Head lice infestation, also known as pediculosis capitis, is a well-known epidemic and a common problem in pediatric practice. Domestic pets such as dogs and cats and farm animals may suffer from parasites, such as nits and ticks. Most commonly used methods for removing parasites such as lice from human hair or parasites from pets or other animals include the use of neurotoxic topical agents. Due to the toxicity of these agents, there is a constant drive to find other parasite removers, for example, non-neurotoxic topical agents, plant-based compounds and natural oils. For lice treatment in humans there are also oral treatment and physical methods. Pets or farm animals are sometimes treated with injections or materials that are dissolved into the skin of the animal.
The major concern regarding the efficiency of each of the methods is the ability of the parasite to develop resistance to the various (in particularly chemical) treatments. The only methods that the parasite cannot develop resistance are the physical methods. It may be beneficiary to develop a simple and cheap physical method for damaging parasites in mammals' hair.
Embodiments of the invention provide a method and a device for damaging a parasite while being on a surface of a body of a mammal. The device may be a hand held device which comprises an ultrasound transmitter for generating ultrasound radiation and a plurality of teeth extending from a base of the device and arranged alternately. It will be noted that alternating arrangement of teeth may refer to single type of tooth each alter, tow teeth of one type alternating with one tooth of another type, etc. The plurality of teeth comprises a plurality of vibrating teeth and a plurality of reflecting teeth, each having a reflecting chamber. It will be noted that plurality of teeth refers to one pair of teeth, each of another type, or mote. A reflecting chamber may be made of metal such as stainless steel, or be a gas-filled volume, or gas enveloped in a thin plastic skin, thinner than ¼ wavelength.
The ultrasound radiation transmitted from each of the vibrating teeth towards each of the reflecting teeth and may be reflected back by a reflecting tooth itself or by a reflecting chamber of the reflecting tooth which allows damaging a parasite located between the vibrating tooth and the reflecting tooth. The reflecting tooth made of reflecting material or having a chamber that may be filled with gas or other reflecting material.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings. Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like reference numerals indicate corresponding, analogous or similar elements, and in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention. Some features or elements described with respect to one embodiment may be combined with features or elements described with respect to other embodiments. For the sake of clarity, discussion of same or similar features or elements may not be repeated.
Although embodiments of the invention are not limited in this regard, the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more”. The terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, or the like. The term set when used herein may include one or more items.
Embodiments of the invention may allow damaging or destruction of parasites and parasite's eggs by ultrasound radiation reflected from a reflective tooth. A hand held device is placed on a surface of a body of a mammal, such as a human or an animal and is configured to transmit ultrasound radiation from a first tooth of the device towards a second tooth having a reflecting material or chamber, When a parasite is located between the first tooth and the second tooth it may be hit by the ultrasound energy applied from the first tooth and at least by a portion of the energy which is reflected back from the reflective chamber.
Using a reflective chamber may allow using lower level of ultrasound radiation which is desirable especially when treating human or other mammal skin. Low levels of ultrasound radiation which are required with embodiments of the invention, may allow use of smaller power source and hence smaller batteries. An exemplary intensity may reach 0.07 Watt/cm2, however, any other intensity may be used with embodiments of the invention.
The device, system and method described in embodiments of the invention may treat a variety of parasites and parasites' eggs. Exemplary parasites that may be treated may include, but are not limited to, lice, fleas, nits, insects and ticks. Embodiments of the invention may include a hand held device configured to apply ultrasound radiation which may be reflected by a reflective tooth or a reflective chamber such that the ultrasound energy level hitting a parasite treated by the device may be higher than the original level of radiation generated. As used herein, the term “damage” refers to any process which reduces the viability of a parasite, harms the parasite such as to prevent the parasite from moving, reproducing, hatching (e.g., parasite eggs) or the like. In some embodiments, the ultrasound radiation is preferably selected to kill the parasite.
Reference is now made to
Device 110 is preferably a mobile device which may be powered by an independent power source. For example, power source 140 may be or may include a battery; alternatively, power source 140 may include a power cord for connecting device 110 to an external power source. Electronic circuitry 150 may be configured to control the generation of the ultrasound signals by delivering electronic signals to each one of piezoelectric teeth 170. Electronic circuitry 155 may include, for example, a Phase Locked Loop (PLL) system to control the ultrasonic frequency, one or more amplifiers and one or more electronic circuits such as a “push-pull power stage” circuit to allow transfer of power to each tooth of piezoelectric teeth 170. In some embodiments of the invention, electronic circuitry 155 may include circuitry to generate a fixed predetermined frequency.
In some embodiments of the invention a vibrating element of an ultrasound transmitter may be mounted on the body of hand held device 110 so as to collectively vibrate teeth 170 while in other embodiments of the invention, optionally, each tooth of teeth 170 may vibrate by means of one or more vibrating elements mounted next to each respective tooth adjacent the teeth row or between teeth aligned in the row. According to some embodiments of the invention each tooth of teeth 170 may include piezoelectric material while in other embodiments ultrasound transducer may be located onside teeth 170, aside of the row of teeth 170 in proximity to teeth 170, in front of teeth 170, above teeth 170 or in other location which may allow each tooth of teeth 170 to transmit and/or generate ultrasound radiation.
In some embodiments of the invention hand-held device 110 may be placed on or at proximity to surface 120 so as to deliver ultrasound radiation to parasite 130. A parasite being located between a vibrating tooth and a reflecting tooth, e.g., a piezoelectric tooth 171 and a reflecting tooth 161 may be radiated with the ultrasonic radiation radiated from piezoelectric tooth 171 as well as with at least a portion of the transmitted radiation being reflected by the reflecting tooth itself or by the reflecting area or region of reflecting tooth 161 as described hereinafter in embodiments of the invention. The transmitted ultrasound energy is thus directed at a parasite from two opposing directions, nearly doubling the applied energy, thereby resulting in increased damage to tissues of parasite 130.
Teeth 190 may be arranged in an array of one or more rows. In some embodiments of the invention each row may include piezoelectric teeth 170 and reflecting teeth 160 arranged alternately. Each vibrating tooth may reside between two reflecting teeth and each reflecting tooth may reside between two piezoelectric teeth, except for the first tooth and the last tooth in the row. Such an arrangement having a reflecting tooth on each side of each piezoelectric tooth may allow reflection of the radiation arriving from the piezoelectric tooth from two adjacent reflecting teeth, a first on the right side of the piezoelectric tooth and a second on the left side of the piezoelectric tooth. It should be understood that in other embodiments of the invention the arrangement of teeth may be different, for example, teeth 170 may be reflecting teeth and teeth 160 may be piezoelectric teeth or both teeth 160 and 170 may be piezoelectric teeth. Any other arrangement of teeth may be used.
Reference is made now to
In some embodiments, each reflecting tooth, e.g., tooth 270, may be made from or may include a reflective material, such as for example, stainless still, metal, Styrofoam or the like while in other embodiments, each reflecting tooth, e.g., tooth 270, may include a reflective region, 275 which may be implemented by a hole, a chamber, cavity, a gap or a space in the body of tooth 270. Region 275 may include gas or another reflecting material such as, gas, metal and any other material to reflect ultrasonic radiation. A space 280 is created between any pair of adjacent reflecting tooth and piezoelectric tooth, e.g., reflecting tooth 270 and piezoelectric tooth 260. According to embodiments of the invention, a parasite which is placed between a piezoelectric tooth and an adjacent reflecting tooth, for example, at space 280, may be radiated with ultrasonic energy from a piezoelectric tooth, e.g., tooth 260 and with at least a portion of the reflected ultrasonic energy arriving from the reflective chamber of the reflecting tooth, e.g., from reflective chamber 275 of tooth 270. Due to the change in acoustic impedance, ultrasound waves which reach the subject at chamber 275, e.g. gas, are reflected. In some embodiments, the gas or air in reflective region serves as a reflector for the ultrasound energy. In some embodiments of the invention, a parasite which is placed between a piezoelectric tooth and an adjacent reflecting tooth may be radiated with ultrasonic energy from the piezoelectric tooth and with reflected ultrasonic energy arriving from two reflective chambers of two reflecting teeth on both sides of the piezoelectric tooth.
Reference is made now to
Embodiments of the invention may allow one or more parasites such as lice, fleas or nits to reside between a radiating surface, e.g., the surface of the piezoelectric tooth facing an adjacent reflective tooth, and a reflective surface, e.g., reflective chamber 275 of tooth 270 facing the adjacent radiating tooth. The acoustic radiation transmitted from the radiating surface may be reflected back, at least partially, by the substance—gas or other reflecting material—of reflective chamber 275 so as to allow a creation of a standing acoustic wave/s between the reflective chamber and the surface of the piezoelectric tooth. Such a standing acoustic wave may be desired to produce high ultrasonic intensity between two adjacent tooth, in order to damage tissues of a parasite residing between the reflective chamber and the surface of the piezoelectric tooth as the parasite may be hit from both the acoustic radiation transmitted from the radiating surface and by at least a portion of the acoustic radiation reflected back from the reflective chamber.
In some embodiments of the invention, the surface of the piezoelectric tooth may be covered by ultrasonic gel layer or other lotion. For example, a gel layer with thickness of ¾ λg wherein λg is the wavelength of the acoustic radiation within the ultrasonic gel, e.g., arriving from a vibrating tooth and measured at a resonance frequency (Fr) of, for example, 1.60 MHz-1.68 MHz. Other frequency may be set. The relations between λg, Fr and Cg which is the sound velocity in the ultrasonic gel are defined in the following equation:
μg=Cg/Fr (1)
In some embodiments, a standing acoustic wave is formed between a surface of the piezoelectric tooth 260 and the reflective chamber 275, the standing acoustic wave may have at least two maximum values, a first maximum value may be measured at the surface of the piezoelectric tooth and a second maximum value may be measured at a distance of ½ λg from the surface of the piezoelectric tooth. Reference is made now to
Although embodiments of the invention are not limited in this respect, the ultrasonic radiation being used in some embodiments of the invention may be a “non focused” ultrasonic energy which may not be focused by any lens. For example, a single piezoelectric tooth or a piezoelectric transducer may generate amplitude of 10 Watt for duration of 2 milliseconds.
Reference is now made to
Hand held device 500 may include a plurality of teeth 520 extending from body 510. Teeth 520 may resemble comb teeth used for combing or brushing hair of a human or a mammal In the exemplary shape of hand held device 500 teeth 520 may be arranged, for example, in two identical groups of teeth 540 and 530 positioned around portions of the perimeter of body 510 as shown in
Reference is made back to
Embodiments of the invention may allow reducing a viability of a parasite or an egg of a parasite, e.g., a louse or a louse egg, by providing ultrasonic radiation and reflection of ultrasonic radiation. Lice and louse eggs have viable tissues and when hit by a sufficient amount of ultrasonic radiation may cause damage of internal membranes of the tissues of both lice and louse eggs. A membrane of an internal organ of a louse or a louse egg may be damaged, hurt or torn due to the ultrasound radiation provided by a vibrating tooth and by at least a portion of the ultrasound radiation reflected back from a reflecting region in an adjacent reflecting tooth. When a tissue membrane is hurt or torn due to the ultrasound radiation, blood may be diffused out of the hurt organ, membrane or tissue toward other areas of a louse body or a louse egg.
Reference is made now to
Reference is made now to
In the exemplary illustration of
In some embodiments of the invention, each reflecting teeth 670 may include or may be made entirely by a reflective material, such as metal sheet or other reflective cover. In other embodiments, each tooth of reflecting teeth 670 may include a reflective chamber, a reflective cavity or a reflective space 675 which may include reflecting material or substance, such as gas, metal and any other material to capable of reflecting ultrasonic radiation. Except for the reflective space 675, each tooth from reflecting teeth 670 may include non-reflective material such as, for example, plastic, which absorbs the acoustic radiation transmitted from a piezoelectric tooth from teeth 660 and does not reach reflective space 675. In some embodiments of the invention, reflective chamber 675 may include a hole, space or area designed to include, contain or hold an elastic balloon as described with reference to
Embodiments of the invention may allow inflating balloon 610 by a predetermined amount of gas until reaching a desired thickness or shape of balloon 610. Balloon 610 may be flat and may have a shape of a rectangle while no gas is inflated into it and may become cylindrical with a predetermined three dimensional characteristics after gas is floated into it. Such an elastic balloon may allow controlling of the actual thickness of each one of teeth 670 and therefore allow approximating a location of a parasite to an adjacent piezoelectric tooth. Balloon 610 may be generated by welding of two elastic rectangle sheets and inflation of balloon 610 may take place once before use of the system for damaging parasites or on scheduled or non-scheduled times during use of the system for damaging parasites.
Reference is made back to
In some embodiments balloon 630 may be connected to, attached to or coupled to two or more electric conductors, such as electrical wires as shown for example, in
According to embodiments of the invention, a parasite which is placed between a piezoelectric tooth, e.g., one of teeth 660 and an adjacent reflecting tooth, e.g., the adjacent reflecting tooth of teeth 670, may be radiated with ultrasonic energy from the piezoelectric tooth 660 and with reflected ultrasonic energy arriving from the reflective chamber of the reflecting tooth, e.g., from reflective chamber 675 of tooth 670. In some embodiments of the invention, a parasite which is placed between a piezoelectric tooth and an adjacent reflecting tooth may be radiated with ultrasonic energy from the piezoelectric tooth and with reflected ultrasonic energy arriving from the reflective chambers.
The following example depicts efficiency of a system using ultrasonic radiation for damaging in which reflecting tooth is made of stainless steel. It should in no way be construed, however, as limiting the broad scope of the invention.
EXAMPLE: A reflective tooth made of stainless steel was used in a system for damaging parasites, e.g, a lice comb as presented in embodiments of the invention. Using stainless steel as a reflective material did not decrease lice's mortality rate compared to a reflective tooth comprising gas as a reflective material. When lice were treated with comb having gas as reflective material, the mortality rate (M.R.) was above 85%. Using stainless steel as a reflective material maintained the M.R. higher than 85%, where 73% M.R was reached one hours post activation and 91% M.R was reached three hours post activation. A reflective tooth made of plastic as an absorbing material was used in a system for damaging parasites and reached 24% M.R one hour post activation and 28% M.R three hours post activation.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2017/050018 | 1/5/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62275264 | Jan 2016 | US |