Device and method for continuously shuffling and monitoring cards

Information

  • Patent Grant
  • 6588751
  • Patent Number
    6,588,751
  • Date Filed
    Monday, October 16, 2000
    23 years ago
  • Date Issued
    Tuesday, July 8, 2003
    21 years ago
Abstract
The present invention provides an apparatus and method for moving playing cards from a first group of cards into a second group of cards, wherein the second group of cards is randomly arranged or shuffled. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for moving the stack, a card-moving mechanism between the card receiver and the stack for moving cards one at a time into a selected one of the compartments, another card moving mechanism for moving cards from one of the compartments to a second card receiver and a microprocessor that controls the card-moving mechanisms and the elevator. A count of cards within specified areas of the card handling system is maintained and card handling is halted and all cards counted by adding a count of all cards not within the specified areas to the total of cards counted within the specified areas.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, it relates to an electromechanical machine for continuously shuffling playing cards, whereby a dealer has a substantially continuously readily available supply of shuffled cards for dealing and where cards may be monitored for security purposes during play of the game.




2. Background of the Art




Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments and include card games wherein the symbols comprise familiar, common or standard playing cards. Card games such as twenty-one or blackjack, poker, poker variations, match card games and the like are excellent casino card games. Desirable attributes of casino card games are that they are exciting, that they can be learned and understood easily by players, and that they move or are played rapidly to their wager-resolving outcome.




From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to maximize the amount of revenue generated by a game without changing games, without making obvious changes that indicate an increased hold by the house, particularly in a popular game, and without increasing the minimum size of wagers. One approach to maximizing revenue is speeding play. It is widely known that playing time is diminished by shuffling and dealing. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, reduce non-play time, thereby increasing the proportion of playing time to non-playing time, adding to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game.




U.S. Pat. No. 4,515,367 (Howard) is an example of a batch-type shuffler. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe.




U.S. Pat. No. 5,275,411 (Breeding) discloses a machine for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards.




U.S. Pat. No. 3,897,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,240,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play.




U.S. Pat. Nos. 5,584,483 and 5,676,372 (Sines et al.) describe batch type shufflers which include a holder for an unshuffled stack of cards, a container for receiving shuffled cards, a plurality of channels to guide the cards from the unshuffled stack into the container for receiving shuffled cards, and an ejector mounted adjacent to the unshuffled stack for reciprocating movement along the unshuffled stack. The position of the ejector is randomly selected. The ejector propels a plurality of cards simultaneously from a number of points along the unshuffled stack, through the channels, and into the container. A shuffled stack of cards is made available to the dealer.




U.S. Pat. No. 5,695,189 (Breeding et al.) is directed to a shuffling machine for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled.




Aside from increasing speed and playing time, some shuffler designs have provided added protection to casinos. For example, one of the Breeding (similar to that described in U.S. Pat. No. 5,275,411) shufflers is capable of verifying that the total number of cards in the deck has not changed. If the wrong number of cards are counted, the dealer can call a misdeal and return bets to players.




A number of shufflers have been developed which provide a continuous supply of shuffled cards to a player. This is in contrast to batch type shuffler designs of the type described above. The continuous shuffling feature not only speeds the game, but protects casinos against players who may achieve higher than normal winnings by counting cards or attempting to detect repeated patterns in cards from deficiencies of randomization in single batch shufflers. An example of a card game in which a card counter may significantly increase the odds of winning by card counting or detecting previously occurring patterns or collections of cards is Blackjack.




U.S. Pat. No. 4,586,712 (Lorber et al.) discloses a continuous automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The Lorber shuffler counts the number of cards in the storage device prior to assigning cards to be fed to a particular location.




The Samsel, Jr. patent (U.S. Pat. No. 4,513,969) discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players.




U.S. Pat. No. 5,382,024 (Blaha) discloses a continuous shuffler having a unshuffled card receiver and a shuffled card receiver adjacent to and mounted for relative motion with respect to the unshuffled card receiver. Cards are driven from the unshuffled card receiver and are driven into the shuffled card receiver forming a continuous supply of shuffled cards. However, the Blaha shuffler requires specially adapted cards, particularly, plastic cards, and many casinos have demonstrated a reluctance to use such cards.




U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically and continuously shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine.




U.S. Pat. No. 4,770,421 (Hoffman) discloses a continuous card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a fixed number of distribution schedules is provided for distributing cards into a number of pockets. The microprocessor sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the cards have been through a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are moved onto the second elevator. The Hoffman patent does not disclose randomly selecting a pocket for delivering each card. Nor does the patent disclose a single stage process which randomly arranges cards into a degree of randomness satisfactory to casinos and players. Although the Hoffman shuffler was commercialized, it never achieved a high degree of acceptance in the industry. Card counters could successfully count cards shuffled in the device, and it was determined that the shuffling of the cards was not sufficiently random.




U.S. Pat. No. 5,683,085 (Johnson) describes a continuous shuffler which includes a chamber for supporting a main stack of cards, a loading station for holding a secondary stack of cards, a stack gripping separating mechanism for separating or cutting cards in the main stack to create a space and a mechanism for moving cards from the secondary stack into the spaces created in the main stack.




U.S. Pat. No. 4,659,082 (Greenberg) discloses a carousel type card dispenser including a rotary carousel with a plurality of card compartments around its periphery. Cards are injected into the compartments from an input hopper and ejected from the carousel into an output hopper. The rotation of the carousel is produced by a stepper motor with each step being equivalent to a compartment. In use, the carousel is rotated past n slots before stopping at the slot from which a card is to be ejected. The number n is determined in a random or near random fashion by a logic circuit. There are 216 compartments to provide for four decks and eight empty compartments when all the cards are inserted into compartments. An arrangement of card edge grasping drive wheels are used to load and unload the compartments.




U.S. Pat. No. 5,356,145 (Verschoor) discloses another card shuffler involving a carousel or “rotatable plateau.” The Verschoor shuffler has a feed compartment and two card shuffling compartments which each can be placed in first and second positions by virtue of a rotatable plateau on which the shuffling compartments are mounted. In use, once the two compartments are filled, a drive roller above one of the shuffling compartments is actuated to feed cards to the other compartment or to a discharge means. An algorithm determines which card is supplied to the other compartment and which is fed to the discharge. The shuffler is continuous in the sense that each time a card is fed to the discharge means, another card is moved from the feed compartment to one of the shuffling compartments.




U.S. Pat. No. 4,969,648 (Hollinger et al.) discloses an automatic card shuffler of the type that randomly extracts cards from two or more storage wells. The shuffler relies on a system of solenoids, wheels and belts to move cards. Cards are selected from one of the two wells on a random basis so a deck of intermixed cards from the two wells is provided in a reservoir for the dealer. The patent is principally directed to a method and apparatus for detecting malfunctions in the shuffler, which at least tends to indicate that the Hollinger et al. shuffler may have some inherent deficiencies, such as misalignments of extraction mechanisms.




The size of the buffer supply of shuffled cards in the known continuous shufflers is large, i.e., 40 or more cards in the case of the Blaha shuffler. The cards in the buffer cannot include cards returned to the shuffler from the previous hand. This undesirably gives the player some information about the next round.




Randomness is determined in part by the recurrance rate of a card previously played in the next consecutively dealt hand. The theoretical recurrence rate for known continuous shufflers is believed to be about zero percent. A completely random shuffle would yield a 13.5% recurrance rate using four decks of cards.




Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none describes a device and method for providing a continuous supply of shuffled cards with the degree of randomness and reliability required by casinos until the filing of copending U.S. patent application Ser. No. 09/060,598, now U.S. Pat. No. 6,254,096, issued Jul. 3, 2001. That device and method continuously shuffles and delivers cards with an improved recurrence rate and improves the acceptance of card shufflers and facilitate the casino play of card games.




BRIEF SUMMARY OF THE INVENTION




The present invention provides an electromechanical card handling apparatus and method for continuously shuffling cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in handling or sorting sheet material generally.




In one embodiment, the present invention provides an apparatus for moving playing cards from a first group of unshuffled cards into shuffled groups of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that the cards are moved into a number of randomly selected compartments. Sensors act to monitor and to trigger operation of the apparatus, card moving mechanisms, and the elevator and also provide information to the microprocessor. The controlling microprocessor, including software, selects or identifies where cards will go as to the selected slot or compartment before card handling operations begin. For example, a card designated as card


1


may be directed to slot


5


, a card designated as card


2


may be directed to slot


7


, a card designated as card


3


may be directed to slot


3


, etc.




An advantage of the present invention is that it provides a programmable card-handling machine with a display and appropriate inputs for controlling and adjusting the machine. Additionally, there may be an elevator speed adjustment and sensor to adjust and monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing or eliminating the number of back up machines or units required at a casino. Since it is customary in the industry to provide free backup machines, a reduction in the number of backup machines needed presents a significant cost savings. The display may include a use rate and/or card count monitor and display for determining or monitoring the usage of the machine.




Another advantage of the present invention is that it provides an electromechanical playing card handling apparatus for automatically and randomly generating a continuous supply of shuffled playing cards for dealing. Other advantages are a reduction of dealer shuffling time, and a reduction or elimination of security problems such as card counting, possible dealer manipulation and card tracking, thereby increasing the integrity of a game and enhancing casino security.




Yet another advantage of the card handling apparatus of the present invention is that it converts a single deck, multiple decks, any number of unshuffled cards or large or small groups of discarded or played cards into shuffled cards ready for use or reuse in playing a game. To accomplish this, the apparatus includes a number of stacked or vertically oriented card receiving compartments one above another into which cards are inserted, one at a time, so a random group of cards is formed in each compartment and until all the cards loaded into the apparatus are distributed to a compartment. Upon demand, either from the dealer or a card present sensor, or automatically, the apparatus delivers one or more groups of cards from the compartments into a dealing shoe for distribution to players by the dealer.




The present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor.




Another advantage is that the apparatus of the present invention provides for the initial top feeding or loading of an unshuffled or discarded group of cards thereby facilitating use by the dealer. The shuffled card receiving shoe portion is adapted to facilitate use by a dealer.




An additional advantage of the card handling apparatus of the present invention is that it facilitates and speeds the play of casino wagering games, particularly those games wherein multiple decks of cards are used in popular, rapidly played games (such as twenty-one or blackjack), making the games more exciting for players.




In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled new or played group of cards into a group of shuffled or reshuffled cards available to a dealer for distribution to players. The first step of this process is the dealer placing an initial group of cards, comprising unshuffled or played cards, into the card receiver of the apparatus. The apparatus is started or starts automatically by sensing the presence of the cards and, under the control of the integral microprocessor, it transfers the initial group of cards, randomly, one at a time, into a plurality of compartments. Groups of cards in one or more compartments are delivered, upon the dealer's demand or automatically, by the apparatus from that compartment to a card receiving shoe for the dealer to distribute to a player.




According to the present invention, the operation of the apparatus is continuous. That is, once the apparatus is turned on, any group of cards loaded into the card receiver will be entirely processed into one or more groups of random cards in the compartments. The software assigns an identity to each card and then directs each identified card to a randomly selected compartment by operating the elevator motor to position that randomly selected compartment to receive the card. The cards are unloaded in groups from the compartments, a compartment at a time, as the need for cards is sensed by the apparatus. Thus, instead of stopping play to shuffle or reshuffle cards, a dealer always has shuffled cards available for distribution to players.




The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly and set up costs.




Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and outside the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain. formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be counted with minimum game interruption.




The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected.




The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe.




A novel gravity feed/diverter system is described to reduce the potential for jamming and reducing the chance for multiple cards to be fed from a card feeder into selected card receiving compartments.




Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front perspective view depicting the apparatus of the present invention as it might be disposed ready for use in a casino on a gaming table.





FIG. 2

is a perspective view, partially broken away, depicting the rear of the apparatus of the present invention.





FIG. 3

is a front perspective view of the card handling apparatus of the present invention with portions of the exterior shroud removed.





FIG. 4

is a side elevation view of the present invention with the shroud and other portions of the apparatus removed to show internal components.





FIG. 5

is a side elevation view, largely representational, of the transport mechanism and rack assembly of the apparatus of the present invention.





FIG. 5



a


is an expanded side elevation view of a shelf as shown in

FIG. 5

, showing more detail of the rack assembly, particularly the shelves forming the top and bottom of the compartments of the rack assembly.





FIG. 6

is an exploded assembly view of the transport mechanism shown in FIG.


5


.





FIG. 7

is a top plan view, partially in section, of the transport mechanism.





FIG. 8

is a top plan view of one embodiment of the pusher assembly of the present invention.





FIG. 8



a


is a perspective view of a pusher assembly of the present invention.





FIG. 9

is a front elevation view of the rack and elevator assembly.





FIG. 10

is an exploded assembly view of one embodiment of a portion of the rack and elevator assembly.





FIG. 11

depicts an alternative embodiment of the shelves or partitions for forming the stack of compartments of the present invention.





FIG. 12

is a simplified side elevation view, largely representational, of the card handler of the present invention.





FIG. 13

is a perspective view of a portion of the card handling apparatus of the present invention, namely, the second card receiver at the front of the apparatus, with a cover portion of the shroud removed.





FIG. 14

is a schematic diagram of an electrical control system for one embodiment of the present invention.





FIG. 15

is a schematic diagram of the electrical control system.





FIG. 16

is a schematic diagram of an electrical control system with an optically-isolated bus.





FIG. 17

is a detailed schematic diagram of a portion of FIG.


16


.





FIG. 18

is a side elevational view of a device that prevents the dealer from pushing cards in the output shoe back into the card way.





FIG. 19

a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed.





FIG. 20

is a schematic diagram of the sensor and motor locations for a preferred embodiment of the invention.











DETAILED DESCRIPTION




This detailed description is intended to be read and understood in conjunction with appended Appendices A and B, which are incorporated herein by reference. Appendix A provides an identification key correlating the description and abbreviation of certain motors, switches and photoeyes or sensors with reference character identifications of the same components in the Figures, and gives the manufacturers, addresses and model designations of certain components (motors, limit switches and sensors). Appendix B outlines steps in a homing sequence, part of one embodiment of the sequence of operations.




With regard to means for fastening, mounting, attaching or connecting the components of the present invention to form the apparatus as a whole, unless specifically described as otherwise, such means are intended to encompass conventional fasteners such as machine screws, rivets, nuts and bolts, toggles, pins and the like. Other fastening or attachment means appropriate for connecting components include adhesives, welding and soldering, the latter particularly with regard to the electrical system of the apparatus.




All components of the electrical system and wiring harness of the present invention are conventional, commercially available components unless otherwise indicated, including electrical components and circuitry, wires, fuses, soldered connections, chips, boards and control system components.




Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as metal, metallic alloys, ceramics, plastics, fiberglass and the like, and components and materials may be similar to or adapted from components and material used to make the card handling apparatus disclosed and described in copending application Ser. No. 09/060,627, entitled “Device and Method For Forming Hands of Randomly Arranged Cards”, filed on Apr. 15, 1998 and incorporated herein by reference.




In the following description, the Appendices and the claims, any references to the terms right and left, top and bottom, upper and lower and horizontal and vertical are to be read and understood with their conventional meanings and with reference to viewing the apparatus generally from the front as shown in FIG.


1


.




Referring then to the Figures, particularly

FIGS. 1

,


3


and


4


, the card handling apparatus


21


of the present invention includes a card receiver


26


for receiving a group of cards to be randomized or shuffled, a single stack of card-receiving compartments


28


(see

FIGS. 4 and 9

) generally adjacent to the card receiver


26


, a card moving or transporting mechanism


30


(see

FIGS. 3 and 4

) between and linking the card receiver


26


and the compartments


28


, and a processing unit, indicated generally at


54


in

FIG. 3

, that controls the apparatus


21


. The apparatus


21


includes a second card mover


192


(see

FIGS. 4

,


8


and


8


a) for emptying the compartments


28


into a second card receiver


36


.




Referring to

FIGS. 1 and 2

, the card handling apparatus


21


includes a removable, substantially continuous exterior housing shroud


40


. The shroud


40


may be provided with appropriate vents


42


for cooling. The card receiver or initial loading region, indicated generally at


26


is at the top, rear of the apparatus


21


, and the second card receiver


36


is at the front of the apparatus


21


. Controls and/or display features


32


are generally at the rear or dealer-facing side of the machine


21


.

FIG. 2

provides a view of the rear of the apparatus


21


and more clearly shows the display and control inputs and outputs


32


, including power input and communication port


46


.





FIG. 3

depicts the apparatus


21


with the shroud


40


removed, as it might be for servicing or programming, whereby internal components may be visualized. The apparatus includes a generally horizontal frame floor


50


for mounting and supporting operational components. A control (input and display) module


56


is cantilevered at the rear of the apparatus


21


, and is operably connected to the operational portions of the apparatus


21


by suitable wiring or the like. The control module


56


may carry the microprocessor (not shown), or the microprocessor is preferably located on processing unit


54


on the frame


50


inside the shroud


40


. The inputs and display portion


44


of the module


56


are fitted to corresponding openings in the shroud


40


, with associated circuitry and programming inputs located securely with the shroud


40


when it is in place as shown in

FIGS. 1 and 2

.




In addition, the present invention generically and specifically a card handler or shuffling device comprising:




a card staging area for receiving cards to be handled;




a plurality of card-receiving compartments, the card staging area (and a card mover) and the compartments are relatively movable;




a card mover generally between the staging area and the compartments for moving a card from the staging area into one of the compartments;




a microprocessor programmed to identify each card in the card staging area and to relatively actuate the card mover to move an identified card to a randomly selected compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a compartment;




a drive system responsive to the microprocessor for relatively moving the compartments; and




a counting system for counting cards within specified areas within the card handler.




The terms “relatively actuate” and relatively move” are used in this description to emphasize the point that there should be relative movement between the compartments and the card mover/card staging area. Relative movement may be caused by movement of the rack of compartments only, movement of the card mover only, or by movement of both the rack of compartments and the card mover/staging area. The alignment of the card feeder and the feeding of the card may be done as separate (in time) steps or as contemporaneous steps, with either the feeder (card mover) moving and being fed a card at the same time or having the card fed at a distinct time from the moving of the feeder (card mover).




The card handler counting system preferably counts cards entering and leaving the plurality of card-receiving compartments. There may be present a card moving system to move cards from the plurality of card-receiving compartments to a second card receiving area. The card handler may have the counting system count cards entering and leaving the plurality of card-receiving compartments and cards entering and leaving the second card receiving area, and the counting system may maintain a rolling count of the cards within both the plurality of card-receiving compartments and the second card receiving area. This format could use inputs operably coupled to the microprocessor for inputting information into the microprocessor.




A playing card handler according to the present invention may also comprise:




a stack of compartments for accumulating cards in at least one compartment;




a microprocessor programmed to randomly select the compartment which receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a selected number of compartments;




a card staging area for receiving a stack of cards to be handled, wherein the stack of compartments and the card staging area are movable relative to each other, by any one being independently movable or by both being movable;




card moving means responsive to output signals from the microprocessor for moving between the staging area and the stack of mixing compartments;




a card mover for moving cards from the compartments to a second card receiver; and




the microprocessor performing as a counting system for counting cards within specified areas within the card handler.




This apparatus may further comprise a data storage medium accessible by the processing unit, wherein the data storage medium has a program stored on it, and wherein the program is configured to cause the processing unit to cause the card moving means to move cards from the staging area to random compartments. The microprocessor may monitor, record and control a display for the use of the apparatus. The apparatus may further comprise at least one sensor for monitoring the movement of cards and the data storage medium may be further configured to cause the processing unit to detect a card jam.




A method according to the present invention for substantially continuously replenishing a group of processed cards may comprise:




providing a card receiver for receiving cards to be processed;




providing a single stack of card-receiving compartments generally adjacent to the card receiver and means for moving the stack relative to a card moving mechanism;




providing a card-moving mechanism between the card receiver and the stack for moving cards from the card receiver to the card-receiving compartments;




providing a second card receiver for receiving processed cards;




providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and




counting cards within specified areas within the card handler.




Card Receiver




Referring to

FIGS. 3 and 4

, the card receiver or loading region


26


includes a card receiving well


60


. The well


60


is defined by upright, generally parallel card guiding side walls


62


and a rear wall


64


. It includes a floor surface


66


pitched or angled downwardly toward the front of the apparatus


21


. Preferably, the floor surface is pitched from the horizontal at an angle ranging from approximately five to twenty degrees, with a pitch of seven degrees being preferred. A removable, generally rectangular weight or block


68


is freely and slidably received in the well


60


for free forward and rearward movement along the floor surface


66


. Under the influence of gravity, the block


68


will tend to move toward the forward end of the well


60


. The block


68


has an angled, card-contacting front face


70


for contacting the back (i.e., the bottom of the bottommost card) of a group of cards placed into the well, and urges cards (i.e., the top card of a group of cards) forward into contact with the card transporting mechanism


30


. The card-contacting face


70


of the block


68


is at an angle complimentary to the floor surface


66


of the well


60


, for example, an angle of between approximately 10 and 80 degrees, and preferably at an angle of 40 degrees. This angle and the weight of the block keep the cards urged forwardly against the transport mechanism


30


. The selected angle of the floor


66


and the weight of the block


68


allow for the free floating rearward movement of the cards and the block


68


to compensate for the rearward force and movement generated as the top or forwardmost card contacts the transport mechanism


30


and begins to move. The well


60


includes a card present sensor


74


to sense the presence or absence of cards in the well


60


. Preferably, the block


68


is mounted on a roller


69


for easing the movement of the block


68


, and/or the floor


66


and the bottom of the block may be formed of or coated with friction reducing material. As shown in

FIG. 6

, the block


68


may have a thumb or finger receiving notch


71


to facilitate moving it.




Card Receiving Compartments




The assembly or stack of card receiving compartments


28


is depicted in

FIGS. 4

,


9


and


10


, and may also be referred to as a rack assembly. Referring back to

FIG. 3

, the rack assembly


28


is housed in an elevator and rack assembly housing


78


generally adjacent to the well


60


, but horizontally spaced therefrom. An elevator motor


80


is provided to position the rack assembly


28


vertically under control of a microprocessor, in one embodiment, generally part of the processing unit


54


. The motor


80


is linked to the rack assembly


28


by a continuous resilient member such as a timing belt


82


. Referring to

FIG. 10

, which depicts a portion of the rack assembly


28


and how it may be assembled, the rack assembly


28


includes a bottom plate


92


, a left hand rack


94


carrying a plurality of half shelves


96


, a right hand rack


98


including a plurality of half shelves


100


and a top plate


102


. Together the right and left hand racks


94


,


98


and their respective half shelves


96


,


100


form the individual plate-like shelf pieces


104


for forming the top and bottom walls of the individual compartments


106


. The rack assembly


28


is operably mounted to the apparatus


21


by a left side rack plate


107


and a linear guide


108


. It is attached to the guide by a guide plate


110


. The belt


82


links the motor


80


to a pulley


112


for driving the rack assembly


28


up and down. A hall effect switch assembly


114


is provided to sense the bottom position of the rack assembly


28


.





FIG. 9

depicts a rack assembly


28


having 19 individual compartments


106


for receiving cards. Generally speaking, a larger number of individual compartments is preferred over fewer compartments, with 17 to 19 compartments being most preferred for randomizing four decks of cards, but it should be understood that the present invention is not limited to a rack assembly of seventeen to nineteen compartments. Preferably, the compartments


106


are all substantially the same size, i.e., the shelves


104


are substantially equally vertically spaced from each other.

FIG. 7

shows, in part, a top plan view of one of the shelf members


104


and that each includes a pair of rear tabs


124


located at respective rear corners of the shelf member


104


. The tabs


124


are for card guiding, and help make sure cards are moved from the transporting mechanism


30


into the rack assembly


28


without jamming by permitting the leading edge of the card to be guided downwardly into the compartment


106


before the card is released from the card moving mechanism


30


. Generally, it is desirable to mount the shelves as close to the transporting mechanism


30


as possible.





FIG. 11

depicts an alternative embodiment of plate-like shelf members


104


comprising a single-piece plate member


104


′. An appropriate number of the single-piece plates, corresponding to the desired number of compartments


106


would be connected between the side walls of the rack assembly


28


. The plate


104


′ depicted in

FIG. 11

includes a curved or arcuate edge portion


126


on the rear edge


128


for removing cards or clearing jammed cards, and it includes the two bilateral tabs


124


, also a feature of the shelf members


104


of the rack assembly


28


depicted in FIG.


7


. The tabs


124


act as card guides and permit the plate-like shelf members


104


forming the compartments


106


to be positioned as closely as possible to the card transporting mechanism


30


to ensure that cards are delivered correctly into a compartment


106


even though they may be warped or bowed.




Referring back to

FIG. 5

, an advantage of the plates


104


(and/or the half plates


96


,


100


) forming the compartments


106


is depicted. As shown in more detail in

FIG. 5



a


, each plate


104


includes a beveled or angled underside rearmost surface


130


in the space between the shelves or plates


104


, i.e., in each compartment


106


. Referring to

FIG. 5

, the distance between the forward edge


134


of the plate


104


and the forward edge


132


of the bevel


130


is preferably less than the width of a typical card. The leading edge


136


of a card being driven into a compartment


106


hits the beveled surface


130


and falls down on the top of cards already in the compartment


106


so that it comes to rest properly in the compartment


106


or on the uppermost card of cards already delivered to the compartment. To facilitate a bevel


130


at a suitable angle


137


, a preferred thickness for the plate-like shelf members


104


is approximately {fraction (3/32)} of an inch, but this thickness and/or the bevel angle can be changed or varied to accommodate different sizes of cards, such as poker and bridge cards. Preferably, the bevel angle


137


is between approximately ten and 45 degrees, and more preferably is between approximately fifteen and twenty degrees. Whatever bevel angle and thickness is selected, it is preferred that cards C should come to rest with their trailing edge at least even with and, preferably rearward of edge


132


of the plate-like shelf members


104


.




The front of the rack assembly


28


is closed by a removable cover


142


, which may be formed of opaque, transparent or semi-transparent material such as suitable metal or plastic.




Card Moving Mechanism




Referring to

FIGS. 4

,


5


and


6


, a preferred card transporting or moving mechanism


30


linking the card receiving well


60


and the compartments


106


of the rack assembly


28


includes a card pickup roller assembly


150


. The card pick-up roller assembly


150


is located generally at the forward portion of the well


60


. The pick-up roller assembly


150


includes friction rollers


151


A,


151


B supported by a bearing mounted axle


152


extending generally across the well


60


whereby the card contacting surface of the roller is in close proximity to the forward portion of the floor surface


66


. The roller assembly


150


is driven by a pick up motor


154


operably coupled to the axle


152


by a suitable continuous connector


156


such as a belt or chain. The card-contacting surface of the roller may be generally smooth, it may be textured or it may include one or more finger or tab-like extensions, as long as card gripping and moving is not impaired.




With continued reference to

FIGS. 4

,


5


and


6


, the preferred card moving mechanism


30


includes a pinch roller card accelerator or speed-up system


160


located adjacent to the front of the well


60


generally between the well


60


and the rack assembly


28


forwardly of the pick-up roller assembly


150


. As shown in

FIG. 7

, it is the speed-up system


160


which nests close to the shelves


104


between the tabs


124


of the shelves. Referring back to

FIGS. 4

,


5


and


6


, the speed-up system


160


comprises a pair of axle supported, closely adjacent speed-up rollers, one above the other, including a lower roller


162


and an upper roller


164


. The upper roller


164


may be urged toward the lower roller


162


by a spring assembly


166


(

FIG. 4

) or the roller


162


and


164


may be fixed in slight contact or near to contact and formed of a generally firm yet resilient material which gives just enough to admit a card. Referring to

FIG. 4

, the lower roller


162


is a driven by a speed-up motor


166


operably linked to it by a suitable connector


168


such as a belt or a chain. The mounting for the speed-up rollers also supports a rearward card in sensor


172


and a forward card out sensor


176


.

FIG. 5

is a largely representational view depicting the relationship between the card receiving well


60


and the card transporting mechanism


30


, and also shows a card C being picked up by the pickup roller assembly


150


and being moved into the pinch roller system


160


for acceleration into a compartment


104


of the rack assembly


28


.




In one embodiment, the pick-up roller assembly


150


is not continuously driven, but rather indexes and includes a one-way clutch mechanism. After initially picking up a card and advancing it into the speed-up system


160


, the pick-up roller motor


154


stops when the leading edge of a card hits the card out sensor


176


, but the roller assembly


150


free-wheels as a card is accelerated from under it by the speed-up system


160


. In one embodiment, the speed-up pinch system


160


is continuous in operation once a cycle starts. When the trailing edge of the card passes the card out sensor


176


, the rack assembly


28


moves the next designated compartment into place for receiving a card. The pick up motor


154


then reactuates.




Additional components and details of the transport mechanism


30


are depicted in

FIG. 6

, an exploded assembly view thereof. In

FIG. 6

the inclined floor surface


66


of the well


60


is visible, as are the axle mounted pickup and pinch roller assemblies


150


,


160


, respectively, and their relative positions.




Referring to

FIGS. 4 and 5

, the transport assembly


30


includes a pair of generally rigid stopping plates including an upper stop plate and a lower stop plate


180


,


182


, respectively. The plates


180


,


182


are fixedly positioned between the rack assembly


28


and the speed-up system


160


immediately forward of and above and below the pinch rollers


162


,


164


. The stop plates


180


,


182


stop the cards from rebounding or bouncing rearwardly, back toward the pinch rollers, after they are driven against and contact the cover at the front of the rack assembly


28


.




Processing/Control Unit





FIG. 14

is a block diagram depicting an electrical control system which may be used in one embodiment of the present invention. The control system includes a controller


360


, a bus


362


, and a motor controller


364


. Also represented in

FIG. 14

are inputs


366


, outputs


368


, and a motor system


370


. The controller


360


sends signals to both the motor controller


364


and the outputs


368


while monitoring the inputs


366


. The motor controller


364


interprets signals received over the bus


362


from the controller


360


. The motor system


370


is driven by the motor controller


364


in response to the commands from the controller


360


. The controller


360


controls the state of the outputs


368


by sending appropriate signals over the bus


362


.




In a preferred embodiment of the present invention, the motor system


370


comprises motors that are used for operating components of the card handling apparatus


21


. Motors operate the pick-up roller, the pinch, speed-up rollers, the pusher and the elevator. The gate and stop may be operated by a motor, as well. In such an embodiment, the motor controller


364


would normally comprise one or two controllers and driver devices for each of the motor used. However, other configurations are possible.




The outputs


368


include, for example, alarm, start, and reset indicators and inputs and may also include signals that can be used to drive a display device (e.g., a LED display—not shown). Such a display device can be used to implement a timer, a card counter, or a cycle counter. Generally, an appropriate display device can be configured and used to display any information worthy of display.




The inputs


366


include information from the limit switches and sensors described above. Other inputs might include data inputted through operator or user controls. The controller


360


receives the inputs


366


over the bus


362


.




Although the controller


360


can be any digital controller or microprocessor-based system, in a preferred embodiment, the controller


360


comprises a processing unit


380


and a peripheral device


382


as shown in FIG.


16


. The processing unit


380


in the preferred embodiment may be an 8-bit single-chip microcomputer such as an 80C52 manufactured by the Intel Corporation of Santa Clara, Calif. The peripheral device


382


may be a field programmable micro controller peripheral device that includes programmable logic devices, EPROMs, and input-output ports. As shown in

FIG. 15

, peripheral device


382


interfaces the processing unit


380


to the bus


362


.




The series of instructions stored in the controller


360


is shown in

FIGS. 15 and 16

as program logic


384


. In a preferred embodiment, the program logic


384


is RAM or ROM hardware in the peripheral device


382


. (Since the processing unit


380


may have some memory capacity, it is possible that some of the instructions are stored in the processing unit


380


.) As one skilled in the art will recognize, various implementations of the program logic


384


are possible. The program logic


384


could be either hardware, software, or a combination of both. Hardware implementations might involve hardwired code or instructions stored in a ROM or RAM device. Software implementations would involve instructions stored on a magnetic, optical, or other media that can be accessed by the processing unit


380


. Under certain conditions, it is possible that a significant amount of electrostatic charge may build up in the card handler


21


. Significant electrostatic discharge could affect the operation of the handler


21


. It may, therefore, be helpful to isolate some of the circuitry of the control system from the rest of the machine. In one embodiment of the present invention, a number of optically-coupled isolators are used to act as a barrier to electrostatic discharge.




As shown in

FIG. 16

, a first group of circuitry


390


can be electrically isolated from a second group of circuitry


392


by using optically-coupled logic gates that have light-emitting diodes to optically (rather than electrically) transmit a digital signal, and photo detectors to receive the optically transmitted data. An illustration of electrical isolation through the use of optically-coupled logic gates is shown in

FIG. 17

, which shows a portion of

FIG. 16

in detail. Four Hewlett-Packard HCPL-2630 optocouplers (labeled


394


,


396


,


398


and


400


) are used to provide an 8-bit isolated data path to the output devices


368


. Each bit of data is represented by both an LED


402


and a photo detectors


404


. The LEDs emit light when forward biased, and the photo detectors detect the presence or absence of the light. Data is thus transmitted without an electrical connection.




Second Card Moving Mechanism




Referring to

FIGS. 4

,


8


and


8




a


, the apparatus


21


includes a second card moving mechanism


34


comprising a reciprocating card unloading pusher


190


. The pusher


190


includes a substantially flexible pusher arm


192


in the form of a rack having a plurality of linearly arranged apertures


194


along its length. The arm


192


is operably engaged with the teeth of a pinion gear


196


driven by an unloading motor


198


controlled by the microprocessor. At its leading or card contacting end, the pusher arm


192


includes a blunt, enlarged card-contacting head end portion


200


. The end portion


200


is greater in height than the spacing between the shelf members


104


forming the compartments


106


to make sure that all the cards contained in a compartment are contacted and pushed as it is operated, even bowed or warped cards, and includes a pair outstanding guide tabs


203


at each side of the head


200


for interacting with the second card receiver


36


for helping to insure that the cards are moved properly and without jamming from the compartments


106


to the second card receiver


36


. The second card moving mechanism


34


is operated periodically (upon demand) to empty stacks of cards from compartments, i.e., compartments which have received a complement of cards or a selectable minimum number of cards.




Second Card Receiver




When actuated, the second card moving mechanism


34


empties a compartment


106


by pushing cards therein into a second card receiver


36


, which may take the form of a shoe-like receiver, of the apparatus


21


. The second card receiver


36


is shown in

FIGS. 1

,


4


,


14


and


16


, among others.




Referring to

FIGS. 12 and 13

, the second card receiver


36


includes a shoe-like terminal end plate


204


and a card way, indicated generally at


206


, extending generally between the rack assembly


28


and the terminal end plate


204


. When a compartment


106


is aligned with the card way


206


, as shown in

FIG. 12

, the card way


206


may be thought of as continuous with the aligned compartment. Referring to

FIG. 4

, an optional cover operating motor


208


is positioned generally under the card way


206


for raising and lowering a powered cover


142


if such a cover is used.




Referring back to

FIGS. 4

,


12


and


13


, the card way


206


has a double curved, generally S-shaped surface and comprises a pair of parallel card guiding rails


210


,


212


, each having one end adjacent to the rack assembly


28


and a second end adjacent to the terminal end


204


. Each rail


210


,


212


has a card-receiving groove


213


. A S-shaped card support


211


is positioned between the rails


210


,


212


for supporting the central portion of a card or group of cards as it moves down the card way


206


. A pair of card-biasing springs


215


are provided adjacent to the rails


210


,


212


to urge the cards upwardly against the top of the grooves


213


to assist in keeping the all the cards in the group being moved into the second receiver


36


in contact with the pusher


190


. The curves of the card way


206


help to guide and position cards for delivery between cards already delivered and the card-pushing block


214


, which is generally similar to the block


68


. The second curve portion


207


in particular helps position and align the cards for delivery between cards already delivered and the card pushing block


214


.




The second card receiver


36


is generally hollow, defining a cavity for receiving cards and for containing the mirror image rails


210


,


212


, the motor assembly


208


and a freely movable card pushing block


214


. Referring to

FIG. 12

, the block


214


has an angled, front card contacting face


216


, the angle of which is generally complementary to the angle of the terminal end plate


204


. The block


214


has a wheel or roller


218


for contacting the sloping or angled floor


220


of the second card receiver


36


whereby the block moves freely back and forth. The free movement helps absorb or accommodate the force generated by the dealer's hand as he deals, i.e., the block


214


is free to bounce rearwardly. A suitable bounce limit means (such as a stop


221


mounted on the floor


220


or a resilient member, not shown) may be coupled near the block


214


to limit its rearward travel. Referring to

FIG. 4

, a suitable receiver empty sensor


222


may be carried by the terminal plate


204


at a suitable location, and a card jammed sensor


224


may be provided along the card way


206


adjacent to the guide rails


210


,


212


. The receiver empty sensor


222


is for sensing the presence or absence of cards. The sensor


223


senses the location of block


214


indicating the number of cards in the buffer, and may be operably linked to the microprocessor or directly to the pusher motor


198


for triggering the microprocessor to actuate the pusher


190


of the second transport assembly


34


to unload one or more groups of cards from the compartments


106


.




As depicted in

FIG. 13

, the terminal plate


204


may include a sloped surface


204


′. The sloped surface


204


′ has a raised portion closest to the terminal plate


204


, and that portion fits generally under a notch


205


′ in the terminal plate


204


for receiving a dealer's finger to facilitate dealing and to help preserve the flatness of the cards. The shoe


204


′, the terminal plate


204


and a removable card way cover


209


may be formed as a unit, or as separable individual pieces for facilitating access to the inside of the second receiver


36


.





FIG. 12

is a largely representational view depicting the apparatus


21


and the relationship of its components including the card receiver


26


for receiving a group of new or played cards for being shuffled for play, including the well


60


and block


68


, the rack assembly


28


and its single stack of card-receiving compartments


106


, the card moving or transporting mechanism


30


between and linking the card receiver


26


and the rack assembly


28


, the second card mover


190


for emptying the compartments


106


and the second receiver


36


for receiving randomized or shuffled cards.




Operation/Use




Appendix B outlines one embodiment of the operational steps or flow of the method and apparatus of the present invention. The start input is actuated and the apparatus


21


homes (see Appendix B). In use, played or new cards to be shuffled or reshuffled are loaded into the well


60


by moving the block


68


generally rearwardly or removing it. Cards are placed into the well


60


generally sideways, with the plane of the cards generally vertical, on one of the long side edges of the cards (see FIGS.


5


and


12


). The block


68


is released or replaced to urge the cards into an angular position generally corresponding to the angle of the angled card contacting face of the block, and into contact with the pick-up roller assembly


150


. As the cards are picked up, i.e., after the separation of a card from the remainder of the group of cards in the well


60


is started, a card is accelerated by the speed-up system


160


and:spit or moved through a horizontal opening between the plates


180


,


182


and into a selected compartment


106


. Substantially simultaneously, movement of subsequent cards is underway, with the rack assembly


28


position relative to the cards being delivered by the transport mechanism


30


being selected and timed by the microprocessor whereby selected cards are delivered randomly to selected compartments until the cards in the well


60


arc exhausted. In the unlikely event of a card jam during operation, for example, if one of the sensors is blocked or if the pusher hits or lodges against the rack assembly


28


, the apparatus


21


may flow automatically or upon demand to a recovery routine which might include reversal of one or more motors such as the pick-up or speed-up motors, and/or repositioning of the rack assembly


28


a small distance up or down.




Upon demand from the receiver sensor


222


, the microprocessor randomly selects the compartment


106


to be unloaded, and energizes the motor which causes the pusher


190


to unload the cards in one compartment


106


into the second card receiver


36


. The pusher is triggered by the sensor


222


associated with the second receiver


36


. It should be appreciated that each cycle or operational sequence of the machine


21


transfers all of the cards placed in the well


60


each time, even if there are still cards in some compartments


106


. In one embodiment, the apparatus


21


is programmed to substantially constantly maintain a “buffer” (see

FIG. 12

wherein the buffer is depicted at “B”) of a selected number of cards, for example 20 cards, in the second receiver. A buffer of more or less cards may be selected.




In operation, when sensor


74


detects cards present, the entire stack of unshuffled cards in the card receiver


26


is delivered one by one to the card receiving compartments


106


. A random number generator is utilized to select the compartment which will receive each individual card. The microprocessor is programmed to skip compartments that hold the maximum number of cards allowed by the program. At any time during the distribution sequence, the microprocessor can be instructed to activate the unloading sequence. All compartments


106


are randomly selected.




It is to be understood that because cards are being fed into and removed from the apparatus


21


on a fairly continuous basis, that the number of cards delivered into each compartment


106


will vary.




Preferably, the microprocessor is programmed to randomly select the compartment


106


to be unloaded when more cards are needed. Most preferably, the microprocessor is programmed to skip compartments


106


having seven or fewer cards to maintain reasonable shuffling speed.




It has been demonstrated that the apparatus of the present invention provides a recurrance rate of at least 4.3%, a significant improvement over known devices.




In one exemplary embodiment, the continuous card shuffling apparatus


21


of the present invention may have the following specifications or attributes which may be taken into account when creating an operational program.




Machine Parameters—4 Deck Model




1. Number of compartments


106


: variable between 13-19;




2. Maximum number of cards/compartment: variable between 10-14;




3. Initial number of cards in second card receiver: 20-24;




4. Theoretical capacity of the compartments: 147-266 cards (derived from the number of compartments×the preferred maximum number of cards/compartment);




5. Number of cards in the second card receiver


36


to trigger unloading of a compartment: variable between 6-10;




6. Delivery of cards from a compartment


106


is not tied to a predetermined number of cards in a compartment (e.g., a compartment does not have to contain 14 cards to be unloaded). The minimum number of cards to be unloaded may range from between 4 to 7 cards and it is preferred that no compartment


106


be completely full (i.e., unable to receive additional cards) at any time.




In use, it is preferred that the apparatus


21


incorporates features, likely associated with the microprocessor, for monitoring and recording the number of cards in each group of cards being moved into the second card receiver


36


, the number of groups of cards moved, and the total number of cards moved.




In one embodiment, taking into account the above set forth apparatus attributes, the apparatus


21


may follow the following sequence of operations:




Filling the Machine with Cards




1. The dealer loads the well


60


with pre-shuffled cards;




2. Upon actuation, the apparatus


21


randomly loads the compartments


106


with cards from the well, one card at a time, picking cards from the top of the cards in the well;




3. When one of the compartments


106


receives a predetermined number of cards, unload that compartment


106


into the second card receiver


36


;




4. Continue with #2. No compartment loading during second receiver loading;




5. When a second compartment


106


receives a predetermined number of cards, unload that compartment


106


into the second card receiver


36


, behind cards already delivered to the second receiver


36


;




6. The dealer continues to load cards in the well


60


which are randomly placed into the compartments


106


; and




7. Repeat this process until the initial number of cards in receiver


36


has been delivered.




In another practice of the present invention, there are three (or more or fewer) separate methods of filling the shoe. The method may be preferably randomly selected each time the machine is loaded. Step 3 (above) outlines one method. A second method is described as follows: Prior to the beginning of the filling cycle, a distinct number of compartments (e.g., four compartments) are randomly selected, and as those compartments reach a minimum plurality number of cards (e.g., six cards), those compartments unload as they are filled to at least that minimum number. The second method delays the initial loading of the shoe as compared to the first method. In a third method, as cards are loaded into the rack assembly, no cards unload until there are only a predetermined plurality number (e.g., four) compartments remaining with a maximum number (e.g., six or fewer) of cards. When this condition is met, the shoe loads from the last plurality number (e.g., four) of compartments as each compartment is filled with a minimum number (e.g., six cards) of cards. This third member delays loading even more as compared to the first and second methods.




Continuous Operation




1. The dealer begins dealing;




2. When the number of cards in the second card receiver


36


goes down to a predetermined number sensed by sensor


223


, unload one group of cards from one of the compartments


106


(randomly selected);




3. As cards are collected from the table, the dealer loads cards into the receiver


60


. These cards arc then randomly loaded into compartments


106


. In case a compartment has received the maximum number of cards allowed by the program, if selected to receive another card, the program will skip that compartment and randomly select another compartment; and




4. Repeat #2 and #3 as play continues. It is preferable that the ratio of cards out or in play to the total number of cards available should be low, for example approximately 24:208.




Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and without the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be verified with minimum game interruption. This system may be effected by a number of different procedures, each of which is exemplary and is not intended to limit the options or alternatives that may be used to effect the same or similar results.




One method of effecting this method comprises a continuous counting, analysis, reporting based on at least some (but not necessarily all) the following information provided to the microprocessor: the total initial number of cards provided to the shuffler, the number of cards dealt to each player, the number of cards dealt in a complete game, the number of cards dealt in a round, the total number of cards dealt out since new cards were introduced, the total number of cards returned to the shuffler, the difference between the number of cards dealt out and the number of cards returned to the shuffler, specific cards removed and re-supplied to the shuffler, and the like. It must be noted that continuous shufflers are intended to run with no total replacement of the cards to be shuffled, except when the used decks are replaced with new decks. As opposed to the more common batch shufflers, where a specific number of decks are shuffled, the shuffled decks are cut, the game is played with cards distributed until the cut is reached, and then the decks are reinserted into the shuffler for shuffling, the continuous shuffler maintains a large stock of cards within the shuffler assembly, with cards used in the play of a hand being reinserted into the assembly to be combined with the stock of cards that are shuffled and added to the shoe for distribution to the players. This creates the card distribution pattern where the cards are ordinarily distributed between various sections of a shuffler (e.g., a feeder, a separation rack, a shoe, etc.), a manually stored portion of cards on the table, including for example excess cards, discards, cards used in part or in whole in the play of the hand, and cards held by a player. This pattern makes it very difficult to maintain surveillance of the cards and maintain security with respect to the number or type of cards present on the table.




One type of continuous shuffler that is particularly useful in the practice of the present invention comprises a shuffler with a feeder zone, separation or shuffling zone (or “rack,” depending upon the design) and shoe zone. This shuffling zone could be any type of shuffling zone or shuffling process, including those constructions known in the art, wherein the novel feature of keeping a card count of cards specifically within a specific zone within the system is maintained. This is opposed to a construction where cards are merely counted in a batch as they are initially fed into a machine or into a zone. In this practice, for example, a constant count of cards is maintained in the shuffling zone by counting the cards inserted, the cards removed, and additional cards inserted into the zone. The feeder zone is a section where cards are inserted into the shuffling apparatus, usually stacked in a collection of cards to be shuffled. The feeder zone is a storage area in the shuffling device that stores unshuffled cards and provides or feeds those cards into a shuffling function. The shuffling or separation zone is a region within the shuffling or card handling apparatus where unshuffled cards are randomly distributed or separated into compartments or receiving areas to form subsets of randomly distributed cards from the unshuffled cards provided from the feeder zone. The shuffling zone could be any region within the device that accomplishes randomization of the cards while keeping track of the actual number of cards within the zone. The shoe is the section of the shuffling apparatus where shuffled cards are stored for delivery to a) players, b) the dealer and/or to c) discard or excess piles. The shoe may receive limited numbers of cards that are replenished (usually automatically) from the separation area. The general operation of this type of system would be as follows, with various exemplary, but non-limiting options provided.




Cards are inserted into the feeder region of the shuffler. A number of cards are fed, usually one at a time, into the shuffling or separation zone (hereinafter referred to as the ‘shuffling zone’). The number of cards may be all of the cards (e.g., 1, 2, 3, 4, 5 or more decks depending upon the size of the apparatus and its capacity) or less than all of the cards. The microprocessor (or a networked computer) keeps track of the number of cards fed from the feeder zone into the shuffling zone. The shuffling zone may comprise, for example, a number of racks, vertical slots, vertical compartments, elevator slots, carousel slots, carousel compartments, or slots in another type of movable compartments (movable with respect to the feeding mechanism from the feeder, which could include a stationary separation department and a movable feeder).




The shuffling zone can also include a completely different style of randomization or shuffling process, such as the shuffling processes shown in Sines U.S. Pat. Nos. 5,676,372 and 5,584,483. Although the described apparatus is a batch-type shuffler, the device could be easily modified to deliver cards continuously, with a resupply of spent cards. The device, for example, could be adapted so that whenever discards are placed in the infeed tray, the cards are automatically fed into the shuffling chamber. The programming could be modified to eject hands, cards or decks on demand, rather than only shuffling multiple decks of cards.




In that type of apparatus, a stack of cards is placed up on edge in the shuffling zone, with one group of card edges facing upwardly, and the opposite edges supported by a horizontal surface defining a portion of the shuffling chamber. The stack of cards is supported on both sides, so that the group of cards is positioned substantially vertically on edge.




A plurality of ejectors drive selected cards out of the stack by striking an edge of a card, sending the card through a passage and into a shuffled card container. Shuffling is accomplished in one shuffling step. In this example, by equipping the shuffler with a feed mechanism that is capable of counting each card that is loaded, including the cards added into the stack during operation, and counting each card ejected from the stack, it is possible to keep track of the total number of cards within the shuffling zone at any given time.




In another example of the present invention, the shuffling chamber may be similar to that shown in U.S. Pat. No. 4,586,712 (Lorber et al.). That device shows a carousel-type shuffling chamber having a plurality of radially disposed slots, each slot adapted to receive a single card. A microprocessor keeps track of he number of or empty slots during operation (see column 7, lines 5-16).




In the example of a slot-type shuffling apparatus that accepts more than one card per shelf or slot, the cards are generally inserted into the particular type of compartments or slots available within the system on a random basis, one card at a time. This creates a series of segments or sub-sets of cards that have been randomly inserted into the compartments or slots. These sub-sets are stored until they are fed into the shoe. The number of cards delivered from the shuffling zone into the shoe are also counted. In this manner, a constant count of the number of cards in the shuffling zone is maintained. At various times, either random times or at set intervals or at the command of the microprocessor, cards from the separation zone are directed into the shoe. The microprocessor may signal the need for cards in the shoe by counting the number of cards removed from the shoe (this includes counting the number of cards inserted into the shoe and the number of cards removed from the shoe, so that a count of cards in the shoe may be maintained.




The process may then operate as follows. At all times (continually), the microprocessor tracks the number of cards present in the shuffling zone. The dealer or other floor personnel activates the card verification process, halting the delivery of cards from the shuffling zone to the shoe. All cards on the table are then fed into the shuffling zone. The total cards in the shuffling zone (e.g., within the rack of compartments or slots) is determined. If there are cards in the shoe zone, those cards in the shoe are placed into the feeder zone. The cards are fed from the feeder zone into the shuffling zone. The total of cards


1


) originally in the shuffling zone area and


2


) the cards added to the feeder (and any cards already in the feeder that had not been sent to the shuffling zone before discontinuance of the handling distribution functions of the apparatus) and then fed into the separation zone are totaled. That total is then compared to the original number or programmed number of cards in the system. A comparison identifies whether all cards remain within the system and whether security has been violated.




The system may indicate a secure system (e.g., the correct amount or number of cards) by a visual signal (e.g., LED or liquid crystal readout, light bulb, flag, etc.) or audio signal. Similarly, an insecure security condition (e.g., insufficient number of cards or plethora of cards) could be indicated by a different visual or audio signal, or could activate an unloading sequence. If an insecure system notice is produced, there may be an optional function of reopening the system, recounting the cards, pausing and requiring an additional command prior to unloading, allowing the dealer to add additional cards subsequently found (e.g., retained at a player's position or in a discard pile), and then recounting some or all of the cards.




Alternatively, the cards in the shoe may also be accurately accounted for by the microprocessor. That is, the microprocessor in the card-handling device of the present invention may count the cards in the shuffling zone and the cards in the shoe zone. This would necessitate that sensing be performed in at least two locations (from the feeder into the shuffling zone and out of the shoe) or more preferably in at least three locations (from the feeder to the shuffling zone, from the shuffling zone to the shoe zone, and cards removed from the shoe). Therefore, the cards may be counted in at least three different ways within the apparatus and provide the functionality of maintaining a count of at least some of the cards secure within the system (that is, they cannot be removed from the system either without the assistance of the dealer, without triggering an unlock function within the system, or without visually observable activity that would be observed by players, the dealer, house security, or video observation).




For example, by counting and maintaining a count only within the shuffling zone, there is no direct access to the counted cards except by opening the device. By counting and maintaining a count within only the shuffling zone and the shoe, there is no direct access to the shuffling zone, and the cards may be removed from the shoe only by the dealer, and the dealer would be under the observation of the players, other casino workers, and video camera observation.




The initiation of the count will cause a minor pause in the game, but takes much less time then a shuffling operation, including both a manual shuffling operation (e.g., up to five minutes with a six deck shoe) and a mechanical shuffling operation (1-4 minutes with a one to six deck shoe, which is usually performed during the play of the game with other decks), with the counting taking one minute or less. The actual initiation of the count must be done by the dealer or other authorized personnel (e.g., within the house crew), although the card handling apparatus may provide a warning (based on time since the last count, the time of day, randomly, on a response to instructions sent from a house's control center, or with other programmed base) that a count should be performed. The count may be initiated in a number of ways, depending upon where the count is being performed. A starting point would always be providing an initial total card count of all cards to be used with the shuffler. This can be done by the machine actually counting all the cards at the beginning of the game, by the dealer specifically entering a number for the total number of cards from a keypad, or by indicating a specific game that is defined by the number of cards used in the game. The card verification process is preferably repeated automatically whenever a card access point is opened (i.e., a shoe cover or door is opened).




As an example, a situation will be analyzed where the dealer decides that a count is to be made in the system where card count is maintained in the shuffling zone only. The dealer enters or presets a specific card count of 208 (two hundred and eight cards, four decks) into the microprocessor for the shuffler by pressing numbers on a keypad. The dealer will deactivate any function of the machine that takes cards out of the shuffling zone will be deactivated. All cards on the table and in the shoe will then be added to the feeder zone. The cards will be automatically fed from the feeder zone into the shuffling zone and as a security function, each counted as it passes from the feeder zone to the shuffling zone. The count from this security function (or card totaling of cards not stored in the shuffling zone) will be added by the microprocessor to the running or rolling shufling zone card count to provide a total card count. This total card count will then be compared to the preset value.




In another embodiment, a four deck game of Spanish Twenty-One® blackjack will be played. The dealer indicates the game to be played, and the card handling device (shuffler) indicates that 192 (one hundred and ninety-two, that is, 4×48 cards) cards will be used. After one hour, the shuffler indicates that a count is required for security. The apparatus counts all cards in the shuffling zone and the shoe. The dealer closes a panel over the shoe to restrict access to the cards. The players' cards from the last hand, any discards, and all other cards not in the shuffling zone or shoe are then added to the feeder zone. The cards in the feeder zone are then fed into the shuffling zone and counted as the new card entry total. That new card entry total is added to the rolling total for cards held within the combined shuffling zone and shoe. If the total is 192, a green light (or other color, or LED or liquid crystal display, or audio signal) will indicate that the proper count was achieved. If the count is inaccurate, a number of different procedures may be activated, after the card handling device has appropriately indicated that there is a discrepancy between the original or initial card count and the final card count performed on command by the device. If the card count finds an insufficiency (e.g., fewer than 192 cards), the device may pause and the dealer and/or other casino employees will visually examine the table to see if cards were inadvertently left out of the count. The shuffler may also have the capability that it can abort a shuffling procedure and require a reloading of cards. If cards are found, the additional cards will be added to the feeder zone, an additional count initiated, and that second count total added to the initial final card count total. If the total still lacks correspondence to the initial count, a further search may be made or security called to investigate the absence of cards. If the device is in a “pause” mode, the dealer may activaye an unloading process or a recounting process. A complete separate count may be made again by the machine and/or by hand to confirm the deficiency. The indication of an excess of cards is a more definitive initial indication of a security issue. After such an indication, security would be called (either by floor personnel or by direct signal from the microprocesser) and an immediate count (mechanical and/or manual) of all the cards would be made. That issue would be resolved by the recount indicating the correct number of cards or an indication that an excess of cards actually exists.




The device can be constructed with not only a sensor or sensors to count the cards, but also with a scanner or scanners that can read data on the cards to indicate actual card ranks and values. In this manner, particularly by reading the cards going into the shoe and being removed from the shoe, and/or reading the cards going into distinct compartments within the rack, the shuffler may monitor the actual cards within the apparatus, not merely the number of cards present. In this manner, as where a jackpot is awarded and the cards must be verified, the card handling device may quickly verify the presence of all cards by number and rank within the decks. This can also be used to verify a hand by identifying which cards are specifically absent from the total of the cards originally inserted into the gaming apparatus. For example, the player's hand with a jackpot winning hand is left in front of the player. The apparatus is activated to count and identify cards. If the apparatus indicates that A-K-Q-J-10 of Hearts are missing from the count and the player has the A-K-Q-J-10 of Hearts in front of her/him, then the jackpot hand is verified with respect to the security of the total of the playing cards. This is ordinarily done manually and consumes a significant amount of time.




The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected.




The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe.

FIG. 18

is a side elevational view of an output shoe


36


incorporating a gate


400


mounted for pivotal movement about an axis


410


. The gate is of sufficient size and shape to retract and avoid obstruction of card way


206


when cards are moving into output shoe


36


. A leading edge of a group of cards (not shown) contacts a first surface


412


, moving gate


400


upwardly and substantially in a direction shown by arrow


414


.




Once the group of cards passes into the shoe as shown by the position of the group of cards identified as B, the gate lowers by means of gravity to a second position shown in phantom at


416


, blocking an opening to card way


206


. With gate


400


in the lower resting position shown at


416


, the dealer cannot inadvertently push cards B back into the card way


206


when removing cards from the shoe


36


. In this manner, the card way


206


is always capable of passing another group of cards to the shoe


36


, assuring a continuous supply of cards.




A novel gravity feed/diverter system is described to reduce the potential for jamming and greatly reduces the chance for multiple cards being fed into the shuffling zone. In this feature, two separate features are present between the feeder zone and the separation zone as shown in

FIG. 19

, which is a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed. The two features shown are adjacent to the feed tray


10


. The feed tray


10


angled (at other than horizontal) with respect to the horizontal plane, but could also be substantially horizontal. The cards are urged towards the features on a discriminating barrier


500


by a pickoff roller


502


. The pickoff roller


502


is shown here as driven by a motor


504


. The shape of the lower edge of the discriminating barrier


500


is important because it discourages more than one card at a time from passing from the feed tray


10


to the separation zone


506


. In the event that two cards are accidentally moved at the same time, the discriminating barrier


500


, because of the height of a lower edge


508


, the barrier will allow only one card to pass through, with the second (usually top most) card striking a braking surface


510


within the discriminating barrier


500


and retarding its forward movement.




The braking surfaces


510


are shown as two separate surfaces. However, the braking surface


510


can be a single continuous surface or more than two surfaces. It is important that a contact surface be provided that inhibits forward movement of a card resting upon another card. Since the friction between the two adjacent cards is minimal, the contact surface does not need to include sharply angled or substantially vertical surfaces to inhibit the forward movement of the card.




Another aspect of the separator of the present invention is the presence of a brake roller assembly


511


. The assembly includes a stationary top roller


512


and a driven roller


514


. The spacing between top roller


512


and bottom roller


514


is selected so that only one card can pass through the barrier


500


. Single cards passing through roller assembly


511


pass through speed-up roller assembly


516


, and into the shuffling zone.




Upon failing to advance, the apparatus may be programmed to treat the presence of the additional card (sensed by sensing elements within the shuffler, not shown) as a jam or as the next card to be advanced, without an additional card removed from the feeder zone. Separating the cards to assure that only one card at a time is fed is critical to obtaining accurate card counting and verification (unless the counting system is sufficiently advanced to enable distinguishign between the number of cards fed and counting that number of cards).




Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.












APPENDIX A











Motors, Switches and Sensors















Item




Name




Description











 1




ICPS




Input Card Present Sensor







 2




RCPS




Rack Card Present Sensor







 3




RHS




Rack Home Switch







 4




RPS




Rack Position Sensor







 5




UHS




Unloader Home Switch







 6




DPS




Door Present Switch







 7




RUTS




Rack Unload Trigger Sensor







 8




CIS




Card In Sensor







 9




COS




Card Out Sensor







10




GUS




Gate Up Switch







11




GDS




Gate Down Switch







12




SWRTS




Shoe Weight Release Trigger Sensor







13




SES




Shoe Empty Sensor







14




SJS




Shoe Jam Sensor







15




SS




Start Switch
















Name




Description









POM




Pick-off Motor






SUM




Speed-up Motor






RM




Rack Motor






UM




Unloader Motor






SWM




Shoe Weight Motor






GM




Gate Motor






SSV




Scroll Switch - Vertical






SSH




Scroll Switch - Horizontal






AL




Alarm Light






















APPENDIX B









Homing/Power-up
























1.




Unloader Home






2.




Door Present






3.




Gate Closed






4.




Card Out Sensor (COS) Clear






5.




Rack Empty and Home






6.




Input Shoe Empty






7.




Shoe Empty






8.




Card in Sensor (CIS) Clear






9.




Shoe Jam Sensor Clear














An extremely desirable feature of the shuffler of the present invention is the system of monitoring and moving cards.

FIG. 20

identifies the sensor and motor locations for a preferred embodiment of the invention.




Representative sensors are optical sensors with a light emitter and receiver. An example of a suitable sensor is a model number EE-SPY401 available from Omron of Schaumburg, Ill. The space constraints and the specific function of each sensor described below are factors to be considered when selecting a sensor. Although optical sensors are described below, it is possible to use other types of sensors such as proximity sensors, pressure sensors, readers for information installed on the cards (e.g., magnetic readers) and the like.




Sensor


600


is the dealing sensor. This sensor is capable of generating a signal for every card removed from the shoe. The signals are sent to the microprocessor, and are used to determine when the dealer removes the cards.




Sensor


602


is the shoe empty sensor. This sensor generates a signal when no cards are present in the shoe. The sensor generates a signal that is sent to the microprocessor. This signal is interpreted by the microprocessor as an instruction to deliver another group of cards to the shoe. This sensor is a back-up sensor, because the shoe is normally not empty. The sensor is used primarily to verify that the shoe is empty when the machine is initially loaded with cards.




Unloader trigger sensor


604


senses the amount of cards in the shoe, and generates a signal when a predetermined minimum number of cards are present in the shoe. The signal is sent to the microprocessor, and the microprocessor interprets the signal as an instruction to unload and deliver another group of cards into the shoe. In one example, the trigger sensor


604


activates a random number generator. The random number generator randomly selects a number between zero and three. The selected number corresponds to the number of additional cards to be dealt out of the shoe prior to unloading the next group of cards. If the randomly selected number is zero, the unloader immediately unloads the next group of cards.




Unloader extended switch


606


generates a signal that is indicative of the position of the unloader. When the unloader is in the extended position, unloader extended switch


606


generates a signal that is received by the microprocessor. The microprocessor interprets the signal as instructions to halt forward movement of the unloader, and reverse movement.




Staging switch


608


senses the position of the unloader. The sensor


608


is positioned at a point along the card way


206


. As a group of cards reaches the sensor, the sensor sends a signal to the microprocessor to stop forward movement of the unloader. A group of cards is therefore staged in the card way


206


. The microprocessor also receives signals from sensor


600


so that the staged group of cards is released while the dealer is removing cards from the shoe. This assures that the cards in the shoe, if pushed backwards initially, are traveling toward or resting against the exit of the shoe during unloading. In another example of the invention, the staging switch


608


unloads only when a signal from switch


600


is interrupted.




Rack Emptying Sensor


610


indicates when a rack has been unloaded. The sensor is functional only when the shoe cover is open. This sensor functions during a process of emptying cards from the machine. The microprocessor interprets the signal as instructions to initiate the emptying or unloading of a rack. When the signal is interrupted, the microprocessor instructs the rack to align another compartment with the unloader.




Shoe Cover Switch


612


indicates the presence of the shoe cover. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine.




Door Present Switch


614


senses the presence of the door covering the opening to the racks. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine.




Card Out Sensor


616


indicates when a card is passing into the rack from the speed up rollers


516


. The microprocessor must receive the signal in order to continue to randomly select a compartment or shelf and instruct the elevator motor


638


to move the elevator to the next randomly selected position. If the signal is interrupted, the microprocessor initiates a jam recovery routine. To recover from a card jam, the elevator is moved up and down a short distance. This motion almost always results in a trailing edge of the jammed card making contact with the speed up rollers


516


. The speed up rollers then deliver the card into the compartment. If the recovery is unsuccessful, the signal will remain interrupted, operations will hault. An error signal will be generated and displayed, and instructions for manually unjamming the machine will preferably be displayed. The function of the Card Out Sensor


161


is also critical to the card counting and verification procedure described above, as the signal produces a count of cards in each shelf in the rack.




Card In Sensor


618


is located on an infeed end of the speed-up rollers


516


and is used both to monitor normal operation and to provide information to the microprocessor useful in recovering from a card feed jam. During normal operation, the microprocessor interprets the generation of the signal from sensor


618


, the interruption of that signal, the generation and interruption of card out sensor


616


, in sequence as a condition of counting that card. If a card would travel in the reverse direction, that card would not be counted. During the jam recovery process, the interruption of the signal from sensor


618


tells the microprocessor that a jam occurring in the speed up rollers


516


has been cleared.




Card Separator Empty Sensor


620


monitors the progression of the cards as the cards leave the brake roller assembly


511


. Although there is another card present sensor


626


as will be described below in the input shoe


10


, sensor


620


senses the presence of the card before the signal generated by sensor


626


is interrupted. Because the spacing between sensors


620


,


626


is less than a card length, the information sent to the microprocessor from both sensors provides an indication of normal card movement.




Switch


622


is the main power switch. Upon activating the switch, a signal is sent to the microprocessor to activate the shuffling process. In one embodiment of the invention, upon delivering power to the shuffler, a test circuit first tests the voltage and phase of the power supply. A power adapter (not shown) is provided, and the available power is converted to a D.C. power supply for use by the shuffler.




Light


624


is an alarm light. The microprocessor activates the alarm light whenever a fault condition exists. For example, if the cover that closes off the mixing stack or the shoe cover is not in place, the alarm light


624


would be illuminated. If the card verification procedure is activated, and an incorrect number of cards is counted, this would also cause light


624


to illuminate. Other faults such as misdeals, card feed jams, card insertion jams, card delivery jams, and the like are all possible triggering events for the activation of alarm light


624


.




Feeder Empty Sensor


626


is an optical sensor located on a lower surface of the card receiving well


60


. This sensor sends a signal to the microprocessor. The microprocessor interprets the signal as an indication that cards are present, and that the feed system is to be activated. When the signal is interrupted, indicating that no cards are in the well


60


, the feed roller


502


stops delivering cards. In one embodiment, the lower driven roller


514


of brake roller assembly


511


runs continuously, while in the embodiment shown in

FIG. 19

, the lower roller runs only when feed roller


502


runs. Similarly, speed up rollers


516


can run continuously or only when the feed roller


502


and brake roller


514


is being driven. In one example, the operation of rollers


514


and


502


is intermittent, while the operation of speed up rollers


516


is continuous.




Referring back to

FIG. 20

, Enter Key


628


and Scroll Key


630


are both operator input keys. The Enter Key


628


is used to access a menu, and to scroll down to a particular entry. The Scroll Key


630


permits the selection of a field to modify, and Enter Key


628


can be used to input or modify the data. Examples of data to be selected and or manipulated includes: the type of game being played, the number of decks in the game, the number of cards in the deck, the number of promotional cards, the total number of cards in the machine, the table number, the pit number, and any other data necessary to accomplish card verification. Enter Key


628


provides a means of selecting from a menu of preprogrammed options, such as the type of game to be played (such as blackjack, baccarat, pontoon, etc.), the number of cards in the deck, the number of promotional cards, the number of decks, etc. The menu could also include other information of interest to the house such as the date, the shift, the name of the dealer, etc. This information can be tracked and stored by the microprocessor in associated memory, and included in management reports, or in other communications to the house.




A number of motors are used to drive the various rollers in the feed assembly (shown in FIG.


19


). Feed roller


502


is driven by motor


504


, via continuous resilient belt members


504


B and


504


C. Brake roller driven roller


514


is also driven by motor


504


via resilient continuous member


504


B. In another embodiment, rollers


502


and


514


are driven by different motors. Speed up roller assembly


516


is driven by motor


507


, via resilient belt member


507


B. Each of the motors is typically a stepper motor. An example of a typical stepper motor used for this application is available from Superior Electric of Bristol, Connecticut by ordering part number M041-47103.




Motor


636


drives the unloader


190


via continuous resilient member


636


B. The resilient member


636


B turns pulley or pinion gear.


637


, causing lateral motion of unloader


190


. Teeth of pinion gear


637


mesh with openings


194


in the unloader (see FIG.


8


).




Rack motor


638


causes the rack assembly to translate along a linear path. This path is preferably substantially vertical. However, the rack could be positioned horizontally or at an angle with respect to the horizontal. For example, it might be desirable to position the rack so that it travels along a horizontal path to reduce the overall height of the device. The shaft of motor


638


includes a pulley that contacts resilient member


82


(FIG.


12


). Resilient member is fixedly mounted to the rack assembly.




Unloader home switch


640


provides a signal to the microprocessor indicating that the unloader


190


is in the home position. The microprocessor uses this information to halt the rearward movement of the unloader


190


and allow the unloader to cease motion.




Rack home switch


642


provides a signal to the microprocessor that the rack is in the lowermost or “home” position. The “home” position in a preferred embodiment causes the feed assembly to come into approximate vertical alignment with a top shelf or opening of the rack. In another embodiment, the “home” position is not the lowermost position of the rack.




Gate motor


644


drives the opening and closing of the gate. Gate down switch


646


provides a signal to the microprocessor indicating that the gate is in its lowermost position. Gate Up Switch


648


provides a signal that the gate is in its uppermost position. This information is used by the microprocessor to determine whether the shuffling process should proceed, or should be stopped. The microprocessor also controls the gate via motor


644


so that the gate is opened prior to unloading a group of cards.




In a preferred card-handling device of the present invention, the number of cards in the rack assembly is monitored at all times while the shuffler is in the dealing mode. The microprocessor monitors the cards fed into and out of the rack assembly, and provides a visual warning that the number or amount of cards in the rack assembly is below a critical (predetermined, preset) number or level. When such a card count warning is issued, the microprocessor stops delivering cards to the shoe. When the cards are fed back into the machine and the number of cards in the rack assembly rises to an acceptable (preset or predetermined) level, the microprocessor resumes unloading cards into the shoe. The number of cards is dependent upon the game being dealt and the number of players present or allowed. For example, in a multi-deck blackjack game using 208 cards (four decks), the minimum number of cards in the rack is approximately 178. At this point, a signal is sent to the visual display. When the number of cards drops to 158 (the preset number), the microprocessor will stop delivery of cards to the shoe. Limiting the number of cards outside the rack assembly maintains the integrity of the random shuffling process. Although a description of preferred embodiments has been presented, various changes including those mentioned above could be made without deviating from the spirit of the present invention. It is desired, therefore, that reference be made to the appended claims rather than to the foregoing description to indicate the scope of the invention.



Claims
  • 1. An apparatus for continuously shuffling playing cards, said apparatus comprising:a card receiver for receiving a first group of cards; a single moveable stack of card-receiving compartments generally adjacent to the card receiver, and means for moving the stack; a card-moving mechanism between the card receiver and the stack; a processing unit that controls the card-moving mechanism and the means for relatively moving the stack with respect to the card receiver so that cards placed in the card receiver are moved into a selected number of compartments; a second card-moving mechanism between the stack and the second card receiver; a second card receiver for receiving cards from the compartments, and a counting system that counts cards when 1) passed from the card receiver to the stack of card-receiving compartments, and/or 2) passed from the stack of card-receiving compartments to the second card receiver so that the number of cards in a location between the card receiver and the second card receiver is known.
  • 2. A device for delivering shuffled cards comprising:a card receiver for receiving at least one stack of unshuffled cards; a plurality of individual compartments; a first card mover for moving each card in the stack individually from the card receiver to a compartment; a second card mover for moving cards from a compartment to a second card receiver upon demand; and a processing unit programmed to control the first card mover and the second card mover, wherein the processing unit randomly assigns each card in the stack to a compartment, and controls the first card mover and the second card movers upon demand.
  • 3. A method for continuously resupplying randomly arranged cards in a playing card handler comprising:providing a card staging area for receiving playing cards to be handled; providing a plurality of playing card-receiving compartments that are capable of receiving one-at-a-time more than one card into each compartment, the card staging area and the playing card-receiving compartments are relatively movable; providing a first playing card mover generally between the staging area and the playing card-receiving compartments and moving a playing card from the staging area into the playing card-receiving compartments; providing a second playing card mover for removing one or more playing cards from the playing card-receiving compartments; a microprocessor randomly removing one or more playing cards from the card-receiving compartments to a shuffled playing card receiving area; and a drive system responsive to the microprocessor providing relative motion between the second playing card mover and the playing card receiving compartments.
  • 4. The method of claim 3 wherein a counting system present in the playing card handler counts cards that are located within specified areas within the card handler so that the number of cards within the specified areas within the card handler is known.
  • 5. A method of delivering a continuous supply of shuffled cards on demand, apparatus comprising:a) providing a card shuffling chamber for randomizing cards that includes compartments for receiving random cards; b) a card receiver and card feed mechanism receiving and feeding unshuffled cards into the shuffling chamber; c) at least one sensor sensing the presence of a card as the card is being fed into the shuffling chamber; d) at least one sensor sensing the presence of a card as the card is being removed from the shuffling chamber; e) removing cards from the shuffling chamber on demand to provide a continuous supply of shuffled cards; f) a microprocessor receiving signals from at least sensors c) and d) and counting cards entering and being removed from the shuffling chamber and maintaining a count of cards present in the shuffling chamber so that the number of cards within the shuffling chamber is known; g) receiving instructions from an apparatus user to initiate a card counting process to count cards within a specified area of the apparatus, and h) signaling the mechanism to remove cards from the shuffling chamber by removing cards randomly from compartments in the shuffling chamber.
  • 6. The method of claim 5 wherein the microprocessor is programmed to:discontinue operation of card removal and/or pause card movement within the apparatus until cards outside of the shuffling chamber are loaded into the feed mechanism, receive an indication from the at least one sensor for sensing the presence of a card as the card is being fed into the shuffling chamber and receive an indication from the at least one sensor for sensing the presence of a card as the card is being removed from the shuffling chamber as an indication of current card count status within the apparatus on the visual display.
  • 7. The method of claim 6 wherein the microprocessor enables indication from the at least one sensor to sensing the presence of a card as the card is being fed into the shuffling chamber and the at least one sensor for sensing the presence of a card as the card is being removed from the shuffling chamber to indicate the number of cards added and removed from the shuffling chamber so that the number of cards within the shuffling chamber is known.
  • 8. A method of operation of a continuous card shuffling apparatus, comprisingproviding a card receiver having a support surface for supporting a stack of cards to be randomized; providing a card shuffling chamber comprising a plurality of card receiving compartments, each compartment capable of receiving multiple cards; moving cards individually from the card receiver to a compartment in the card shuffling chamber with a first card moving mechanism; aligning the card moving mechanism and a selected card receiving compartment; a second card moving mechanism for moving cards from a card receiving compartment to a shuffled card receiver having a support surface for receiving randomly arranged cards; and a microprocessor controlling operation of the continuous card shuffling apparatus.
  • 9. The method of claim 8, wherein the microprocessor controls unloading of cards from the card receiving compartments to the shuffled card receiver.
  • 10. The method of claim 9, wherein an unloading method is randomly selected from a plurality of preprogrammed unloading methods.
  • 11. The method of claim 9, wherein the microprocessor program unloads a predetermined number of compartments as each of the compartments receives a minimum number of cards in excess of one.
  • 12. The method of claim 11, wherein the predetermined number of compartments is four, and the minimum number of cards is 6.
  • 13. The method of claim 9, wherein a plurality of compartments are preselected to be the first compartments to unload.
  • 14. The method of claim 13, wherein as each of the preselected compartments receives a predetermined minimum number of cards, each preselected compartment unloads.
  • 15. The method of claim 9, wherein the device begins unloading compartments after all but a predetermined number of compartments has received a minimum predetermined number of cards, and as each predetermined compartment has received a predetermined minimum number of cards.
  • 16. The method of claim 15, wherein the predetermined number of compartments is 4, and the predetermined number of cards is 6.
  • 17. A method of substantially continuously resupplying randomly arranged cards, said method comprising the steps of:providing a card receiver for receiving cards to be processed; providing a single stack of card-receiving compartments that are able to receive more than one card into each compartment generally adjacent to the card receiver and means for moving the stack relative to a card moving mechanism; providing a card-moving mechanism between the card receiver and the stack and moving cards from the card receiver to the card-receiving compartments; providing a second card receiver for receiving processed cards; providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and counting each number of cards that has been moved to more than one specified area within the card handler so that the number of cards within the specified areas within the card handler is known.
RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/060,598, filed Apr. 15, 1998, now U.S. Pat. No. 6,254,096 issued Jul. 3, 2001 and Titled “DEVICE AND METHOD FOR CONTINUOUSLY SHUFFLING CARDS.”

US Referenced Citations (51)
Number Name Date Kind
793489 Williams Jun 1905 A
2001220 Smith May 1935 A
2001918 Nevius May 1935 A
2016030 Woodruff et al. Oct 1935 A
2043343 Warner Jun 1936 A
2778644 Stephenson Jan 1957 A
2937739 Levy May 1960 A
2950005 MacDonald Aug 1960 A
3312473 Friedman et al. Apr 1967 A
3690670 Cassady et al. Sep 1972 A
3897954 Erickson et al. Aug 1975 A
4232861 Maul Nov 1980 A
4361393 Noto Nov 1982 A
4368972 Naramore Jan 1983 A
4385827 Naramore May 1983 A
4497488 Plevyak et al. Feb 1985 A
4513969 Samsel, Jr. Apr 1985 A
4515367 Howard May 1985 A
4566782 Britt et al. Jan 1986 A
4586712 Lorber et al. May 1986 A
4659082 Greenberg Apr 1987 A
4741524 Bromage May 1988 A
4750743 Nicoletti Jun 1988 A
4770421 Hoffman Sep 1988 A
4807884 Breeding Feb 1989 A
4822050 Normand et al. Apr 1989 A
4832342 Plevyak et al. May 1989 A
4900009 Kitahara et al. Feb 1990 A
4969648 Hollinger et al. Nov 1990 A
5000453 Stevens et al. Mar 1991 A
5121921 Friedman et al. Jun 1992 A
5240140 Huen Aug 1993 A
5275411 Breeding Jan 1994 A
5288081 Breeding Feb 1994 A
5356145 Verschoor Oct 1994 A
5374061 Albrecht Dec 1994 A
5382024 Blaha Jan 1995 A
5390910 Mandel et al. Feb 1995 A
5431399 Kelley Jul 1995 A
5437462 Breeding Aug 1995 A
5584483 Sines et al. Dec 1996 A
5676372 Sines et al. Oct 1997 A
5683085 Johnson et al. Nov 1997 A
5690324 Otomo et al. Nov 1997 A
5695189 Breeding Dec 1997 A
6019368 Sines et al. Feb 2000 A
6039650 Hill Mar 2000 A
6139014 Breeding et al. Oct 2000 A
6250632 Albrecht Jun 2001 B1
6254096 Grauzer et al. Jul 2001 B1
6267248 Johnson et al. Jul 2001 B1
Foreign Referenced Citations (1)
Number Date Country
9840136 Sep 1998 WO
Non-Patent Literature Citations (1)
Entry
Encyclopedia of Games by John Scarne, 1973, “Super Contract Bridge”, p. 153.
Continuation in Parts (1)
Number Date Country
Parent 09/060598 Apr 1998 US
Child 09/690051 US