The invention relates to a device for driving a preheating roll assembly in a unit for producing films and to an associated method for the operation thereof.
When producing plastics films the screen film issuing from an extruder is usually first of all cooled via a chilling roll rotating in a water bath. Using what is known as a preheating roll assembly the film is again heated to a temperature which allows subsequent stretching of the film.
Heating of the film, which is desired in terms of process-engineering, by preheating rolls leads to a change in length which in turn requires speed graduation of the preheating rolls. According to the prior art this is achieved in that the individual rolls are driven by a common motor via belts. In this connection, each roll comprises a belt pulley over which a belt runs that is driven by the common motor. Speed graduation of the rolls is attained by appropriate graduation of the diameters of the belt pulleys. One drawback in this connection is that the graduation, once selected, corresponds to only one heating profile. A different graduation of the belt pulleys is required in the case of other process parameters since otherwise excessive stresses in the film (lead too high) or a slackening of the film (delay) would occur. To change the graduation of the belt pulleys they have to be replaced, and this is linked to very high expenditure.
To solve this problem an individual drive could be associated with each preheating roll. While the applicable rotational speed can be correctly adjusted in any operating case on the individual rolls hereby, a separate motor with sensor and converter have to be provided for each preheating roll for this purpose. The adjustment of the individual motors for each operating case is also very laborious.
Document DE 30 26 129 A1 describes a metal strip stretching unit with a plurality of pulling and retaining rolls, it being possible for some of the rolls to be decoupled from a common main drive motor.
The object of the present invention is to create a drive device for a preheating roll assembly, which operates reliably and may be easily adjusted to different process parameters, and to an associated method for the operation thereof.
This object is achieved by the independent claims. Developments of the invention are defined in the dependent claims.
In contrast to the known devices the drive device according to the invention comprises at least one individual drive and in particular two individual drives, namely for an entry roll and an exit roll, all, or at least half, of the intermediate rolls located between the entry and exit rolls having one asynchronous motor respectively. Each asynchronous motor controls the surface speed and the torque of an intermediate roll, one or more than one asynchronous motor(s), in particular all asynchronous motors, being operated via a common frequency converter.
The common frequency converter of the asynchronous motors can easily adjust the intermediate rolls by appropriate selection of the converter frequency to different process parameters, in particular to different temperature profiles and different conveying speeds of the film. Individual belt pulleys on the preheating rolls no longer have to be replaced when the process parameters change, as is the case with the known preheating roll assemblies. Furthermore, the use of individual drives with corresponding sensors and converters for each preheating roll may be omitted.
In a preferred embodiment of the invention the frequency of the common frequency converter is adjusted such that for a predefined temperature profile of the preheating roll assembly and a desired conveying speed of the film the friction of the preheating rolls and elongation of the film are compensated in the preheating roll assembly. The asynchronous motors thus assume the task of compensating the friction in the bearings and feed heads of the individual intermediate rolls and compensating the elongation of the film.
In a preferred embodiment of the invention the individual drives are two direct drives, one direct drive driving the entry roll and the other direct drive driving the exit roll.
In a further embodiment of the invention the asynchronous motors are at least partially torque motors with a hollow shaft. These torque motors are preferably directly assembled on the roll shaft of the intermediate rolls. The asynchronous motors can, however, at least partially also be IEC standard motors (IEC=International Electrochemical Commission). In this case the asynchronous motors are preferably assembled on the roll shaft via a flange and/or a bracket.
To compensate the elongation of the film, in a preferred embodiment of the invention, the exit roll can rotate at a higher surface speed during operation than the entry roll.
In addition to the drive just described, the invention also relates to a preheating roll assembly comprising a drive of this type. The invention also relates to a device for producing film, which comprises a preheating roll assembly with the drive according to the invention.
Embodiments of the invention will be described in detail hereinafter with reference to the accompanying figures, in which:
Free-flowing plastics film material issuing from an extruder is transferred via a nozzle, as a rule a wide-slot nozzle, and with the aid of what is known as an air knife, to a chilling roll, so the molten film can then be cooled by being passed through a water bath. The plasticized cooling film is then supplied via a plurality of deflecting rolls for example to the lengthwise stretching unit shown in
In the lengthwise stretching unit the plastics film F is supplied to a preheating or heating stage H1 which in the illustrated embodiment comprises preheating rolls 1 to 6. The plastics film F can be heated in this heating or preheating stage H1 to a temperature required for stretching. Heating can take place in a known manner in this connection, for example by using appropriate preheating chambers, within which hot air is supplied to the film and/or the film is heated with infrared rays or is brought to the desired temperature profile by using other measures. Some or all of the rolls 1 to 6 belonging to this preheating stage H1 may also be provided with an integrated heating device to heat the film from the roll surface according to the angle of warp of the sheet F on the rolls. The sheet F subsequently runs through rolls 7 to 30, lengthwise stretching taking place in the illustrated example in the stretching nips R1, R2 and R3 respectively. Even the rolls 11 to 14 and 19 to 22 located between the individual stretching zones and having a relatively large diameter in the illustrated embodiment can also again be part of a preheating or heating stage H2 and/or H3 in which the film should be brought to a specific temperature profile, as in preheating stage H1.
Heating of the film, which is desired in terms of process engineering, through the rolls 1 to 6 leads to a change in the length of the sheet, for which reason the entry and exit rolls 1 and 6 are each driven by a direct drive, the speed of the direct drive of the exit roll being set so as to be greater than the speed of the direct drive of the entry roll. In contrast to the illustrated embodiment the entry roll can also consist of the chilling roll on which the molten film issuing from a nozzle is passed through the water bath. In contrast to the entry and exit rolls the rolls 2 to 5 located therebetween each comprise an asynchronous motor. The function of these asynchronous motors is to compensate the friction in the bearings and feed heads of the rolls 2 to 5 and to ensure uniform rolling of the sheet over the preheating rolls. For this purpose, all asynchronous motors are jointly operated by a single frequency converter. The frequency of the frequency converter is adjusted in this connection such that the asynchronous motors compensate the friction of the preheating rolls and the elongation of the film for a predefined temperature profile of the preheating rolls and a desired conveying speed of the sheet.
Heating the film brings about changes in length in the preheating rolls at the end of the preheating zone and this causes the rolls at the end of the preheating zone to rotate faster. According to the characteristic shown in
The difference in the motor moment and the frictional force determines the “free moment” that is absorbed by the film. A positive “free moment” causes the film force (=tension in the film) upstream of the roll to be greater than that downstream of the roll. The “free moment”, therefore, determines the change in force in the film over a roll. The absolute level of the moment is defined only by the entry roll and the exit roll.
Three bars respectively are shown in each of these positions in
The point F_23, therefore, reproduces the motor drive force of roll 3 with the right-hand bar and with the middle bar the frictional force that occurs on the roll 3 and is to also be overcome by the asynchronous motor. The left-hand bar shows the film force that acts on the film between the second and third rolls. In other words, therefore, the motor drive forces acting on the individual preheating rolls 1 to 9 and the occurring frictional forces or the film forces F_12, F_23, F_45, F_67 to F_89 acting between roll 1 and 2, roll 2 and 3, etc. through to the film forces acting between rolls 8 and 9 are in each case shown on the abscissa in
The arrow Pf1 in
As emerges from the characteristic K of the graph in
Since the motor moment according to
The embodiment has been described for the case where both the entry and exits rolls 1, 9 for the preheating or heating stage H1 are driven by a separate individual or direct drive, the rolls located therebetween then preferably contributing in the illustrated ways to the overall drive via a type of synchronous motor. By contrast, in a simplified embodiment an individual or direct drive could be associated with only the exit roll 9. The embodiment in which an individual or direct drive is also associated with the entry roll 1 in addition to the exit roll is preferred, however, in order to thereby adjust the rotational speed at the entry roll 1 and at the exit roll 9 differently accordingly.
The embodiment has been described for the case where the heating or preheating stage H1 with the rolls 1 to 9 is arranged downstream of a chilling roll. In principle, an embodiment would also be conceivable in which the chilling roll is used as the single roll to which a plastics film issuing from a slot nozzle is transferred for cooling. In this case the chilling roll would also have an individual or direct drive.
Number | Date | Country | Kind |
---|---|---|---|
20 2004 019 456.2 | Dec 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/12064 | 11/10/2005 | WO | 5/30/2007 |