This application claims priority from German Patent Application No. 102014222693.7, filed Nov. 6, 2014, which is incorporated herein by reference in its entirety.
The present invention relates to the field of construction machines, in particular to a device for determining the temperature of a road building material, such as asphalt, bitumen, asphalt blend material or the like, newly applied by a construction machine, in particular a road finishing machine, in a mounting width, the device being arranged at the construction machine in a region within the mounting width and the device comprising an infrared temperature measuring head, a motor and a controller, the infrared temperature measuring head being arranged to be twistable by the motor transverse to the direction of travel of the construction machine and being effective to record temperature measuring values of the surface of the road building material during a rotational movement at at least two measuring points spaced apart from one another.
Furthermore, the present invention relates to a construction machine comprising such a device.
With road building projects, such as building a new road or renewing damaged road surfaces, the quality of the newly applied road building material is to be documented by the executing companies using check tests. Measuring the temperature of the asphalt layer directly after being mounted by the road finishing machine is among these tests. The temperature of the newly applied road building material is measured over the entire mounting width directly behind the asphalt plank of the road finishing machine.
A lane temperature monitoring system comprising a temperature sensor is known from WO 2000/70150 A1. The temperature sensor here may either by a thermal-imaging camera, a thermal scanner or a thermal-imaging camera operating in a “line scan” mode. The temperature sensor is arranged at the back end of a road finishing machine such that the entire width of the newly applied asphalt layer is scanned. The recorded temperature values may be displayed graphically on a display device.
Disadvantages with such a temperature sensor is the fact that a thermal-imaging camera or thermal scanner is usually very expensive to buy. In particular, for smaller building companies such an investment usually cannot be realized due to the high costs. Furthermore, it is disadvantageous that the detection or opening angles of a thermal-imaging camera or a thermal scanner are highly limited such that, with mounting or installation widths in a range of 8 to 12 meters, for example, a correspondingly adapted objective lens has to be applied at the thermal-imaging camera in order to be able to detect the entire mounting width of the newly applied road building material. This, in turn, increases the cost of such a temperature sensor further. Alternatively, both the thermal-imaging camera and the thermal scanner would have to be applied in a correspondingly elevated position at the road finishing machine, i.e. a lot more than four meters above the surface of the newly applied road building material, in order to be able to detect the entire mounting width of the newly applied road building material. However, this is of particular disadvantage when passing below bridges.
However, when mounting the thermal-imaging camera or thermal scanner at the road finishing machine in an advantageous region of 3 to 4 meters above the surface of the newly applied road construction material, due to the limited detection or opening angle, a correspondingly flat fitting angle relative to the surface of the newly applied road building material is necessitated (cf.
A device, as described above, for measuring the temperature of the surface of hot asphalt, including an infrared temperature measuring head moving transverse to the direction of travel, a motor for moving this sensor and a controller, is known already from DE 20 2009 016 129 U1.
Based on this device, calculating the mounting width of the newly applied asphalt layer is known from DE 20 2013 001 597 U1. Same is calculated using the height of the measuring head above the asphalt layer, which is determined using a distance sensor, and the angle values where the measuring head changes its direction of movement.
When recording the temperature measuring values by means of the known device, however, the result is not a steady measuring point pattern. When the fitting position and/or the fitting angles of the device change, so does the distance between the measuring points on the surface of the newly applied road building material. In addition, the distance between the measuring points in the direction of travel of the construction machine changes with a changing speed of travel of the construction machine. If same moves faster, the distance between the measuring points in the direction of travel will become larger.
Consequently, an object of the invention is to provide a simple and cheap device allowing temperature measuring values of newly applied road building material to be recorded over a large mounting width in a region directly behind a construction machine, in particular behind an asphalt plank of a road finishing machine, in a steady measuring point pattern.
According to an embodiments, a device for determining the temperature of a road building material, such as asphalt, bitumen, asphalt blend material or the like, applied by a construction machine, in particular a road finishing machine, in a mounting width, the device being arranged at the construction machine in a region within the mounting width, may have: an infrared temperature measuring head, a motor and a controller, the infrared temperature measuring head being arranged to be twistable by the motor in a direction transverse to the direction of travel of the construction machine and being effective to record temperature measuring values of the surface of the road building material during a rotational movement at at least two measuring points spaced apart from one another, characterized in that the controller is effective to control, when fitting the device at the construction machine in the region within the mounting width, the motor based on the fitting position of the device at the construction machine such that the distance between the measuring points on the surface to be measured remains steady.
Another embodiment may have a construction machine, in particular a road finishing machine, having at least one device as mentioned before, wherein the device is arranged in the back region and/or in the front region of the construction machine.
In accordance with embodiments, the controller is effective to control the motor additionally based on the fitting angles of the device at the construction machine.
Thus, a predetermined or preset distance of 25 cm, for example, between two measuring points transverse to the direction of travel of the construction machine is maintained on the surface of the newly applied road building material over the entire mounting width, irrespective of the fitting position and the fitting angles of the device. When the fitting position and/or fitting angles of the device are changed, exemplarily when rebuilding a tool at the machine, i.e. the device is shifted in height and/or transverse to the direction of travel of the construction machine and/or the fitting angles of the device are changed, the preset distance of 25 cm, for example, between two measuring points transverse to the direction of travel of the construction machine will be maintained over the mounting width even after changing the fitting position and/or the fitting angles.
In accordance with embodiments, this is achieved by the fact that, with a changing fitting position and/or changing fitting angles of the device, the motor controller is adapted correspondingly and, thus, the predetermined or set distance between two measuring points transverse to the direction of travel of the construction machine is restored and advantageously kept nearly equal.
Advantageously, the infrared temperature measuring head may be tilted by a very large angle, exemplarily in a range of about 120° to 130°. Thus, it is possible, using the inventive device, to detect temperature measuring values in a large region of a mounting width of up to 14 meters directly behind the asphalt plank of a road finishing machine, with an advantageous fitting height of the device in the region of 3 to 4 meters above the surface of the newly applied road building material. The inventive device thus is not limited only to the field of large mounting widths, but, due to the variable twisting angle of the infrared temperature measuring head, may be used instead for all the mounting widths of a road surface in the region mentioned before. Compared to thermal-imaging cameras or thermal scanners, this is advantageous since these usually comprise a fixed detection or opening angle. In addition, the road finishing machine here may pass below bridges, or the like, without any problem.
Of further advantage are the simple fitting of the device at the construction machine and the moderate costs of the individual components of the device and, correspondingly, the entire device. In particular, an infrared temperature measuring head is many times cheaper compared to a thermal-imaging camera or a thermal scanner. This means that purchasing the inventive device is also affordable for smaller building companies.
Thus, it is possible using the inventive device for a steady number of measuring points to be present for determining the temperature of the newly applied road building material with a steady mounting width of the newly applied road building material.
The requirement of having a steady number of measuring points or a steady distance between two measuring points will surely be a topic in biddings for road building projects, exemplarily for building a new road or renewing damaged road surfaces, in order to achieve steady and, thus, comparable quality measurements of the newly applied road building material.
In accordance with embodiments, the speed of movement of the infrared temperature measuring head changes as a function of the speed of travel of the construction machine. This means that an equal distance between the measuring points in the direction of travel of the construction machine, i.e. an equal distance between the series of measurements, is achieved on the surface of the newly applied road building material, irrespective of the speed of travel of the construction machine. When, for example, the distance between the series of measurements, i.e. the measuring points in the direction of travel of the construction machine, is 25 cm, when increasing the speed of travel of the construction machine, the speed of movement of the infrared temperature measuring head has to be increased as well and vice versa.
In order to achieve an approximately steady distance between the series of measurements, the controller for the motor or an evaluating unit arranged at the device or at the construction machine is advantageously connected electrically to the construction machine control computer or a displacement measuring means arranged at the construction machine, such as, for example, a travel wheel which is usually employed in road finishing machines. The speed value achieved in this way may then be used for calculating the speed of movement of the infrared temperature measuring head. Calculating the speed of movement of the infrared temperature measuring head may take place either in the controller for the motor or in the evaluating unit arranged at the device or at the construction machine.
The advantage of adapting the speed of movement of the infrared temperature measuring head to the speed of travel of the construction machine is such that a homogeneous network of measuring points results in connection with an equal measuring point distance transverse to the direction of travel of the construction machine, i.e. in the direction of movement of the infrared temperature measuring head. Only as many measuring points are recorded by the infrared temperature measuring head as are necessitated for illustrating and taking down the measured temperature measuring value, exemplarily on a control computer and/or a display and operating unit connected thereto. Post-processing the recorded temperature measuring value, exemplarily by the control computer, such as discarding or cancelling measuring values or series of measurements no longer required or an interpolation of measuring values or series of measurements, may be omitted. A quantity of data to be transmitted, limited to a minimum, is also of advantage for transmitting the data to different construction machines, such as, for example, a roller, in order to illustrate the data for the roller controller on a display unit in a compressed and easy manner.
Compared to a thermal-imaging camera or a thermal scanner, this is advantageous since these usually exhibit a very high resolution. Usually, many more measuring points are recorded than are necessitated for illustrating and taking down the measured temperature measuring values, exemplarily on a control computer and/or a display and operation unit connected thereto. The result here may be a high quantity of data which has to be processed by the control computer.
In accordance with embodiments, the direction of movement of the infrared temperature measuring head changes as soon as the measured temperature falls below a predetermined minimum value, exemplarily 80° C., at at least one measuring point. The infrared temperature measuring head which is moved by the motor transverse to the direction of travel of the construction machine continually measures the surface temperature of the newly applied road building material. The temperature values are usually in a range of 120 to 170° C. At positions where temperature values in the range of 80 to 120° C. are measured, the road building material mounted has been too cold—a so-called “cold spot” forms in the newly applied road layer, which decreases the temperature of the road surface. However, if the infrared temperature measuring head measures a temperature of less than 80° C., for example, it can be assumed that one of the two outer edges, i.e. the lateral end of the newly applied road layer, has been reached.
It is also possible for a so-called “cold spot” to be in a range below the predetermined minimum value of 80° C., for example. In order to avoid a premature and, possible, erroneous change in the direction of movement of the infrared temperature measuring head in this case, the infrared temperature measuring head is at first moved until the outer edge determined previously has been reached and the recorded temperature measuring values of the presently performed series of measurements are compared to the values of at least one of the series of measurements recorded before.
When at least a temperature value which is above the predetermined minimum value, i.e. above 80° C., for example, is determined at the measuring points in the edge region of the road surface, i.e. in the region of the outer edges, it can be assumed that the present mounting width has not decreased and that a so-called “cold spot” is present in the newly applied road layer. In this case, the infrared temperature measuring head is advantageously moved to the outer edge determined before, or beyond, until a temperature of less than 80° C., for example, is measured at at least one measuring point. In this case, it can be assumed that one of the two outer edges, i.e. the lateral end of the newly applied road layer, has been reached.
When only temperature values below the predetermined minimum value, i.e. below 80° C., for example, are determined at the measuring points in the region of the outer edges, it can be assumed that either the present mounting width has decreased or that there is a so-called “cold spot” in the edge region of the road surface, i.e. in the region of the outer edges. The infrared temperature measuring head will advantageously decrease the measuring range in the subsequent series of measurements and thus approximate a changed mounting width or outer edge. The infrared temperature measuring head is only twisted until a temperature of less than 80° C., for example, is measured at at least one measuring point. The infrared temperature measuring head then assumes that one of the two outer edges has been reached, i.e. the lateral end of the newly applied road layer.
When decreasing the mounting width, the number of measuring points where the infrared temperature measuring head records measuring values, also decreases due to the equal distance between measuring points. In the opposite case, i.e. when widening the mounting width, the number of measuring points will increase correspondingly.
In accordance with embodiments, the position where the infrared temperature measuring head changes its direction of movement is stored in the controller or an evaluating unit arranged at the device or at the construction machine for calculating the mounting width of the newly applied road building material. The mounting width of the newly applied road building material is than calculated from the stored angular positions of the infrared temperature measuring head and the height and the fitting angles of the device or the infrared temperature measuring head relative to the surface of the newly applied road building material.
In accordance with embodiments, the distance between the measuring points and/or the duration of the temperature measurement at a measuring point may be set. Thus, the distance between two measuring points is set both transverse to the direction of travel of the construction machine and in the direction of travel of the construction machine, advantageously by programming the controller, exemplarily using a control computer or a display and operating unit connected thereto. The time constant of the infrared temperature measuring head, i.e. the duration of the temperature measurement at a measuring point, may also be set, advantageously by programming, exemplarily using a control computer or a display and operating unit connected thereto. It is advantageously possible here to adjust the device to, for example, country-specific requirements. Since, in the US, a new road layer is mounted at a higher speed of travel of the road finishing machine, the duration of the temperature measurement at a measuring point has to be shortened here. Additionally, in the US, the distance between two measuring points is usually about 30 cm, whereas in Germany a measuring point distance of about 25 cm is being forced at present.
In accordance with embodiments, a contactless distance measurer, such as a laser distance measurer, is arranged in the region of the device, by means of which the distance of the infrared temperature measuring head to a measuring point where the infrared temperature measuring head is arranged, in the direction of travel of the construction machine, essentially perpendicularly to the surface of the road building material is measured. Compared to a height measurement by one of the machine operators, exemplarily using a measuring tape, such a distance or range measurement is of advantage since the measured value may be read out on the display and operating unit before beginning the construction works and subsequently be programmed into the controller of the device. Laser sensors operating according to the light run time measurement principle may be used for measuring distances, however, ultrasonic sensors or different sensor technologies may also be used.
In accordance with embodiments, the contactless distance measurer is part of the inventive device. Alternatively, the contactless distance measurer may be an external sensor which is, for example, arranged at a suitable position at the device or at the construction machine and connected to the device.
In accordance with embodiments, the contactless distance measurer is electrically connected to the controller of the device. Compared to manually programming the height value into the controller, exemplarily using a control computer or a display and operating unit connected thereto, it is advantageous for the measured value to be transferred directly from the distance measurer to the controller. Thus, erroneous inputs by one of the machine operators, for example, are avoided.
In accordance with embodiments, the controller is electrically connected to a weather station arranged at the construction machine which exemplarily determines the wind speed, ambient temperature, air humidity, rainfall and/or other ambient parameters in the region of the construction machine. Thus, the weather station transmits the determined measuring values to the controller which, in turn, uses or stores same for further calculations, exemplarily calculating the core temperature of the newly applied road building material.
In accordance with embodiments, the motor is a stepper motor, a servomotor, a direct-current motor or a direct-current motor including a gear unit.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
In the subsequent description of embodiments, same elements or elements of equal effect will be provided with same reference numerals in the appended drawings.
As is illustrated in
The infrared temperature measuring head 20 illustrated in
In
Starting from
In the example in accordance with
In all the embodiments illustrated in accordance with
In addition, in all the embodiments illustrated in accordance with
In the example of the embodiment in accordance with
The first measuring point 100 to be recorded in the region of the outer edge 111 is done in a distance of 3.75 meters, starting from a measuring point 103 which represents a so-called zero position for the infrared temperature measuring head 20. Consequently, a first twisting angle α=arctan (3.75/(h/cos γF))=arctan (3.75/(4/cos 15))≈arctan 0.91≈42.16° is set for the infrared temperature measuring head 20. For the following measuring point 100 in a distance d=0.25 meters in the direction of the right outer edge 112, a twisting angle of α=arctan ((3.75−d)/(h/cos γF))=arctan ((3.75−0.25)/(4/cos 15))≈arctan 0.85≈40.20° is to be set. The subsequent twisting angle α is arctan ((3.75−2d)/(h/cos γF))=arctan ((3.75−0.50)/(4/cos 15))≈arctan 0.78≈38.13°. The other twisting angles α to be set are calculated in analogy.
When approximating the measuring point 103 where the infrared temperature measuring head 20, in the direction of travel of the construction machine, is arranged essentially perpendicularly to the surface 110 of the road building material 50, the twisting angle is α=arctan ((3.75−14d)/(h/cos γF))=arctan ((3.75−3.50)/(4/cos 15))≈arctan 0.06≈3.45°. When reaching the measuring point 103, the twisting angle α to be set consequently is 0°, since the infrared temperature measuring head 20 is again in the so-called zero position. The following twisting angles to be set are calculated in analogy to the calculations performed so far and use the angle β for calculation. Consequently, the first twisting angle following after the measuring point 103 and directed in the direction of the right outer edge 112 is β=arctan ((3.75−14d)/(h/cos γF))=arctan ((3.75−3.50)/(4/cos 15))≈arctan 0.06≈3.45°. For the following measuring point 100 in a distance d=0.25 meters in the direction of the right outer edge 112, a twisting angle of β=arctan ((3.75−13d)/(h/cos γF))=arctan ((3.75−3.25)/(4/cos 15))≈arctan 0.12≈6.88° is to be set. The subsequent twisting angle β will then be ((3.75−12d)/(h/cos γF))=arctan ((3.75−3.00)/(4/cos 15))≈arctan 0.18≈10.27°. The further twisting angles β to be set of the infrared temperature measuring head 20 are calculated in analogy.
In
With the example in accordance with
When approximating the measuring point 103 where the infrared temperature measuring head 20 is, in the direction of travel of the construction machine, arranged essentially perpendicularly to the surface 110 of the road building material 50, the twisting angle is α=arctan ((7.00−27d)/(h/cos γF))=arctan ((7.00−6.75)/(4/cos 15))≈arctan 0.06≈3.45°, in analogy to the example of the embodiment in accordance with
In contrast to
With the example in accordance with
When approximating the measuring point 103 where the infrared temperature measuring head 20 is, in the direction of travel of the construction machine, arranged to be essentially perpendicular to the surface 110 of the road finishing machine 50, the twisting angle α=arctan ((2.00−7d)/(h/cos γF))=arctan ((2.00−1.75)/(3.5/cos 15))≈arctan 0.07≈3.95°. When reaching the measuring point 103, the twisting angle α to be set consequently is 0° since the infrared temperature measuring head 20 will then again be in the zero position mentioned already. The following twisting angles to be set are calculated in analogy to the example of the embodiment in accordance with
As far as the controller of the motor 30 which twists the infrared temperature measuring head 20 transverse to the direction of travel of the construction machine is concerned, the calculations are done in analogy to that of
When approximating the measuring point 103 where the infrared temperature measuring head 20 is, in the direction of travel of the construction machine, arranged to be essentially perpendicularly to the surface 110 of the road building material 50, the twisting angle is α+γS=arctan ((2.00−7d)/(h/cos γF))+γS=arctan ((2.00−1.75)/(3.5/cos 15))+15≈arctan 0.07≈18.95°. When reaching the measuring point 103, the twisting angle α+γS to be set will consequently be 15°, since the infrared temperature measuring head 20 will then again be in the zero position mentioned already. The following twisting angles to be set are calculated also in analogy to the embodiment in accordance with
The road finishing machine schematically illustrated in
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which will be apparent to others skilled in the art and which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 222 693 | Nov 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4646353 | Tenge | Feb 1987 | A |
4899296 | Khattak | Feb 1990 | A |
4904996 | Fernandes | Feb 1990 | A |
6271878 | Sera | Aug 2001 | B1 |
6749364 | Baker et al. | Jun 2004 | B1 |
6923080 | Dobler | Aug 2005 | B1 |
7602947 | Lemelson | Oct 2009 | B1 |
7828478 | Rege | Nov 2010 | B2 |
8110803 | Hollander | Feb 2012 | B2 |
8576286 | Childs | Nov 2013 | B1 |
9950677 | Poliquin | Apr 2018 | B2 |
20040207515 | Chung | Oct 2004 | A1 |
20080212414 | Mardirossian | Sep 2008 | A1 |
20080259730 | Di Federico | Oct 2008 | A1 |
20090066791 | Ono | Mar 2009 | A1 |
20090142133 | Glee et al. | Jun 2009 | A1 |
20090147072 | Brotherton-Ratcliffe | Jun 2009 | A1 |
20100189498 | Doherty | Jul 2010 | A1 |
20120218411 | Wu | Aug 2012 | A1 |
20120261850 | Simon | Oct 2012 | A1 |
20130322702 | Piemonte | Dec 2013 | A1 |
20140055602 | Childs | Feb 2014 | A1 |
20140277939 | Ren | Sep 2014 | A1 |
20140308073 | Delius | Oct 2014 | A1 |
20140308074 | Rutz et al. | Oct 2014 | A1 |
20140328371 | Buisson | Nov 2014 | A1 |
20140341250 | Lynam | Nov 2014 | A1 |
20150345907 | Varga | Dec 2015 | A1 |
20160042235 | Buschmann | Feb 2016 | A1 |
20160061755 | Delius | Mar 2016 | A1 |
20160281304 | Rutz et al. | Sep 2016 | A1 |
20170218574 | Coe | Aug 2017 | A1 |
20170322088 | Becher | Nov 2017 | A1 |
20170370775 | Kusukame | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
202870982 | Apr 2013 | CN |
10 2008 058 481 | Jul 2009 | DE |
20 2009 016 129 | Mar 2010 | DE |
20 2013 001 597 | Jun 2013 | DE |
102016207584 | Jun 2017 | DE |
2 982 951 | Feb 2016 | EP |
2 990 531 | Mar 2016 | EP |
61135842 | Jun 1986 | JP |
03-199502 | Aug 1991 | JP |
07-003441 | Jan 1995 | JP |
07-034411 | Feb 1995 | JP |
2005-097958 | Apr 2005 | JP |
2007233948 | Sep 2007 | JP |
2007-256099 | Oct 2007 | JP |
2014-206043 | Oct 2014 | JP |
2014-206044 | Oct 2014 | JP |
2011129999 | Dec 2011 | KR |
101241865 | Mar 2013 | KR |
WO 9500820 | Jan 1995 | WO |
0070150 | Nov 2000 | WO |
Entry |
---|
English language abstract of DE 20 2009 016 129 U1. |
Official Communication issued in Chinese Patent Application No. 201510753512.X, dated Apr. 28, 2017. |
Official Communication issued in corresponding Japanese Patent Application No. 2015-211663, dated Dec. 2016. |
Number | Date | Country | |
---|---|---|---|
20160131633 A1 | May 2016 | US |