Device and method for driving jetting head

Information

  • Patent Grant
  • 6752482
  • Patent Number
    6,752,482
  • Date Filed
    Monday, February 3, 2003
    21 years ago
  • Date Issued
    Tuesday, June 22, 2004
    20 years ago
Abstract
There is disclosed a head driving device which drives a plurality of pressure generating elements for generating pressure fluctuation in a jetted object contained in each of associated pressure chambers formed in a jetting head of a jetting apparatus to eject the jetted object from each of nozzles communicated with the associated pressure chambers. In the device, a head driver generates a drive signal which is selectively applied to at least one of the pressure generating elements to be driven. A bias potential provider selectively applies a bias potential to at least one of the pressure generating elements not to be driven.
Description




BACKGROUND OF THE INVENTION




The invention relates to a jetting head capable of ejecting various kinds of liquid in the form of droplets for use in an ink jet printer, a display manufacturing apparatus, an electrode forming apparatus, a biochip manufacturing apparatus, etc., and more particularly, to a jetting apparatus having a plurality of flexible flat cables to be used for supplying drive signals from a head driver to a jetting head.




As a jetting apparatus having a jetting head capable of ejecting liquid in the form of a liquid droplet, for example, there has been proposed an ink jet printer in which ink droplets are ejected to record an image or the like on recording paper, an electrode forming apparatus in which an electrode material in a liquid form is ejected onto a substrate to thereby form electrodes, a biochip manufacturing apparatus in which biological samples are ejected to manufacture biochips, or a micropipette for ejecting a predetermined amount of a sample into a vessel.




For instance, in an ink jet printer employing piezoelectric elements as drive elements for ejecting ink, a plurality of piezoelectric elements, which are provided so as to correspond to a plurality of nozzles of a print head, are selectively activated, whereby ink droplets are ejected from the nozzles in accordance with the dynamic pressure generated by the respective piezoelectric elements. Dots are formed on recording paper by causing the ink droplets to adhere to the recording paper, thus effecting printing operation.




Here, the piezoelectric elements are provided so as to correspond to nozzles to be used for ejecting ink droplets. The piezoelectric elements are actuated by a drive signal supplied from a head driver mounted in the print head, thereby ejecting ink droplets.




SUMMARY OF THE INVENTION




It is therefore an object of the invention to provide a device and a method for driving a jetting head designed to readily retain predetermined bias voltages of respective piezoelectric elements through use of a simple, compact configuration and at low cost.




In order to achieve the above object, according to the invention, there is provided a head driving device, which drives a plurality of pressure generating elements for generating pressure fluctuation in a jetted object contained in each of associated pressure chambers formed in a jetting head of a jetting apparatus to eject the jetted object from each of nozzles communicated with the associated pressure chambers, the head driving device comprising:




a head driver, which generates a drive signal which is selectively applied to at least one of the pressure generating elements to be driven; and




a bias potential provider, which selectively applies a bias potential to at least one of the pressure generating elements not to be driven.




In such a configuration, the non-actuated pressure generating elements are held at the bias potential. Accordingly, the voltage applied to both electrodes of the non-actuated pressure generating elements becomes substantially zero. Hence, power draw is reduced, and a voltage drop stemming from spontaneous discharge of the pressure generating elements becomes smaller. Hence, a power loss is diminished.




Further, occurrence of discharge due to a potential difference between pressure generating elements to be driven and pressure generating elements not to be driven is also reduced. In addition, a further increase in arrangement density of a head can be attained without involvement of an operation for providing insulation between the electrodes of the pressure generating elements.




Preferably, the bias potential is a reference potential of the drive signal.




Preferably, the bias potential provider includes a potential applier which applies the bias potential, and a charger which charges the potential applier with a drive potential of the drive signal.




Here, it is preferable that the charger includes a transistor which applies the drive potential to the potential applier, and a switcher which supplies the drive signal to a base terminal of the transistor during a time period in which the drive signal deactivates the pressure generating elements.




In such a configuration, the transistor is turned on by the supplied drive signal to charge the potential applier with the bias potential.




Here, it is further preferable that the switcher continuously supplies the drive signal before and after a jetting operation is performed.




Specifically, the drive signal is supplied to discharge the potential applier after the jetting operation is performed.




Before the jetting operation, since the potential applier is gradually charged to reach the bias potential by the continuous supply of the drive signal, there is prevented occurrence of faulty operations of respective pressure generating elements, which would otherwise be caused by a sudden increase in the potential of the ground-side electrodes before commencement of the jetting operation.




After the jetting operation, since the potential applier is gradually discharged by the continuous supply of the drive signal, there is prevented occurrence of faulty operations of the respective pressure generating elements, which would otherwise be caused by a sudden drop in the voltage of the ground-side electrodes after completion of the jetting operation.




Further, it is preferable that: the head driver is mounted on the jetting head, and the switcher is embodied by a part of a switching circuit included in the head driver which selectively applies the drive signal to the at least one pressure generating elements to be driven.




In such a configuration, the switcher is provided by utilizing a surplus unused section of an existing switching circuit of the head driver mounted on a jetting head, thereby curtailing the cost of parts. Further, a space to be used for mounting the switcher is not particularly required, thus rendering the apparatus compact.




According to the invention, there is also provided a method of driving a jetting head provided with pressure generating elements, the method comprising steps of:




generating a drive signal selectively applied to at least one of the pressure generating elements to be driven to eject jetted objects; and




applying a bias potential from a potential applier to at least one of the pressure generating elements not to be driven.




Preferably, the driving method further comprises a step of charging the potential applier with a drive potential of the drive signal.




Here, it is preferable that the charging step is performed during a time period in which the drive signal deactivates the pressure generating elements.




It is further preferable that the charging step is performed during a time period in which the drive signal deactivates the pressure generating elements.




According to the invention, there is also provided a head driving device, which drives a plurality of pressure generating elements for generating pressure fluctuation in a jetted object contained in each of associated pressure chambers formed in a jetting head of a jetting apparatus to eject the jetted object from each of nozzles communicated with the associated pressure chambers, the head driving device comprising:




a head driver, which generates a drive signal which is selectively applied to at least one of the pressure generating elements to be driven;




a bias potential provider, which applies a bias potential to respective ground-side electrodes of the pressure generating elements; and




an IC package, in which the head driver and the bias potential provider are provided.




In such a configuration, the ground-side electrodes of the pressure generating elements are held at the bias potential.




Accordingly, the voltage to be applied across both electrodes of the pressure generating elements is reduced. Therefore, power consumption is diminished, and a voltage drop stemming from spontaneous discharge of the pressure generating elements is small, thereby reducing a power loss.




Further, since the voltage to be applied to the pressure generating elements becomes relatively low, electric discharge stemming from a voltage difference between pressure generating elements to be driven and pressure generating elements not to be driven is also reduced. In addition, a further increase in arrangement density of the pressure generating elements can be attained without involvement of an operation for providing insulation between the electrodes of the pressure generating elements, even when pressure generating elements eventually assume a lower withstand voltage.




Since the head driver and the bias potential provider are provided integrally within an IC package, a reduction in packing, wiring, and connection space can be attained.




Preferably, the bias potential is a reference potential of the drive signal.




In such a configuration, the voltage applied to across electrodes of the pressure generating elements becomes substantially zero. Hence, a voltage drop stemming from spontaneous discharge of the pressure generating elements becomes smaller, thereby reducing a power loss.




Preferably, the head driving device further comprising:




a capacitor, having a capacitance which is sufficiently greater than a total electrostatic capacitance of the pressure generating elements, the capacitor provided with a first terminal which is electrically connected to the ground-side electrodes and a second terminal which is grounded; and




a control resistor, which electrically connects the first terminal of the capacitor and the bias potential provider.




In such a configuration, the capacitor is charged with a bias potential output from the bias potential provider by way of the control resistor. In a case where an amplifier is provided in the bias potential provider, since the charging voltage of the capacitor is applied to the pressure generating elements, it is not necessary to provide an amplifier of a high speed operable type. A low-speed, small-capacity amplifier can be used, thereby curtailing cost of such an amplifier.




Due to the existence of the control resistor, the charging and discharged currents substantially do not flow into the amplifier of the bias potential provider, but flow into the condenser. Hence, the amount of heat dissipated by the amplifier is reduced.




Here, it is preferable that the bias potential provider charges the capacitor with a potential according to a data signal inputted to the bias potential provider, so that the charged potential is applied to the ground-side electrodes of the pressure generating elements as the bias potential.




Further, it is preferable that the bias potential provider discharges the capacitor according to a data signal inputted to the bias potential provider, so that the ground-side electrodes of the pressure generating elements are discharged.




In such a configuration, due to the existence of the control resistor, a large discharged electric current does not flow into the bias potential provider, thereby lowering the amount of heat dissipated by e.g., an amplifier of the bias potential provider.




Further, it is preferable that the data signal is inputted to the head driver to generate the drive signal.




In such a configuration, a data signal can be input from a common connection terminal of an IC package constituting the head driver and the bias potential provider. Accordingly, inputting a data signal individually to the head driver and to the bias potential provider is not required, thereby reducing the wiring and connection space.




Further, it is preferable that the head driving device further comprises a temperature detector, which detects a temperature of the jetting head. The data signal corresponds to the bias potential which is determined by the detected temperature.




Alternatively, it is preferable that the number of bits forming the data signal is less than the number of a signal inputted to the head driver to generate the drive signal.




The setting accuracy of the bias potential output from the bias potential provider may be lower than the drive signal of the head driver. In such a case, a D/A converter to be incorporated in the bias potential provider can be embodied by a more compact and less-expensive D/A converter.











BRIEF DESCRIPTION OF THE DRAWINGS




The above objects and advantages of the present invention will become more apparent by describing in detail preferred exemplary embodiments thereof with reference to the accompanying drawings, wherein:





FIG. 1

is a block diagram showing a head driving device according to a first embodiment of the invention;





FIG. 2

is a timing chart showing operation of the head driving device to be performed at commencement of printing operation;





FIG. 3

is a timing chart showing operation of the head driving device to be performed during the course of printing operation;





FIG. 4

is a timing chart showing operation of the head driving device to be performed at the end of the printing operation;





FIG. 5

is a fragmentary circuit diagram showing an exemplary configuration of an analog switch in the head driving device;





FIG. 6

is a block diagram showing a head driving device according to a second embodiment of the invention,





FIG. 7

is a block diagram showing a head driving device according to a third embodiment of the invention;





FIG. 8

is a timing chart showing a relationship between a drive signal of a head driver and a bias voltage in the head driving device shown in

FIG. 7

;





FIG. 9

is a flowchart showing operation of the head driving device shown in

FIG. 7

to be performed when the device is activated;





FIG. 10A

is a timing chart showing a drive signal of the head driver of the head driving device shown in

FIG. 7

;





FIG. 10B

is a timing chart showing a bias voltage of the bias potential supplier of the head driving device shown in

FIG. 7

;





FIG. 11

is a flowchart showing operation of the head driving device shown in

FIG. 7

to be performed at commencement of printing operation; and





FIG. 12

is a flowchart showing operation of the head driving device shown in

FIG. 7

to be performed when the device is deactivated.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the invention will be described by reference to the accompanying drawings. The embodiments to be described hereinbelow are preferred specific embodiments of the invention, and hence technically-preferable limitations are imposed on the embodiments. However, the scope of the invention is not limited to the embodiments unless the following descriptions include descriptions which particularly specify the invention.




As shown in

FIG. 1

, a head driving device


10


according to a first embodiment of the invention comprises: piezoelectric elements


11


provided so as to correspond to a plurality of nozzles of an ink jet printer; a head driver


12


for supplying a drive signal to electrodes


11




a


of the respective piezoelectric elements


11


; a current amplifier


13


and a switcher


14


, both being interposed between the head driver


12


and the respective piezoelectric elements


11


; and a bias potential provider


20


for applying an intermediate potential to ground-side electrodes


11




b


of the piezoelectric elements


11


.




A row of nozzles are actually provided on a per-color basis in a print head of the ink jet printer


10


, and the piezoelectric elements


11


are provided for each of the rows of nozzles.




The piezoelectric elements


11


are embodied by, e.g., elements exhibiting the piezoelectric effect and formed so as to become displaced by a voltage applied across the electrodes


11




a


and


11




b.






The piezoelectric elements


11


remain charged in the vicinity of an intermediate potential Vc at all times. The piezoelectric elements


11


are arranged so as to eject ink droplets from nozzles by applying pressure to the ink stored in corresponding nozzles when performing discharging operation in accordance with a drive signal COM output from the head driver


12


.




The head driver


12


is embodied as a driver IC and generates a drive signal COM to be sent to the print head which is placed in, e.g., a main unit of the printer.




The current amplifier


13


is formed from two transistors


15


,


16


. Of the transistors, a collector of the first transistor


15


is connected to a constant voltage power source (e.g., +42V DC power supply), and a base of the same is connected to one output terminal of the head driver


12


. Further, an emitter of the first transistor


15


is connected to an input terminal of the switcher


14


. As a result, in accordance with a signal output from the head driver


12


, a constant voltage Vcc is supplied to the piezoelectric elements


11


via the switcher


14


.




An emitter of a second transistor


16


is connected to an input terminal of the switcher


14


. A base of the second transistor


16


is connected to a second output terminal of the head driver


12


. Further, a collector of the second transistor


16


is connected to ground. As a result, in accordance with a signal output from the head driver


12


, the piezoelectric elements


11


are caused to discharge by way of the switcher


14


.




Upon receipt of a control signal, the switcher


14


is turned on at a timing at which a corresponding piezoelectric element


11


is to be activated, thereby outputting the drive signal COM to that piezoelectric element


11


.




The switcher


14


is, actually formed as a so-called transmission gate for activating or deactivating the respective piezoelectric elements


11


.




The bias potential provider


20


is constituted of a capacitor


21


serving as a potential applier, and a charger


22


.




The capacitor


21


is an electrolytic capacitor. One end of the capacitor


21


is connected to the ground-side common electrodes


11




b


of the piezoelectric elements


11


, and the other end of the capacitor


21


is connected to ground such that a charging voltage of the capacitor; i.e., an intermediate potential Vc, is applied to the grounded elements


11




b


of the respective piezoelectric elements


11


.




The capacitance of the capacitor


21


is selected so as to assume sufficient capacitance with respect to a total amount of electrostatic capacitance of all the piezoelectric elements


11


(a total of several microfarads; e.g., approximately 1.4 μF); that is, hundreds of microfarads to thousands of microfarads, so that the stable intermediate potential can be supplied to the respective piezoelectric elements


11


. Here, a device other than a capacitor may be employed as the potential applier.




The charger


22


comprises a transistor


23


serving as a switching element; a resistor


24


; a capacitor


25


; and an analog switch


26


.




An emitter of the transistor


23


is connected to one end of the capacitor


21


, and a collector of the same is connected to a constant voltage power supply Vcc.




In lieu of the transistor


23


, any of various types of switching elements; for example, an FET, a thyristor, and a TRIAC, may also be employed.




The resistor


24


is connected to a point located between the emitter of the transistor


23


and the ground. The capacitor


25


is connected to a point located between the base of the transistor


23


and the ground.




Further, the analog switch


26


is connected to a point located between the base of the transistor


23


, and the emitter of the first transistor


15


and the emitter of the second transistor


16


, where the transistors


15


,


16


belong to the current amplifier


13


.




Upon receipt of an activation/deactivation control signal output from the control section of the printer main unit, the analog switch


26


is activated by, for example, a high-level control signal or deactivated by, for example, a low-level control signal.




The control signal is set so as to be brought to a high level during a non-driving period of the drive signal COM output from the head driver


12


via the current amplifier


13


; that is, a period of an intermediate potential, and so as to be brought to a low level during a driving period of the drive signal.




The control signal is set so as to become continuously high at the commencement or end of printing operation.




The head driving device


10


of the embodiment is constructed in the manner set forth and operates in the following manner in accordance with a head driving method of the invention.




First, the operation of the head driving device


10


to be performed at start of printing operation of the ink jet printer (e.g., activation of the ink jet printer) will be described.




At the time of commencement of printing operation, the drive signal COM output from the head driver


12


via the current amplifier


13


increases gradually.




As a result, in accordance with the drive signal COM, an electric current flows from the first transistor


15


of the current amplifier


13


to the electrodes


11




a


of the piezoelectric elements


11


via the switcher


14


. As indicated by solid line “a” shown in

FIG. 2

, the electrodes


11




a


of the piezoelectric elements


11


gradually increase in potential up to the intermediate potential Vc; e.g., after a period of 20 μsec.




At this time, as a result of activation of the analog switch


26


, the drive signal COM is applied to the base of the transistor


23


of the charger


22


, thereby activating the transistor


23


.




As a result, a constant voltage output from the constant voltage power supply Vcc is applied to the capacitor


21


, thereby gradually charging the capacitor


21


. Accordingly, a charging voltage of the capacitor


21


gradually increases up to the intermediate potential Vc. As indicated by dashed lines “b” shown in

FIG. 2

, the ground-side electrodes


11




b


of the piezoelectric elements


11


also gradually increase in potential, thus reaching the intermediate potential Vc.




In this way, the ground-side electrodes


11




b


of the piezoelectric elements


11


reach the intermediate potential in the same manner as do the electrodes


11




a


to be activated by the drive signal COM. Hence, a potential difference between the electrodes


11




a


,


11




b


of the piezoelectric elements is suppressed to a low level. Accordingly, since the potential difference is lower than the intermediate potential Vc of the drive signal COM, there is prevented ejection of ink droplets, which would otherwise be caused by faulty operation of the piezoelectric elements


11


.




Operation of the head driving device


10


to be performed during printing operation of the ink jet printer will now be described. As shown in

FIG. 3

, when the drive signal COM is higher than the intermediate potential, the electrodes


11




a


of the piezoelectric elements


11


are charged by way of the first transistor


15


of the current amplifier


13


in accordance with fluctuations in the drive signal COM. When the drive signal COM is lower than the intermediate potential, the electrodes


11




a


of the piezoelectric elements


11


discharge an electric current via the second transistor


16


of the current amplifier


13


. As a result, the piezoelectric elements


11


operate in accordance with the drive signal COM, thereby ejecting ink droplets.




At that time, as shown in

FIG. 3

, the analog switch


26


is activated only during the non-driving period of the drive signal COM (i.e., when the potential of the drive signal becomes the intermediate potential). Hence, the charger


22


always charges the capacitor


21


of the bias potential provider


20


with the intermediate potential.




As a result, the intermediate potential Vc is applied to the common electrodes


11




b


of the piezoelectric elements


11


from the capacitor


21


. Hence, the electrodes


11




b


are always held at the intermediate potential Vc as indicated in dashed lines “b” shown in FIG.


3


.




Operation of the head driving device


10


to be performed at the end of the printing operation of the ink jet printer (e.g., when the ink jet printer is deactivated) will now be described.




At the time of completion of printing operation, the drive signal COM to be output from the head driver


12


to the current amplifier


13


is discharged from the electrodes


11




a


of the piezoelectric elements


11


via the second transistor


16


of the current amplifier


13


, whereby the electrodes


11




a


fall to zero potential.




At this time, the analog switch


26


is turned on, whereby the drive signal COM is applied to the base of the transistor


23


of the charger


21


. However, since the drive signal COM is in the midst of a gradual fall, the transistor


23


remains deactivated.




The capacitor


21


of the bias potential provider


20


is grounded via the resistor


24


. Therefore, the capacitor


21


is gradually discharged. Since the charging voltage of the capacitor


21


falls to zero, the electrodes


11




b


of the piezoelectric elements


11


also gradually fall in potential, as indicated by dashed lines “b” shown in

FIG. 4

, to thereby reach zero.




The ground-side electrodes


11




b


of the piezoelectric elements


11


gradually reach zero potential as in the case of the electrodes


11




a


to be activated by the drive signal COM. Therefore, a potential difference between the electrodes


11




a


,


11




b


of the piezoelectric elements is suppressed to a low level. Accordingly, the potential difference is lower than the intermediate potential Vc of the drive signal COM, and hence there is prevented ejection of ink droplets, which would otherwise be caused by faulty operation of the piezoelectric elements


11


.




In this way, the power to be dissipated by the piezoelectric elements


11


is diminished, and a voltage drop stemming from spontaneous discharge of the piezoelectric elements is small, which in turn reduces a power loss.




A potential difference between the piezoelectric elements


11


to be driven and the piezoelectric elements


11


not to be driven becomes small. Hence, even when these piezoelectric elements


11


are located adjacent to each other, electric discharge arising between the piezoelectric elements


11


is diminished. Moreover, even when the withstand voltage of each of the piezoelectric elements


11


becomes lower as a result of an increase in arrangement density, providing insulation between the piezoelectric elements


11


is unnecessary. Hence, an increase in arrangement density of a head can be achieved easily.




Since the capacitor


21


is charged by utilization of a head drive voltage, a specific power supply circuit to be used for producing the intermediate potential Vc is not required.





FIG. 5

shows an exemplary configuration of a switcher which can be used in place of the analog switch


26


.




As shown in

FIG. 5

, a switcher


30


comprises, in lieu of the analog switch


26


, a transistor


31


connected to a point located between the base of the transistor


23


, the emitter of the first transistor


15


, and the emitter of the second transistor


16


, both transistors


15


,


16


belonging to the current amplifier


13


; and a transistor


32


connected to a point located between the base of the transistor


31


and the ground by way of a resistor


33


.




A resistor


34


is connected to the base and emitter of the transistor


31


.




An activation/deactivation control signal output from the control section of the printer main unit is input to the base of the transistor


32


.




By the switcher


30


of such a configuration, as a result of a high-level control signal being input to the base of the transistor


32


, the drive signal COM flows to the ground via the resistors


33


,


34


, thereby applying a voltage to the base of the transistor


31


. Thus, the transistor


31


is activated.




As a result of a low-level control signal being input to the base of the transistor


32


, the potential of the base of the transistor


31


and the potential of the emitter of the transistor


31


are held at the same potential, and consequently the transistor


31


is deactivated.




Activation and deactivation of the switcher


30


are controlled by the control signal in the same manner as employed for the analog switch


26


.




As shown in

FIG. 6

, a head driving device


40


according to a second embodiment of the invention is substantially identical in configuration with the head driving device


10


shown in FIG.


1


. Those constituent elements which are the same as those of the head driving device


10


are assigned the same reference numerals, and their explanations are omitted.




As in the case of the head driving device


10


shown in

FIG. 1

, the head driver


12


, the current amplifier


13


, the switcher


14


, and the bias potential provider


20


are mounted on a print head


41


(or a carriage supporting a print head


17


).




The analog switch


26


of the bias potential provider


20


is constituted by utilization of an unused switching section of the switcher


14


mounted on the print head


41


.




The head driving device


40


of such a configuration operates in the same manner as does the head driving device


10


shown in FIG.


1


. Since the analog switch


26


utilizes an unused switch section of the switcher


14


, a smaller number of parts are required, whereby the cost of parts and an assembly cost can be reduced.




In the above embodiments, the charger


22


is constituted of the transistor


23


, the resistor


24


, the capacitor


25


, and the analog switch


26


. However, the charger is not limited to such a circuit. A charger of another arbitrary configuration can also be used, so long as the circuit can supply a constant voltage from the constant voltage power supply Vcc to the capacitor


21


.




As shown in

FIG. 7

, a head driving device


100


according to a third embodiment of the invention comprises: piezoelectric elements


11


provided so as to correspond to a plurality of nozzles of an ink jet printer; a head driver


12


for supplying a drive signal to electrodes


11




a


of the respective piezoelectric elements


11


; a current amplifier


13


and a switcher


14


, both being interposed between the head driver


12


and the respective piezoelectric elements


11


; a bias potential provider


20


for applying a predetermined bias voltage to ground-side electrodes


11




b


of the piezoelectric elements


11


; a control resistor


121


; and a capacitor


122


. Those constituent elements which are the same as those of the head driving devices according to the above embodiments are assigned the same reference numerals, and their explanations are omitted.




The head driver


12


is embodied as a driver IC


130


and generates a drive signal COM to be sent to the print head placed in, e.g., a main unit of the printer.




In this case, the head driver


12


is constituted of a latch


12




a


; a D/A converter


12




b


; and an amplifier


12




c.






In this embodiment, the latch


12




a


is arranged so as to receive 10-bit data signals DATA


0


to DATA


9


output from the control section of the printer main unit, and a clock signal is input to a clock terminal CLK


1


of the latch


12




a.






In accordance with the data signals DATA


0


to DATA


9


input to the D/A converter


12




b


by way of the latch


12




a


, the D/A converter


12




b


outputs an analog signal corresponding to a drive voltage through D/A conversion.




Further, the amplifier


12




c


amplifies the analog signal output from the D/A converter


12




b


, to thereby produce a predetermined drive voltage waveform.




The bias potential provider


20


is formed from a latch


123


, a D/A converter


124


, and an amplifier


125


in the same manner as is the head driver


12


.




In the case of the illustrated embodiment, the latch


123


receives the 10-bit data signals DATA


0


to DATA


9


output from the control section of the printer main unit of the ink jet printer, and a clock signal is input to a clock terminal CLK


2


of the latch


123


.




In accordance with the data signals DATA


0


to DATA


9


input by way of the latch


123


, through D/A conversion the D/A converter


124


outputs an analog voltage corresponding to the bias voltage.




Further, the amplifier


125


amplifies an analog voltage output from the D/A converter


124


, thus producing a predetermined bias voltage.




The bias potential provider


20


constituted of the latch


123


, the D/A converter


124


, and the amplifier


125


is housed in the driver IC


130


constituting the head driver


12


and embodied as a single IC package.




In this way, the bias potential provider


20


outputs, to the ground-side electrodes


11




b


of the piezoelectric elements


11


, a predetermined bias voltage Vb, preferably a voltage substantially equal to the intermediate potential Vc of the drive signal COM output from the head driver


12


, as shown in FIG.


8


.




The control resistor


121


is a so-called coupling resistor and charges the capacitor


122


with the bias voltage Vb output from the bias potential provider


20


. At the time of discharging operation of the capacitor


122


, the control resistor


121


limits the current discharged from the capacitor


122


.




The control resistor


121


is set to hundreds of ohms (e.g., 200 Ω) so as to enable smooth charging of the capacitor


122


and to effectively limit a discharge current.




The capacitor


122


is an electrolytic capacitor. One end of the capacitor


122


is connected to the ground-side common electrodes


11




b


of the piezoelectric elements


11


, and the other end of the capacitor


122


is grounded such that a charging voltage of the capacitor; i.e., the bias voltage Vb, is applied to the common electrodes


11




b


of the respective piezoelectric elements


11


.




The capacitance of the capacitor


122


is selected so as to assume sufficient capacitance with respect to a total amount of electrostatic capacitance of all the piezoelectric elements


11


(a total of several microfarads; e.g., approximately 1.4 μF); that is, thousands of microfarads (e.g., approximately 3300 μF) so that the stable bias voltage Vb can be supplied to the respective piezoelectric elements


11


.




The head driving device


100


of the embodiment is constructed in the manner set forth and operates in the following manner.




First, operation to be performed at the time of activation of the ink jet printer will be described in accordance with a flowchart shown in FIG.


9


.




When the ink jet printer is activated, the control section of the printer main unit detects a head temperature (step A


1


), and calculatively determines an intermediate voltage Vc


1


corresponding to the thus-detected temperature (step A


2


). Incidentally, the temperature detected in the step A


1


may be a temperature in the vicinity of the print head, an environmental temperature of the printer, or the like.




Subsequently, the control section of the printer main unit activates all nozzles of the printer head (step A


3


). In step A


4


, the control section gradually increases digital values represented by the data signals DATA


0


to DATA


9


while delivering a clock signal to the clock terminal CLK


1


, thus controlling the D/A converter of the head driver


12


.




As a result, by way of the switcher


14


an electric current flows from the first transistor


15


of the current amplifier


13


in response to the drive signal COM, thereby charging the electrodes


11




a


of the piezoelectric elements


11


. As indicated by reference symbol A shown in

FIG. 10A

, the electrodes


11




a


of the piezoelectric elements


11


increase up to the intermediate potential Vc


1


.




Subsequently, the control section of the printer main unit outputs a digital value of the intermediate potential Vc


1


in the form of the data signals DATA


0


to DATA


9


(step A


5


). In step A


6


, the control section outputs one clock pulse to the CLK


2


terminal of the latch


123


of the bias potential provider


20


, thereby controlling the D/A converter


124


of the bias potential provider


20


.




As a result, the bias potential provider


20


applies a bias voltage Vb (=Vc


1


) to the capacitor


122


by way of the control resistor


121


, thus charging the capacitor


122


. The charging voltage of the capacitor


20


gradually increases up to the intermediate potential Vc


1


in accordance with a time constant defined by the control resistor


121


and the capacitor


122


. As indicated by reference symbol B shown in

FIG. 10B

, the potential of the ground-side electrodes


11




b


of the piezoelectric elements


11


gradually increases and finally reaches the intermediate potential Vc


1


. Accordingly, a potential difference between the electrodes


11




a


,


11




b


of the piezoelectric elements becomes substantially zero. At this point, the operation of the printer driver to be performed at the activation is completed.




The bias voltage Vb stored in the capacitor


122


is applied to the ground-side electrodes


11




b


of the piezoelectric elements


11


. Hence, the amplifier


125


of the bias potential provider


20


does not need to be a high-speed operable type; an amplifier which outputs a small electric current will be sufficient.




Next, the operation of the head driving device to be performed at the commencement of printing operation will now be described by reference to a flowchart shown in FIG.


11


. In accordance with the flowchart shown in

FIG. 11

, when commencement of printing operation of the ink jet printer is instructed, the control section of the printer main unit detects a temperature (step B


1


), and calculatively determines an intermediate voltage Vc


2


corresponding to the thus-detected temperature (step B


2


). Incidentally, the temperature detected in the step B


1


may be a temperature in the vicinity of the print head, an environmental temperature of the printer, or the like.




Subsequently, the control section of the printer main unit activates all the nozzles of the printer head (step B


3


). In step B


4


, the digital value represented by the data signals DATA


0


to DATA


9


is caused to change gradually. As a result of the clock signal being input to the clock terminal CLK


1


, the D/A converter


12




b


of the head driver


12


is controlled.




As a result, when Vc


1


<Vc


2


, an electric current flows into the electrodes


11




a


of the piezoelectric elements


11


from the first transistor


15


of the current amplifier


13


by way of the switcher


14


in accordance with the drive signal COM, thereby charging the electrodes


11




a


. As indicated by reference symbol C shown in

FIG. 10A

, the voltage of the electrodes


11




a


reaches the intermediate potential Vc


2


. When Vc


1


>Vc


2


, an electric current is discharged from the electrodes


11




a


of the piezoelectric elements


11


by way of the second transistor


16


of the current amplifier


13


, whereby the piezoelectric elements


11


are operated in accordance with the drive signal COM, thus ejecting ink droplets.




Subsequently, the control section of the printer main unit outputs a digital value of the intermediate potential Vc


2


in the form of the data signals DATA


0


to DATA


9


(step B


5


). In step B


6


, the control section outputs one clock pulse to a CLK


2


terminal of the latch


123


of the bias potential provider


20


, thus controlling the D/A converter


124


of the bias potential provider


20


.




As a result, the bias potential provider


20


applies the bias voltage Vb (=Vc


2


) to the capacitor


122


by way of the control resistor


121


, thereby charging the capacitor


122


. Eventually, a charging voltage of the capacitor


20


gradually changes up to the intermediate voltage Vc


2


on the basis of the time constant defined by the control resistor


121


and the capacitor


122


. As indicated by reference symbol D shown in

FIG. 10B

, the potential of the ground-side electrodes


11




b


of the piezoelectric elements


11


also changes gradually, to thereby reach the intermediate potential Vc


2


. Accordingly, a potential difference between the electrodes


11




a


,


11




b


of the piezoelectric elements becomes substantially zero. At this point, the operation of the head driving device to be performed at the commencement of the printing operation is completed.




When printing operation is performed in this state, the electrodes


11




a


of the piezoelectric elements


11


are charged by way of the first transistor


15


of the current amplifier


13


in accordance with variations in the drive signal COM during a period in which the voltage of the drive signal COM is increasing. During a period in which the voltage of the drive signal COM is decreasing, the electrodes


11




a


of the piezoelectric elements


11


discharge an electric current by way of the second transistor


16


of the current amplifier


13


. As a result, the piezoelectric elements


11


operate in accordance with the drive signal COM, thereby ejecting ink droplets.




Next, the operation of the head driving device to be performed at the deactivation will be described in accordance with a flowchart shown in FIG.


12


. When the deactivation of the ink jet printer is instructed, the control section of the printer main unit activates all the nozzles of the printer head (step C


1


). In step C


2


, the control section sets the data signals DATA


0


to DATA


9


to zero. In step C


3


, one clock pulse is provided to the clock terminal CLK


2


of the latch


123


of the bias potential provider


20


.




As a result, the D/A converter


124


of the bias potential provider


20


outputs an analog signal corresponding to a bias voltage Vb=0. Hence, the amplifier


125


outputs a zero bias voltage.




Eventually, the capacitor


122


is discharged. The electric current discharged from the capacitor


122


is gradually discharged from the bias potential provider


20


to the ground while passing through the control resistor


121


. In association with this discharging operation, the potential of the ground-side electrodes


11




b


of the piezoelectric elements


11


also falls to zero as indicated by symbol E shown in FIG.


10


B.




Subsequently, after elapse of a preset given period of time required for causing the capacitor


122


to discharge (step C


4


), the control section of the printer main unit gradually decreases the digital value represented by the data signals DATA


0


to DATA


9


(step C


5


). The control section controls the D/A converter of the head driver


12


by inputting a clock signal to the clock terminal CLK


1


.




As a result, an electric current flows from the electrodes


11




a


of the piezoelectric elements


11


to the ground by way of the switcher


14


and the second transistor


16


of the current amplifier


13


. As indicated by reference symbol F shown in

FIG. 10A

, the potential of the electrodes


11




a


of the piezoelectric elements


11


falls to zero.




As a result of the potential of the electrodes


11




a


of the piezoelectric elements


11


and that of the electrodes


11




b


of the same having dropped to zero, the operation of the head driving device to be performed at the deactivation is completed, and subsequently power is turned off.




In this way, the potential of the ground-side electrodes


11




b


of the respective piezoelectric elements


11


is held at the bias voltage Vb; preferably, the intermediate potential Vc, by the charging voltage of the capacitor


122


supplied from the bias potential provider


20


. Hence, the potential difference between the electrodes


11




a


,


11




b


of the piezoelectric elements


11


is held at substantially zero. When piezoelectric elements to be driven and piezoelectric elements not to be driven are located adjacent to each other, a potential difference across the electrodes


11




a


of the piezoelectric elements


11


is also held substantially at zero.




A voltage drop stemming from self-discharge of the piezoelectric elements


11


is small, thereby diminishing a power loss.




A potential difference between the piezoelectric elements


11


to be driven and the piezoelectric elements


11


not to be driven becomes low. Hence, even when these piezoelectric elements


11


are located adjacent to each other, electric discharge arising between the piezoelectric elements


11


is diminished. Moreover, even when the withstand voltage of each of the piezoelectric elements


11


becomes lower as a result of an increase in arrangement density, provision of insulation between the piezoelectric elements


11


is not required. Hence, an increase in arrangement density of a head can be easily achieved.




The bias potential provider


20


is constituted integrally with the head driver


12


as a single driver IC


130


. Hence, only a small packing space is required. Moreover, both data signals to be input to the bias potential provider


20


and those to be input to the head driver


12


are 10-bit common data signals. Hence, smaller wiring and connection space is sufficient.




A bias voltage of the bias potential provider


20


is applied to the capacitor


122


by way of the control resistor


121


. The amplifier


125


of the bias potential provider


20


does not need to be a high-speed operable type; a low-cost, small-capacity amplifier can be employed.




The electric current discharged from the capacitor


122


is limited by the control resistor


121


, thereby preventing flow of a large electric current into the bias potential provider


20


. Hence, the amount of heat dissipated by the amplifier


125


of the bias potential provider


20


can be greatly reduced.




In the embodiment, the bias potential provider


20


outputs a bias voltage Vb equal to the intermediate voltage Vc of the drive signal COM output from the head driver


12


. However, the bias potential provider


20


may output a bias voltage Vb offset from the intermediate voltage Vc.




In this case, a potential between the electrodes


11




a


,


11




b


of the piezoelectric elements


11


does not become substantially zero. However, when compared with a case where the bias voltage is not employed, the potential difference becomes smaller, thereby reducing power to be consumed by the piezoelectric elements. Moreover, a voltage drop stemming from spontaneous discharge of the piezoelectric elements becomes smaller, thereby reducing a power loss. Occurrence of electric discharge resulting from a potential difference between the piezoelectric elements to be driven and the piezoelectric elements not to be driven is also diminished. Even when the piezoelectric elements are made compact and their withstand voltages become lower, the piezoelectric elements can cope with the drive signal. Hence, the arrangement density of the piezoelectric elements can be made increased further without involvement of an operation for providing insulation between electrodes of the piezoelectric elements.




In the embodiments, the 10-bit data signals DATA


0


to DATA


9


are input to the bias potential provider


20


, as in the case of the head driver


12


. However, data signals of smaller bits may also be employed.




In this case, the bias voltage may be in the vicinity of an intermediate voltage of the drive signal. Further, the bias voltage may also be less accurate than the drive signal. Hence, for example, an 8-bit data signal may be employed, so long as the maximum value and resolution of the bias voltage are halved. Accordingly, use of an 8-bit latch


123


and an 8-bit D/A converter


124


leads to cost reduction.




Although all the nozzles are turned on in step A


3


shown in

FIG. 9

, in step B


3


shown in

FIG. 11

, and in step C


1


shown in

FIG. 12

, all the nozzles may be deactivated. In this case, substantially no current flows through the two transistors


15


,


16


of the current amplifier


13


, thus yielding the same result. Moreover, activation or deactivation of the nozzles does not need to be determined. However, in this case, there arises a problem of failure to determine an electric current to flow in a charging/discharging process.




In the above embodiments, the piezoelectric elements


11


are embodied by elements exhibiting the piezoelectric effect. However, other elements; e.g., electrostrictive elements or magnetostrictive elements, may be employed.




The invention can be also applied to display manufacturing apparatuses, electrode forming apparatuses, biochip manufacturing apparatuses, or various types of liquid jetting apparatuses, as well as ink jet printers. Furthermore, the invention can be also applied to a jetting apparatus in which any kinds of gas is selected as a jetted object.



Claims
  • 1. A head driving device, which drives a plurality of pressure generating elements for generating pressure fluctuation in a jetted object contained in each of associated pressure chambers formed in a jetting head of a jetting apparatus to eject the jetted object from each of nozzles communicated with the associated pressure chambers, the head driving device comprising:a head driver, which generates a drive signal which is selectively applied to at least one of the pressure generating elements to be driven; and a bias potential provider, which selectively applies a bias potential to at least one of the pressure generating elements not to be driven.
  • 2. The head driving device as set forth in claim 1, wherein the bias potential provider includes a potential applier which applies the bias potential, and a charger which charges the potential applier with a drive potential of the drive signal.
  • 3. The head driving device as set forth in claim 2, wherein the charger includes a transistor which applies the drive potential to the potential applier, and a switcher which supplies the drive signal to a base terminal of the transistor during a time period in which the drive signal deactivates the pressure generating elements.
  • 4. The head driving device as set forth in claim 3, wherein the switcher continuously supplies the drive signal before and after a jetting operation is performed.
  • 5. The head driving device as set forth in claim 3, wherein:the head driver is mounted on the jetting head; and the switcher is embodied by a part of a switching circuit included in the head driver which selectively applies the drive signal to the at least one pressure generating elements to be driven.
  • 6. The head driving device as set forth in claim 4, wherein the drive signal is supplied to discharge the potential applier after the jetting operation is performed.
  • 7. The head driving device as set forth in claim 1, wherein the bias potential is a reference potential of the drive signal.
  • 8. A head driving device, which drives a plurality of pressure generating elements for generating pressure fluctuation in a jetted object contained in each of associated pressure chambers formed in a jetting head of a jetting apparatus to eject the jetted object from each of nozzles communicated with the associated pressure chambers, the head driving device comprising:a head driver, which generates a drive signal which is selectively applied to at least one of the pressure generating elements to be driven; a bias potential provider, which applies a bias potential to respective ground-side electrodes of the pressure generating elements; and an IC package, in which the head driver and the bias potential provider are provided.
  • 9. The head driving device as set forth in claim 8, wherein the bias potential is a reference potential of the drive signal.
  • 10. The head driving device as set forth in claim 8, further comprising:a capacitor, having a capacitance which is sufficiently greater than a total electrostatic capacitance of the pressure generating elements, the capacitor provided with a first terminal which is electrically connected to the ground-side electrodes and a second terminal which is grounded; and a control resistor, which electrically connects the first terminal of the capacitor and the bias potential provider.
  • 11. The head driving device as set forth in claim 10, wherein the bias potential provider charges the capacitor with a potential according to a data signal inputted to the bias potential provider, so that the charged potential is applied to the ground-side electrodes of the pressure generating elements as the bias potential.
  • 12. The head driving device as set forth in claim 11, wherein the data signal is inputted to the head driver to generate the drive signal.
  • 13. The head driving device as set forth in claim 11, wherein the number of bits forming the data signal is less than the number of a signal inputted to the head driver to generate the drive signal.
  • 14. The head driving device as set forth in claim 10, wherein the bias potential provider discharges the capacitor according to a data signal inputted to the bias potential provider, so that the ground-side electrodes of the pressure generating elements are discharged.
  • 15. The head driving device as set forth in claim 10, further comprising a temperature detector, which detects a temperature of the jetting head,wherein the data signal corresponds to the bias potential which is determined by the detected temperature.
  • 16. A method of driving a jetting head provided with pressure generating elements, the method comprising steps ofgenerating a drive signal selectively applied to at least one of the pressure generating elements to be driven to eject jetted objects; and applying a bias potential from a potential applier to at least one of the pressure generating elements not to be driven.
  • 17. The driving method as set forth in claim 16, further comprising a step of charging the potential applier with a drive potential of the drive signal.
  • 18. The driving method as set forth in claim 17, wherein the charging step is performed during a time period in which the drive signal deactivates the pressure generating elements.
  • 19. The driving method as set forth in claim 18, wherein the charging step is performed before and after a jetting operation is performed.
Priority Claims (2)
Number Date Country Kind
P2002-025978 Feb 2002 JP
P2002-051596 Feb 2002 JP
US Referenced Citations (3)
Number Name Date Kind
5265315 Hoisington et al. Nov 1993 A
20020075338 Kobayashi et al. Jun 2002 A1
20020145637 Umeda et al. Oct 2002 A1
Foreign Referenced Citations (1)
Number Date Country
3097155 Aug 2000 JP
Non-Patent Literature Citations (1)
Entry
Stan Gibilisco, The Illustrated Dictionary of Electronic Terms, 1997, Seventh edition, pp. 364,654.