The present invention relates to a device and method for dispersing oil on water.
More particularly, the present invention relates to the chemical-free dispersion of oil on water.
Oil spill in connection with discharges from the oil industry, shipping industry, etc. is a severe environmental problem which may lead to catastrophic consequences. Recent examples of oil spills are the blowout of BP's well in the Gulf of Mexico and the spill from the ship Full City outside of Langesund.
The alternatives presently available for handling such spill, preferably offshore, are the following: 1. mechanical collection of oil on water, 2. in-situ burning of oil on water and 3. chemical dispersion of oil on water.
The choice between these three techniques is based in part on national as well as local legislation and on a number of practical, environmental, and legislative considerations for each individual spill incident. The selection of preferred countermeasures is often dictated by what is feasible and acceptable under the prevailing conditions.
The chemical dispersion of oil on water is a commonly used oil spill control method. The method involves spraying “dispersant(s)” onto the oil slick floating on the surface, which is thereby dispersed into microscopic (micron-sized) droplets. These droplets are distributed in the water column either by way of natural turbulence (waves and current) or by using the propulsion system of a ship. Subsequently, naturally occurring currents and turbulence in the water will help diluting the oil slick so as to render it less damaging or even harmless to the environment. In this regard, it should be noted that during the spill in the Gulf of Mexico, several thousands metric tons of chemicals were applied to the oil slick, and accordingly the use of chemical dispersion of oil on water is controversial as the application of chemicals on oil slicks adds additional pollutants to the sea.
The use of chemicals is limited by the availability of chemicals, the effectiveness of the chemical, and the actual grade of the oil, as well as the application technology available. In spite of these considerations, chemical dispersion is a commonly used technique and is regarded as the dominating and most important technique in connection with most oil spill catastrophes all over the world.
The following disadvantages and limitations with the use of chemical dispersion should be mentioned:
It should also be noted that methods and arrangements for minimizing the use of dispersants exist. In this regard reference is made to the publication U.S. Pat. No. 4,228,668 A, in which oil and water is homogenized through the use of ultra-sound energy to minimize the use of dispersants. The oil is mixed into the water body and in this manner the damages is to be significantly reduced.
GB 2038651 A discloses a method of dispersing oil in water by means of ultrasound vibrations. Several vibration generating apparatuses are installed on a vessel. It is also suggested that the apparatuses are used together with a solvent.
FR 2694737 discloses a catamaran for cleaning water, having a ramp with adjustable nozzles. The main purpose of the equipment is to collect floating waste, using fluid in the nozzles which is selectable from water, air, or dispersant.
U.S. Pat. No. 3,532,622 A discloses and claims the use of chemical dispersants in order to form an oil-in-water dispersion. The spray nozzles are disposed at a significant distance from the water surface at which spilled oil is to be treated. High pressure nozzles, instead of fan pumps, are used for emulsifying the oil to small droplets and the gradation of the jet directly in proportion to the concentration of oil is accomplished through a constant laterally oscillating angular movement of the jets.
An object of the present invention is to provide a new and efficient solution for handling oil spill on water, preferably offshore.
A second object is that the solution is to be environmentally friendly and hence not discharge environmentally harmful substances into the surrounding water body, i.e. the present solution shall be free of chemicals.
A third object is that the solution for handling oil spill on water, i.e. oil slicks, shall be simple and cost-efficient. The arrangement needed for handling the oil spill is to be simple and inexpensive to produce and also have low operating costs in use. Operation of the device shall be simple and efficient with respect to handling of large volumes of oil spill.
A fourth object is that the device shall have a flexible configuration so that it can be used on many different vessels, i.e. both on specially designed vessels and on conventional vessels.
The objects of the present invention are achieved by a device for dispersing oil on water, comprising a rig structure for being mounted preferably in a front part of a vessel, the rig structure including a front transverse structure provided with nozzles for flushing with high pressure water supplied from a high pressure facility located on the vessel, characterized in that the direction and distance from the water surface of the nozzles as well as the pressure of the high pressure water are adjustable, with the number of nozzles being chosen so that a large number of high pressure, narrow jet nozzles are used for larger distances from the water surface, and a smaller number of wider-jet nozzles are used for smaller distances from the water surface.
Preferred embodiments of the device are set forth in more detail in claims 2 through 13.
The objects of the present invention are further achieved by a method of dispersing oil on water, comprising a rig structure mounted preferably in a front part of a vessel, the rig structure including a front transverse structure provided with nozzles for flushing with high pressure water supplied from a high pressure facility located on the vessel, characterized in that the direction and distance from the water surface of the nozzles as well as the pressure of the high pressure water are adjusted, with the number of nozzles being chosen so that a large number of high pressure, narrow jet nozzles are used for larger distances from the water surface and a smaller number of wider-jet nozzles are used for smaller distances from the water surface, whereby dispersed oil droplets within a micron-size range are obtained and the oil droplets are mixed into the water body by the forward motion of the vessel.
In the following, an embodiment of the present invention will be explained with reference to the attached drawings, in which:
a shows the experiment setup in the meso-scale flume, in a side view, with application at an angle of 90 degrees from a height of 50 cm,
b shows a front view of
a shows the experiment setup in the meso-scale flume, in a side view, with application at an angle of 45 degrees from a height of 25 cm,
b shows a front view of
a shows the experiment setup in the meso-scale flume, in a side view, with application at an angle of 90 degrees from surface level (zero height),
b shows a front view of
Referring to the drawings, an embodiment of the invention in the form of a device 1 and method for dispersing oil 20 on water will be explained. The device 1 includes a rig structure 2 for being mounted preferably in a front part of a vessel 15. Rig structure 2 further includes a front transverse structure 5. Preferably, the front transverse structure 5 spans the entire width of the vessel.
Preferably, high pressure facility 10 will use water from the surrounding water body, which may be seawater or freshwater depending on the location at which the vessel operates. High pressure facility 10 further uses a pressure generator whereby water is provided at ultra-high pressure to nozzles 7.
In the present case, rig structure 2 is shown moveably mounted to the vessel whereby the distance from the water surface of nozzles 7 is adjustable. The direction of nozzles 7 and the pressure of the high pressure water are also adjustable so that dispersed oil droplets within a preferred or optimum micron-size range of, preferably, 5-40 μm are obtained.
It is noted that rig structure 5 could also be provided with pneumatic and ultrasound arrangements that further increases the oil dispersion efficiency.
Referring to
In the case of handling oil spill on water, the vessel will be prepared for operation in that rig structure 2 and nozzles 7 as well as the pressure of the high pressure water are adjusted and regulated and optimized so as to obtain dispersed oil droplets of the desired micron-range size.
It is noted that the principle of using high pressure water flushing for dispersing oil is novel and that it leads to a surprising effect in that an oil slick is broken into micron-sized droplets without any use of chemical dispersants.
The dispersion of oil on water using a device according to the present invention is hence very efficient and may replace large parts of the current chemical dispersion means.
Conventionally, the treatment of oil spill on water has been carried out by way of chemical dispersion. The formation of droplets smaller than 70 microns has been used as a criterion for successful dispersion treatment. In connection with the present application, extensive testing has been carried out in order to determine whether treatment of surface oil by way of high pressure spraying is efficiently able to produce droplets meeting the above criterion. The test was carried out in Sintef's meso-scale flume.
The oil was treated using different techniques:
Conventionally, dispersant has been used in oil spill incidents (catastrophes) in order to improve the breakdown of the oil into small droplets. The smaller droplets will assist in removing the thick oil slick by diluting and dispersing it. Experience from field testing has indicated that the mechanical handling of oil may provide for sufficient shearing of the oil to disperse it from the sea surface.
The use of chemical dispersion of oil on water is restricted by local regulations, the availability of chemicals, the efficacy of chemicals on the oil grade in question, as well as the application technology available. The present methodology provides for a chemical-free solution for dispersing oil on water by using an ultra-high pressure water jet solution applicable for small, medium, and large oil and chemical spills. The use of chemical dispersing agents is presently one of the main countermeasures against oil spill. Today, no non-chemical method exists that is applicable for dispersing oil on water.
Some important facts regarding the use of chemical dispersing agents;
A limited research has been conducted in order to evaluate the feasibility of using high pressure nozzles as a means of dispersing oil from the sea surface. Initial testing was performed in a small plexiglass tank to document the ability of the nozzles to produce droplets of a desired size. A series of large scale tests was carried out in order to study the efficacy of different oil treatment techniques involving high pressure flushing.
In all tests, the droplet size distribution was monitored using the instrument LISST 100X (Sequoia Scientific). The instrument uses laser diffraction in the determination of the size distribution. The droplet sizes are classified as concentrations within 32 size bins from 2.5 to 500 microns.
The oil used is a lightly evaporated asphaltenic north sea oil.
Flushing was effected by flushing nozzles (Washjet HSS 1/4MEG 2506 from Spraying Systems Company), which created a fan-shaped flushing jet with an angle of 29 degrees. Pressurized water was supplied by a Kärcher HD 10/25 high pressure cleaner. The pressure was controlled by a needle valve and measured by a manometer located just before the nozzle(s).
Initial testing was carried out in a small plexiglass tank (diameter=40 cm, height=100 cm) in order to document the ability of the nozzles to produce droplets of the desirable size. An oil layer of 1 mm was contained within a plexiglass tube having a diameter of 10 cm. Flushing was conducted through a nozzle at about 15 bar on the inside of the tube. The small droplets formed escaped below the tube and into the testing tank. The measurement system for LISST 100X was positioned right under the tube, in order to document the size distribution of the droplets formed. In this regard, reference is made to
Even though the oil was confined within the plexiglass tube, the oil was pushed around on the surface by the flushing treatment. This rendered difficult the quantitative dispersion of the oil, and most of the oil still remained on the surface after the test. Enough droplets were formed to document that the energy of the system was sufficient to produce droplet sizes within the definition of dispersed oil (approximately 70 microns). The resulting droplet size distribution is shown in
The result shows a binominal droplet distribution during the flushing treatment. The large droplets with a peak value above the detection limit of the instrument (>500 microns) are most likely a combination of entrained air bubbles and oil droplets that have not been effectively processed in the high pressure flushing treatment. As the flushing is started, the larger droplets are precipitated and leave only a smaller of the two distributions in the water column. The droplets left in the water after the treatment exhibit a wide droplet size distribution with a peak value of approximately 75 microns. The distribution documented was visually evaluated to be dispersed oil, cf.
Three larger tests were carried out in order to study the efficiency of different oil treatment techniques.
1) Application at an angle of 90 degrees from a height of 50 cm
2) Application at an angle of 45 degrees from a height of 25 cm
3) Application at an angle of 90 degrees at water surface level
All tests were performed in Sintef's meso-scale flume. A schematic drawing of the flume is shown in
The flume basin has a width of 0.5 meters and a depth of 1 meter and the overall length of the flume is about 10 meters. The total volume of the tank is 4.8 cubic meters of sea water. Two fans disposed in a covered wind tunnel control the wind velocity. A wave generator is used for generating waves of a controlled wave energy input. The tests were carried out in front of the wave generator and droplet size measurements were taken just inside the first tank of the test tank. The testing region is indicated by the square in the figure.
Two flushing nozzles were mounted side by side at a distance 50 cm above the water surface in the test tank. At this height the nozzles produced a continuous flushing line across the width of the tank. The three experiments are described separately below.
Application at an Angle of 90 Degrees From a Height of 50 cm
An amount of air was entrained into the water as the jet hit the surface. A surface current was carried up by the jet itself, and as a result of resurfacing of the air bubbles. The current generated was stronger than the wind/wave induced currents in the test tank and the oil was not able to passively pass through the water jet. Attempts were made to capture the oil between the two barriers and to move the nozzles through the oil spill. This was a more successful approach, but a portion of the oil was still pushed away by the surface current induced. Due to the high energy in the water surrounding the jet, large droplets were also mixed into the water, but were immediately carried to the surface on exit from the turbulent area during the flushing. When a high concentration of small droplets is formed, a light brown cloud is assumed to form in the water. The formation of a droplet could not be observed visually in this experiment. LISST 100X was not able to detect elevated droplet concentrations that could be discerned from the background noise in the test tank.
Application at an Angle of 45 Degrees From a Height of 25 cm
Some turbulence still formed in front of the water jet. This turbulence prevented the oil from passing through when no wind or wave action was applied. As the wind and the wave generators were turned on, the oil moved slowly into the jet. Some of the oil was immediately converted to a brownish cloud when it passed through the jet. Most of the oil, however, passed through the jet as spots on surface oil or as large droplets. LISST 100X was not able to detect elevated droplet—concentrations that could be discerned from the background noise in the test tank.
Application at an Angle of 90 Degrees at the Water Surface Level
The nozzle system was arranged at the water surface and oil flow, therefore, was prevented by the application system itself. Consequently, oil was concentrated upstream of the nozzles. After the high pressure flushing was activated, parts of spots were pulled into the two jets. Only small amounts of oil were observed to pass through the system without being “treated” by the high pressure jet. The formation of light brown clouds could be observed immediately when the oil entered into the system. This observation could also be documented by measurements using LISST 100X, cf.
During the treatment with high pressure flushing the droplet size distribution has a peak above the detection limit of LISST 100X. This is assumed to be mainly due to the air bubbles entrained in the water. After the flushing was stopped, the large droplets were precipitated and a distribution having a maximum diameter of 20 microns was left in the water.
LISST 100X does not discern between oil droplets and water bubbles. Therefore, a water sample was obtained subsequent to the flushing treatment in order to document that the concentrations measured were actually oil. The samples were extracted and analyzed for total oil in a spectrometer. The concentration was found to be 38 ppm. The net concentration measured by LISST 100X was 29 ppm (sum of the concentration within all the reported size bins). This indicates that most droplets registered by LISST are oil droplets.
A limited number of treatment methods for treating surface oil by way of high pressure flushing were tested in the channel test tank.
Flushing directly into the water at a pressure of 35 bars resulted in the best documented effect. Only small amount s of oil were observed to be make it through the system without being treated by the jet. Droplets formed following the flushing treatment were measured to have a mean volume distribution of 20 microns. As mentioned earlier, a typically used criterion for the success of a dispersion operation (treatment with chemicals) is the formation of droplets having an average droplet diameter of less than 70 microns.
Flushing from a distance above the water surface resulted in the entrainment of an amount of air bubbles in the water. The air bubbles that returned to the surface together with the energy from the flushing induced an outwelling current that helped pushing the oil away from the flushing line. This problem was partially addressed by applying the flushing treatment at an angle. Application at an angle made it easier to have the oil enter into the flushing line. The angle of 45 degrees, however, made the flushing treatment “bounce off” of the water surface and a portion of the downward acting force from the jet was lost. The meso-scale flume turned out to be under-dimensioned for this type of testing. Both tests involving application from a height had to be carried out at a limited pressure, in order to avoid damaging equipment in the testing tank.
The experiments led to the following key conclusions;
Based on the studies conducted we have found that the prerequisites for the proper operation of chemical-free high pressure water jet systems are the following;
1) It is necessary that the system delivers an ultrahigh pressure water jet, preferably above 30-40 bars per nozzle. This places strict requirements on the high pressure water supply system as well as to the design of the nozzles as well as the internal configuration of the individual nozzles.
2) It is necessary that the water fan from each nozzle is concentrated in order to reduce the amount of air pulled down together with the water jet.
3) It is necessary that the nozzle outlet is located near the water surface. 0-20 cm would be desirable, but the distance can be increased if the water pressure is increased and/or the concentration of water jets is increased (narrow fan). The closer to the surface the water fan is, the wider it can be, and it has been found that it is possible to tune the combination of surface distance and water fan (jet) width.
4) In order to be able to cover a large surface area the nozzle should be arranged in a stand that allows a certain width of water to be covered as the vessel carrying the system moves through the oil slick on the surface.
Number | Date | Country | Kind |
---|---|---|---|
20121147 | Oct 2012 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2013/050168 | 10/7/2013 | WO | 00 |