This application claims priority to Japanese Patent Application No. 2018-192159, filed on Oct. 10, 2018, the disclosure of which is incorporated herein by reference in its entirety.
Embodiments disclosed herein generally relate to a device and method for driving a display panel.
A pixel-arranged area of a display panel, such as an organic light emitting diode (OLED) display panel and a liquid crystal display (LCD) panel, may be imperfectly rectangular. For example, corners of the pixel-arranged area may be rounded, and/or a notch in which no pixels are arranged may be included in the display panel.
In one or more embodiments, a display driver comprises image processing circuitry and drive circuitry. The image processing circuitry is configured to output a display image data representing a display image comprising an effective area to be displayed in a display area of a display panel and an invalid area not to be displayed in the display area. The drive circuitry is configured to drive the display panel based on the display image data. The display image data comprises: effective pixel data associated with first pixels in the effective area; and invalid pixel data associated with second pixels in the invalid area. Ones of the effective pixel data associated with at least some of the first pixels are set to first grayscale values, the at least some of the first pixels falling within a boundary area adjacent to the invalid area. Ones of the invalid pixel data associated with ones of the second pixels are set to second grayscale values, the ones of the second pixels falling within an insert area defined in the invalid area. The second grayscale values comprise a value different from the first grayscale values.
So that the manner in which the above recited features of the present disclosure may be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only some embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
In one or more embodiments, as illustrated in
In one or more embodiments, a display area of the display panel 1, in which pixels are disposed, is not rectangular. For example, the corners of the display area of the display panel 1 may be rounded and/or a notch 11 is formed along one side of the display area.
In one or more embodiments, the display driver 2 is configured to obtain the image data from the host 200 and drive respective pixels of the display panel 1 based on the obtained image data. In one or more embodiments, the image data comprises pixel data describing grayscale values of the respective pixels. In one or more embodiments, the display driver 2 comprises an interface 21, image processing circuitry 22, and source drive circuitry 23. In one or more embodiments, the interface 21 comprises interface circuitry configured to receive the image data from the host 200 and forward the same to the image processing circuitry 22. In one or more embodiments, the image processing circuitry 22 is configured to perform image processing on the image data received from the host 200. In one or more embodiments, the image processing performed by the image processing circuitry 22 comprises processing adapted to the non-rectangular shape of the display area of the display panel 1. In one or more embodiments, the source drive circuitry 23 is configured to receive a display image data obtained through the image processing by the image processing circuitry 22 and drive the respective pixels of the display panel 1 based on the display image data.
In one or more embodiments, the host 200 is configured to generate the image data, which represents the image to be displayed on the display panel 1, and supply the same to the display driver 2. In one or more embodiments, the image represented by the image data does not have a shape that matches the non-rectangular display area of the display panel 1; the image represented by the image data is rectangular and circumscribes the display area of the display panel 1 as illustrated in
In one or more embodiments, the display driver 2 is configured to output drive signals to the display panel 1 based on the image data received from the host 200, which represents a rectangular image, while the display area of the display panel 1 is not actually rectangular. In one or more embodiments, the invalid areas 12 are not displayed on the display panel 1 since no corresponding pixels are disposed on the display panel 1; only the effective area 10, for which corresponding pixels are disposed on the display panel 1, is displayed.
In one or more embodiments, the image processing circuitry 22 is configured to perform image processing to make the edges of the display area of the display panel 1 appear smooth. In one or more embodiments, as illustrated in
In one or more embodiments, when the pixel data associated with the pixels that fall within the entirety of the boundary areas 14 and the invalid areas 12 are set to the first grayscale values in the image data, a straight line 30 extended in an extending direction of the scan lines L may be displayed as illustrated in
In one or more embodiments, to suppress the display of the line 30, the image processing circuitry 22 is configured to perform image processing on the image data to set invalid pixel data associated with an insert area 13 to second grayscale values such as white, where the insert area 13 is defined in an invalid area 12 as illustrated in
In one or more embodiments, the second grayscale values set to the invalid pixel data of the insert area 13 may comprise a grayscale value different from the first grayscale values set to the effective pixel data of the pixels in the boundary area 14. In one or more embodiments, the second grayscale values are equal to the allowed maximum grayscale value. In one or more embodiments, the second grayscale values may be desired grayscale values determined to suppress the display of the line 30. In one or more embodiments, the second grayscale values may comprise the grayscale value which makes the brightness of the pixel 15 the highest. In one or more embodiments, the second grayscale values may be larger than the first grayscale values.
In one or more embodiments, the insert area 13 extends in the extending direction of the scan lines L along the top edge of the invalid area 12 and comprises pixels between the top edge and the bottom edge of the display panel 1. When the boundary between the effective area 10 and an invalid area 12 comprises a line segment 12a parallel to the extending direction of the scan lines L, for example, the insert area 13 may be aligned to at least a portion of the line segment 12a in the extending direction of the scan lines L. In one or more embodiments, the insert area 13 may fall within the range of the line segment 12a in the extending direction of the scan lines L. In one or more embodiments, the insert area 13 comprises at least some of the pixels of the invalid area 12, the at least some of the pixels being adjacent to the effective area 10.
In one or more embodiments, the first grayscale values set to the boundary areas 14 may be different from the first grayscale values set to the invalid areas 12. In one or more embodiments, the first grayscale values set to the boundary areas 14 may be dependent on the positions of the pixels associated therewith, or determined based on grayscale values (which may be also referred to as third grayscale values, hereinafter) set to the effective pixel data associated with the pixels in the boundary areas 14 in the image data received from the host 200. For example, the first grayscale values set to the boundary areas 14 may be determined by blending the received third grayscale values and a predetermined grayscale value with a predetermined ratio (such as a blending ratio), where the predetermined grayscale value may be the allowed minimum grayscale value or the allowed maximum grayscale value. In one or more embodiments, the first grayscale values set to the boundary areas 14 may be determined as grayscale values representing brightness levels determined by blending brightness levels displayed on the pixels 15 of the display panel 1 associated with the boundary areas 14 based on the received image data and a predetermined brightness level with a predetermined ratio (such as a blending ratio), where the predetermined brightness level may be the minimum brightness level or the maximum brightness level. In one or more embodiments, the predetermined ratio may depend on the positions of the associated pixels. In one or more embodiments, the predetermined ratio may depend on the number of subpixels in each of the pixels 15 of the display panel 1 associated with the boundary areas 14.
In one or more embodiments, effective pixel data associated with at least some of the pixels in a boundary area 14 may be set to the first grayscale values. For example, effective pixel data associated with pixels of a boundary area 14 other than the pixels adjacent to the line segment 12a may be set to the first grayscale values, where the line segment 12a is at the boundary parallel to the scan lines L between the effective area 10 and the invalid area 12.
In one or more embodiments, the image processing circuitry 22 operates as illustrated in
In one or more embodiments, in step S20, the image processing circuitry 22 obtains the positions of the invalid areas 12 and the boundary areas 14 in the display image data and grayscale values to be set to pixel data associated with the pixels in the invalid areas 12 and the boundary areas 14. Hereinafter, positions of pixels for which the image processing circuitry 22 determines grayscale values based on the shape of the display area of the display panel 1, more specifically, positions of pixels in the invalid areas 12 and the boundary areas 14 are referred to as “preset positions.” In one or more embodiments, the preset positions and grayscale values to be set to pixel data associated with the preset positions are correlated with each other and registered in the image processing circuitry 22 in advance. In one or more embodiments, the positions of the pixels in the boundary areas 14 and the invalid areas 12 are registered based on the shape of the display area of the display panel 1. In one or more embodiments, the second grayscale values to be set to invalid pixel data associated with the insert area 13 that falls within an invalid area 12 are additionally registered in the image processing circuitry 22. The first grayscale values, which are to be set to pixel data associated with pixels in the boundary areas 14 and the invalid areas 12 other than the insert area 13, are additionally registered in the image processing circuitry 22. In one or more embodiments, the first grayscale values are equal to the allowed minimum grayscale value. In one or more embodiments, the second grayscale values are equal to the allowed maximum grayscale value.
In one or more embodiments, in step S30, the image processing circuitry 22 generates display image data used to drive the display panel 1 based on the obtained image data, the preset positions, and the grayscale values to be set to the pixel data associated with the preset positions. In one or more embodiments, the pixel data of the obtained image data associated with the preset positions are modified to the grayscale values registered in the image processing circuitry 22 to generate the display image data.
In one or more embodiments, the image processing circuitry 22 thus generates the display image data so that the pixel data associated with the pixels in the insert area 13 are set to the second grayscale values and the pixel data associated with the pixels in the invalid areas 12 other than the insert area 13 and the pixels in the boundary areas 14 are set to the first grayscale values. In one or more embodiments, the display panel 1 is driven by the source drive circuitry 23 based on the generated display image data.
In one or more embodiments, the shape of the insert area 13 may be arbitrarily selected as long as the display of the line 30 is suppressed. In one or more embodiments, as illustrated in
Embodiments are not limited to examples in which the image processing circuitry 22 of the display driver 2 sets the pixel data associated with the pixels in the invalid areas 12 other than the insert area 13 to the first grayscale values. In one or more embodiments, the host 200 may set the pixel data associated with the pixels of the boundary areas 14 and the invalid areas 12 to first grayscale values representing black or the like. In such embodiments, the display driver 2 may set invalid pixel data associated with the insert area 13 to the second grayscale values, not modifying the grayscale values of the invalid pixel data associated with the invalid areas 12 other than the insert area 13.
In one or more embodiments, when the invalid pixel data associated with the pixels in the invalid areas 12 are not set to grayscale values representing black in the image data supplied by the host 200, the invalid pixel data associated with the pixels in the insert area 13 may not to be modified. In such embodiments, the invalid pixel data associated with the pixels in the insert area 13 in the display image data supplied to the source drive circuitry 23 may comprise grayscale values set to the invalid pixel data associated with the pixels in the insert area 13 in the image data obtained from the host 200.
In one or more embodiments, the host 200 may set effective pixel data associated with pixels in the boundary areas 14 to the first grayscale values and invalid pixel data associated with pixels in the insert area 13 to the second grayscale values in the image data to be transmitted to the display driver 2, as illustrated in
In one or more embodiments, the interface 210 is electrically connected to the display driver 2 and the processor 220 and configured to transmit an image data generated by the processor 220 to the display driver 2.
In one or more embodiments, the storage device 230 is configured to store various data used for the generation of the display image data. In one or more embodiments, image data conversion software 240 is installed on the storage device 230, and the storage device 230 is used as a non-transitory tangible storage medium that stores therein the image data conversion software 240. The image data conversion software 240 may be offered in the form of a computer program product recorded in a computer-readable storage medium 300 or a computer program product downloadable from a server.
In one or more embodiments, the processor 220 is configured to execute the image data conversion software 240 to perform various data processes to generate the display image data. In one or more embodiments, the processor 220 is configured perform the same processing to that performed by the image processing circuitry 22 as described above in connection with
In one or more embodiments, differently from the above-described embodiments in which the display image data is generated in units of pixels each comprising red, green and blue subpixels, the display image data may be generated in units of subpixels when the shapes of the display areas of the display panel 1 for the respective colors of the subpixels are different. In one or more embodiments, the grayscale values to be set to the pixel data of the display image data may be arbitrarily selected as long as the display of the line 30 is suppressed, differently from the above-described embodiments in which the pixel data associated with the pixels in the insert area 13 are set to the second grayscale values and the pixel data associated with the pixels in the boundary areas 14 are set to the first grayscale values.
Although various embodiments of this disclosure have been specifically described in the above, a person skilled in the art would appreciate that the technologies disclosed herein may be implemented with various modifications.
Number | Date | Country | Kind |
---|---|---|---|
2018-192159 | Oct 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20170148396 | Chen | May 2017 | A1 |
20180025683 | Oh | Jan 2018 | A1 |
20180211577 | Pan | Jul 2018 | A1 |
20190019474 | Jun | Jan 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200118504 A1 | Apr 2020 | US |