring) is not used. However, contrary to changes of glucose level, dehydration is a slow process taking hours and days whereas glucose levels can change in minutes. Thus, if dehydration takes place, glucose variation in diabetics will fluctuate over and under the mean body density caused by dehydration.
The invention is further more described in the following drawings.
It is to be understood that other wiring diagrams can be applied with the objective to send a pulse train to the PZT transducer with a receiver of the reflected pulse train with an analyzer of the phase shift and difference in the amplitude.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/059204 | 5/6/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/180825 | 11/13/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4930511 | Rossman | Jun 1990 | A |
5119819 | Thomas | Jun 1992 | A |
5214966 | Delsing | Jun 1993 | A |
6053041 | Sinha | Apr 2000 | A |
20030074953 | Glaser | Apr 2003 | A1 |
20030167848 | Glaser | Sep 2003 | A1 |
20090277272 | Hofmann | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 03000119 | Jan 2003 | WO |
Entry |
---|
Adamowski J C et al.; Ultrasonic Measurement of Density of Liquids Flowing in Tubes; IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE US, vol. 45, No. 1, Jan. 1, 1998; pp. 48-56, XP011437575 ISSN: 0885-3010, DOI: 10.1109/58.646909. |
Delsing, J. 1987 “A new velocity algorithm for sing-around-type flow meters” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control vol. UFFC-34, No. 4: 431-436. |
Number | Date | Country | |
---|---|---|---|
20160109346 A1 | Apr 2016 | US |